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Abstract

We investigate the mechanical property predictions for a three-phase viscoelastic (VE) composite by the use of two micro-

mechanical models: the original Mori–Tanaka (MT) method and an extension of the Mori–Tanaka solution developed by Benve-
niste to treat fibers with interphase regions. These micro-mechanical solutions were compared to a suitable finite-element analysis,
which provided the benchmark numerical results for a periodic array of inclusions. Several case studies compare the composite
moduli predicted by each of these methods, highlighting the role of the interphase. We show that the MT method, in general,

provides the better micromechanical approximation of the viscoelastic behavior of the composite; however, the micromechanical
methods only provide an order-of-magnitude approximation for the effective moduli. Finally, these methods were used to study the
physical aging of a viscoelastic composite. The results imply that the existence of an interphase region, with viscoelastic moduli

different from those of the bulk matrix, is not responsible for the difference in the shift rates, �22 and �66, describing the transverse
Young’s axial shear moduli, found experimentally. # 2001 Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

Polymer–matrix composites (PMCs), particularly those
containing fiber reinforcement, have become increasingly
popular for use in structural applications. The primary
benefit of such systems is the potential for impressive
strength-to-weight ratios. Other additional benefits, such
as improved corrosion resistance and material property
tailorability, can be of significance for specialized appli-
cations. One area of complication in the analysis of
PMCs is the existence of an interphase region of finite
dimensions. For PMCs, interphase weight fractions on
the order of 5% of the total weight of the composite
have been estimated experimentally [1]. In this case, one
may expect the interphase region to influence the overall
effective behavior of the composite. The goal of this
work is to extend micromechanical solutions, developed
for multiphase elastic materials, so that an analysis of a

PMC with a viscoelastic interphase may be undertaken.
Such analytical models may be used to study the inter-
phase region as related to:

1. modeling the effective behavior of composite
materials,

2. optimizing composite properties through engi-
neered interphases,

3. measuring the interphase mechanical properties
through experimental tests,

4. more complex composite behavior (aging, damage,
moisture absorption, etc.).

A review of the literature produces a large number of
models developed for the prediction of the elastic moduli
of composite materials. Excellent review articles are
provided by Hashin [2] and Christensen [3]. Several
researchers have used the Mori–Tanaka method to study
multiphase composite behavior [4–6]. Other micro-
mechanical analyses of effective composite behavior can
also be found [7–9]. Weng [10] noted the relationship
between the MT method and the Hashin–Shtrikman–
Walpole bounds for multiphase elastic composites when
the matrix is the stiffest or the softest elastic material.
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Analysis of viscoelastic composites using micro-
mechanical techniques is less developed. Early work in
this area was pioneered by Hashin [11–14] and Schapery
[15,16]. Some researchers have looked at the effect of
inclusion shape on the mechanical properties of two-
phase VE composites [17,18]. Brinson and Lin [19,20]
have compared the MT method with a finite-element
analysis of two-phase VE composites. In the present
work, two micromechanical methods and a finite-ele-
ment solution will be used to analyze composites with
VE interphases. As described in the next section, the
correspondence principle is used to extend these solu-
tions for viscoelastic materials.
The first micromechanical method used in this work is

the Mori–Tanaka method [21–23]. The MT method has
been used for a wide range of problems and thus become
a popular tool for analysis of multiphase materials. Here
we extend the model to study a three-phase fibrous com-
posite consisting of isotropic, viscoelastic phase materi-
als. As used here, the MT method does not model the
geometry of an annular interphase region surrounding
the fiber inclusion, but rather treats the fiber and inter-
phase regions as separate, physically distinct regions as
shown in Fig. 1. Although this approach at first glance
may appear inappropriate for representing the real
fiber-interphase-matrix geometry (see Fig. 2), the MT
technique is so widely used and simple to employ that it
is useful to know how accurate the prediction may be in
this context.
The second micromechanical solution follows the

model proposed by Benveniste et al. [24] to study mate-
rials with coated inclusions. This model maintains the
proper fiber-interphase-matrix geometry as shown in
Fig. 2. It utilizes a related auxiliary problem (i.e. a single
fiber-interphase inclusion within an infinite matrix
material) to find the stress-concentration tensors relating
an applied far-field stress to the phase-averaged stresses
of the included (fiber and interphase) phases. Assuming

that these tensors remain valid for the related, multiple-
inclusion composite (where the stress which the inclu-
sions now ‘‘feel’’ is the unknown average matrix stress),
the overall composite moduli can be determined.
For comparison, a finite element analysis with the

included phases aligned in an hexagonal array was also
completed. We use the dynamic correspondence principle
to solve the unit cell boundary value problem necessary to
obtain the effective complex moduli of the composite [25].
A hexagonal array of inclusions yields transversely iso-
tropic composite behavior, allowing direct comparison
between the FEA and micromechanical solutions. Other
researchers have used alternative interface/interphase
models to study the interaction between the fiber and
matrix regions [26–28], as well as FEA to study the
effective moduli of composites with elastic interphases
[29–31]. Yi et al. [32] found that for composites with
viscoelastic interphases, the effective transverse modulus
was largely dependent on the volume fraction of the
fiber and the viscoelastic behavior of the matrix.
The following section provides background informa-

tion concerning viscoelasticity, the correspondence
principle, and the role of the interphase for PMCs. The
extension of the micromechanical methods and the FEA
for viscoelastic materials will then be briefly outlined,
after which the results of the models will be presented
and discussed. Finally, these models will be used to
investigate the impact of a viscoelastic interphase on the
physical aging of polymer matrix composites.

2. Background

In this paper, we analyze the mechanical response of a
fiber-reinforced polymer matrix composite with a vis-
coelastic interphase region. Recent experimental evidence
suggests that the interphase region could be larger than
previously believed, making it necessary to explicitly

Fig. 1. Interphase modeled as a distinct inclusion region for the Mori–

Tanaka method.

Fig. 2. Three phase composite model for the Benveniste solution.

a=Radius of fiber; b=outer radius of interphase.
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account for such a region from a design perspective.
Properties of the interphase region can be expected to
differ from the other bulk materials [33]. Because ana-
lysis of the time-dependent response with VE phase
materials can become computationally prohibitive, the
dynamic correspondence principle is used to study the
associated problem in the frequency domain. Two
hypothetical VE materials, and a hypothetical elastic
fiber, are used for the numerical simulations presented
in this paper.

2.1. The interphase region

The interphase (or mesophase) refers to the inhomo-
geneous region surrounding the inclusions in a compo-
site material. Interphase regions may be due to voids,
mechanical imperfections, unreacted polymer compo-
nents, fiber treatments, restricted macromolecular mobi-
lity due to the fiber surface, and other inconsistencies
[34–36]. In addition, there are ‘‘engineered interphases’’:
the deliberate introduction of a novel third phase (for
example, fiber sizings), with mechanical properties on the
order of magnitude of the matrix, to optimize composite
performance. In each case, a relatively small volume
fraction of interphase may play a crucial role in deter-
mining the overall mechanical response of the composite.
One difficulty that is encountered when modeling the

interphase is the characterization of the size and prop-
erties of the region. Experimental work to better deter-
mine these parameters are ongoing. In the past, the
thickness of a PMC interphase has been estimated to be
between 30 and 240 nm [37], and similar results were
reported in an experimental study using scanning force
microscopy [38]. However, other recent experimental find-
ings suggest that the interphase region within PMC mate-
rials may be larger. These techniques, including secondary
ion mass spectroscopy [1] and atomic force microscopy
[39], suggest interphase thicknesses on the order of 1 mm
for glass-fiber epoxy composites. An example of PMC
interphase thicknesses measured experimentally are sum-
marized in Table 1.
Another atomic force microscopy study [40] showed

that variations in the fiber sizing can impact the creation
of the interphase region. In this study, the matrix mate-
rial was unable to completely diffuse into a thick fiber
sizing, and hence a distinct interphase region was rea-
lized. For a thinner fiber sizing, the matrix was able to

diffuse into the fiber sizing such that no discernible
interphase could be detected. Obviously, a better
understanding of the interphase region will be necessary
as models to predict the behavior of composites with
finite interphase regions are developed. In this paper, a
nominal interphase area fraction of 10% was used
(unless otherwise noted) to maximize the influence of
the interphase on the effective moduli of the composite.

2.2. Viscoelasticity and the correspondence principle

The constitutive equation for a viscoelastic material
can be written in terms of a Stieltjes integral equation of
the form

�ij tð Þ ¼

ðt

�1

Cijkl t � �ð Þ
d"kl �ð Þ

d�
d�; ð1Þ

where �ij and "kl are standard stress and strain tensors
and Cijkl is the time-dependent modulus. For isotropic
VE materials, the mechanical response can be char-
acterized by the time-dependent bulk and shear moduli,
K(t) and G(t), respectively. However, it is possible to
completely avoid time domain analysis by utilizing the
dynamic correspondence principle, where the mechanical
characterization of viscoelastic materials is completed in
the transformed (frequency) domain [11]. This is
accomplished by considering a separable form for the
displacements,

ui x; tð Þ ¼ u�i x; !ð Þ ei!t; ð2Þ

where ! is frequency, x is position, and transformed
quantities are denoted by an overbar. Given (2), the
constitutive equations for an isotropic viscoelastic
material can be written in terms of transformed devia-
toric and dilitational stress components,

s�ij ¼ 2G� � !ð Þ"�ij; ��kk ¼ 3K� � !ð Þ"�kk; ð3Þ

where the complex bulk and shear moduli, K� � !ð Þ and
G� � !ð Þ, are defined as

K� � !ð Þ � i!K� !ð Þ ¼ i!

ð1
0

K tð Þ e�i!tdt;

G� � !ð Þ � i!G� !ð Þ ¼ i!

ð1
0

G tð Þ e�i!tdt:

ð4Þ

Table 1

Experimental interphase thicknesses for PMC materials

Researcher Year Method Thickness Material

Theocaris [36] 1985 Differential scanning calorimetry 30–240 nm Glass-fiber/epoxy vf=10–70%

Thomason [1] 1995 Secondary ion mass spectroscopy 1 mm Glass-fiber/epoxy vf=65%; df=25 mm
Munz et al. [38] 1998 Scanning force microscopy 75–150 nm Carbon-fiber/poly-phenylenesulfide

Mai et al. [39] 1998 Atomic force microscopy 1–3 mm Carbon-fiber/epoxy single fiber
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These complex moduli are typically written in terms
of the storage and loss moduli,

K� � !ð Þ ¼ K0 !ð Þ þ iK00 !ð Þ;

G� � !ð Þ ¼ G0 !ð Þ þ iG00 !ð Þ;
ð5Þ

where single and double primes denote the storage and
loss moduli, respectively. The storage modulus is a
measure of the elastic response of the material, whereas
the loss moduli represents viscous (damping) behavior
[41].
Note that the constitutive equations in (3) are analo-

gous to the standard elasticity formulation, where now
all field quantities are complex. Thus, there is a direct
relationship between elasticity problems in the time
domain and viscoelasticity problems in the frequency
domain. We take advantage of this relationship by
transforming appropriate elasticity solutions into the
frequency domain and replacing the elastic moduli with
the related complex moduli defined in (4). The response
of the composite can be found by completing the desired
analysis for an appropriate range of frequencies.

2.3. Constituent materials

Our goal is to determine the effective moduli of a
three phase viscoelastic composite consisting of cylind-
rical fibers, surrounded by an annular interphase, and
embedded in a binding, continuous matrix. Perfect
bonding between the phases is assumed. Both the matrix
and interphase are isotropic, linear viscoelastic materi-
als, whereas the fiber is isotropic elastic. Temperature
effects were not studied in the first part of this work,
although the physical aging study presented at the end
of this paper assumes an isothermal temperature below
the glass transition temperatures (Tg) of each viscoelas-
tic material. It should be noted that the Tg of the inter-
phase may also vary significantly from the other
viscoelastic phases of the composite. Processing tempera-
tures greater than the interphase Tg will increase mole-
cular mobility in the region, enhancing the ability of the
interphase to properly bond with the other constituent
materials [1].
For this investigation two hypothetical viscoelastic

materials, designated ‘‘stiff’’ and ‘‘soft’’, were used as
the matrix and interphase materials in a three-phase
composite. Various area fractions and permutations of
the constitutive materials were analyzed. The viscoelas-
tic bulk and shear moduli of these two materials were
represented using a standard Prony series representation
of the form

A tð Þ ¼ A1 þ
XN
j¼1

Aj e�t=	j ; ð6Þ

where Aj and 	j represent the relaxation spectra and
relaxation times, respectively, and A1 is the rubbery
asymptotic value of the appropriate modulus. The
parameters used to obtain the viscoelastic behavior of
the ‘‘stiff’’ and ‘‘soft’’ materials are given in Table 2. The
fiber, always the stiffest of the three phases, had elastic
moduli characterized by Gf=40,000 and Kf=100,000.1

3. Micro-mechanical methods

Two micro-mechanical analyzes, the original Mori–
Tanaka method and an extension of this solution pro-
posed by Benveniste, are used to predict the mechanical
behavior of a three-phase composite. The former is a
standard micromechanical tool which only approx-
imates the composite geometry, whereas the latter keeps
the physicality of an annular interphase region intact.
Because the micromechanical solutions are easier to
implement than a full FEA, it will be useful to ascertain
the ability of these methods to provide approximations
of the composite response.

3.1. Mori–Tanaka method

The formulation of the Mori–Tanaka method for the
determination of the effective moduli of a viscoelastic
composite is briefly presented. More detailed deriva-
tions can be found in the literature [21–23]. As used
here, the MT method approximates the fiber-interphase
problem using a composite with distinct cylindrical
inclusions representing the fiber and interphase regions
(see Fig. 1). Since the Mori–Tanaka method is a stan-
dard micromechanical tool and easy to apply, it will be
valuable to determine the approximate solution the
Mori–Tanaka method provides in this context.
The individual phases which comprise the composite

are denoted f, g, and m for the fiber, interphase, and
matrix, respectively. Area fractions for each phase are
denoted ck, where k={f,g,m}, a is the fiber radius, and b
is the outer radius of the interphase; thus,

cf ¼ 
a2; cg ¼ 
 b2 � a2
� �

; cm ¼ 1� cf � cg: ð7Þ

Following the standard elastic derivation, and imple-
menting the correspondence principle to account for
viscoelasticity, one can show

1 While unitless parameters are used here, the ratios of the con-

stituent moduli (e.g. fiber to matrix) are consistent with those used by

other researchers for finite element analyzes of polymer matrix mate-

rials [29] and representative of common composite constituent mate-

rials.
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S� �k þ
L� �m

L� �k � L� �m

" #
A� k�

X
n

cnS�
�
n A
�
n ¼ �I; k; n ¼ f; g

� �� �
;

ð8Þ

where n is a dummy variable, L� �m is the complex stiffness
of the matrix, L� �k and S� �k are the complex stiffness and
the Eshelby tensor of the kth inclusion (evaluated using
the complex matrix properties), and I is the fourth-order
identity tensor. The strain-concentration tensors A� f and
A� g found via (8) relate the uniform applied strain "� to
the transformation strain "~�k of the included phases via
the relationship "~�k ¼ A� k "�. The effective modulus of
the composite, L� �, is found to be

L� � ¼ L� �m I�
X
k

ckA� k

" #
; k ¼ f; g

� �� �
: ð9Þ

Once the effective complex stiffness of the composite
has been determined, it is straightforward to determine
five transversely isotropic material moduli that describe
the mechanical response.

3.2. Benveniste solution

Benveniste et al. [24] have proposed a model to eval-
uate the effective moduli of a three phase elastic com-
posite based on the local fields of composites with coated
inclusions. This derivation explicitly considers an annu-

lar interphase, and as such models the actual geometry
of the interphase region. The local stress fields in the
fiber and interphase are approximated by those of
an auxiliary problem, a single fiber-interphase inclusion
embedded in an infinite medium of matrix material and
subjected to an appropriate far-field stress field. The
superposition of auxiliary problems necessary to deter-
mine the complex transverse Young’s modulus, E� �22, is
shown in Fig. 3. Particle interaction is described
through the unknown average matrix stress, in a man-
ner identical to that used in the MT method. The effec-
tive moduli are found by considering different far-field
loadings; the reader is referred to the original work of
Benveniste for a complete derivation.
Using the correspondence principle to account for vis-

coelastic behavior, the displacements for each auxiliary
problem can be written in terms of unknown complex
constants. The analysis then proceeds along the lines of a
standard elasticity solution in complex space by simply
carrying through the complex variables. Thus, Hooke’s
Law and the strain-displacement equations provide the
analytic expressions for the stress and strain fields in each
phase of the auxiliary problem. Enforcing suitable
boundary conditions provides the complex displacement
constants, allowing the phase-average stresses in each
included phase to be determined. Appropriate stress-
concentration tensors, W� k for k={f,g}, are then defined
to relate the far-field applied stress of the auxiliary pro-
blem, ��o, to the primary phase-average stress compo-
nent of the included phases, ��kij,

auxiliary problem

��kij ¼ W� k ��o: k ¼ f; g
� �� �

: ð10Þ

Once these tensors have been determined for the aux-
iliary problem, it is assumed that they are also valid for
the actual (multiple inclusion) composite geometry. In
this case, the applied stress to which the included phases
are subjected is the average matrix stress, such that

multiple inclusion geometry

��kij ¼ W� k ��mij : k ¼ f; g
� �� �

ð11Þ

One can now enforce consistency for the actual com-
posite geometry, given the absence of body forces, to
find the average matrix stress within the composite.
Using (11), the primary phase-averaged stresses for
all phases within the actual composite can be deter-
mined. Using these average stresses, the average strain
within each phase can be determined; at this point it is
then straightforward to determine the complex compo-
site moduli. This procedure is further outlined in the
appendices.

Table 2

Prony series terms for the viscoelastic moduli of the ‘‘stiff’’ and ‘‘soft’’

hypothetical materials

Stiff material Soft material

G1=100 G1=3.162

K1=8000 K1=200

	j
G Gj 	j

G Gj

3.0 3.162 0.032 2.512

10.0 17.783 0.100 10.0

32.0 100.0 0.316 56.234

100.0 316.228 1.0 316.228

316.0 1000.0 3.162 1000.0

1000.0 5623.413 10.0 199.526

3162.0 10000.0 31.623 50.119

10000.0 562.341 100.0 19.953

31623.0 141.254 316.228 12.589

100000.0 56.234 1000.0 2.512

316228.0 17.783 3162.278 1.698

1000000.0 5.623 10000.0 1.202

3162278.0 3.162 31622.777 1.148

10000000.0 1.778 100000.0 1.096

	j
K Ki 	j

K Ki

10000 40000 100 3000

316.228 100
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4. Finite element formulation

A two-dimensional finite element analysis (FEA) was
undertaken on the unit cell models of Figs. 4 and 5. Plane
strain conditions were assumed. The mesh was refined
until a convergent solution for a hexagonal array of
inclusions was found. These results were then used as the
benchmark numerical result for transversely isotropic
composite behavior. Although stress fields and related
localized phenomena (such as plasticity and failure initia-
tion) are very dependent on the inclusion arrangement,
the effective moduli of composite materials are largely

independent of inclusion packing [31]. Therefore, the
results of this section will provide a baseline by which
the results of the two micromechanical methods may be
judged, although neither analytical method explicitly
represents a periodic array of inclusions. Because it is
assumed that the reader is familiar with the finite ele-
ment method for elastic materials, we will mention only
briefly the modifications necessary for a viscoelastic
boundary value problem. This finite element work fol-
lows that of Brinson and co-workers [19,25,42] for two
phase viscoelastic materials. Suitable boundary condi-
tions for the transverse Young’s and transverse shear
complex moduli, E� �22 and G� �44, are given in Figs. 4 and 5.
For the transverse Young’s modulus unit cell shown

in Fig. 4, the top face is given a uniform displacement of
u�o. The prescribed displacement � b� at x=W ensures
that the right-hand side of the unit cell remains straight
and parallel upon deformation. This displacement is
chosen by simple interpolation such that the traction
boundary condition at x=W is approximated as

ðL

0

T� x dy ¼ 0; at x ¼ W ð12Þ

where T� x are the resultant nodal tractions on the right
hand side of the unit cell. Alternative methods to satisfy
(12) are discussed in the literature [25]. The average
resulting normal stress ��y;ave !ð Þ on the top face of the
unit cell was obtained by summing the resultant nodal
forces at y=L and dividing by the area. Given the pre-
scribed normal strain across the top face of the unit cell,
"�y ¼

u�o
L , the complex transverse Young’s modulus of the

composite can be determined via

E� �22 !ð Þ ¼ i!E� 22 !ð Þ �
��y;ave !ð Þ

"�y
: ð13Þ

A similar procedure is required to determine the
complex transverse shear modulus of the composite (see
Fig. 5). Solution of this problem does not require inter-

Fig. 3. Superposition of the transverse hydrostatic and transverse shear auxiliary problems for the determination of the transverse Young’s mod-

ulus.

Fig. 4. Unit cell analysis to determine the complex transverse Young’s

modulus.

Fig. 5. Unit cell analysis to determine the complex transverse shear

modulus.
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polation to provide suitable boundary conditions.
Applying a uniform shear strain ��xy �

u�o
L across the top

face of the unit cell, one can show

G� �44 !ð Þ ¼ i!G� 44 !ð Þ �
��xy;ave !ð Þ

��xy
; ð14Þ

where ��xy;ave !ð Þ is the sum of the resultant nodal forces
along the top face of the unit cell in the x-direction
divided by the width of the unit cell.

5. Results

The models discussed in the previous sections were
used to predict composite moduli as a function of the
properties and volume fractions of the constituent
materials. These results will provide insight as to the
ability of the analytical models to capture the mechan-
ical behavior predicted by the more thorough FEA. The
storage and loss components of the transverse Young’s
modulus for a composite consisting of 30% elastic fiber,
10% stiff interphase, and 60% soft matrix are shown in
Figures 6 and 7. Note that 60% fiber cases have also
been examined [43] and show similar trends to those
presented in this paper. Cases with 30% fiber and 10%
interphase were chosen for illustration in order to
emphasize the influence of the interphase on the viscoe-
lastic moduli of the composite. Here again ‘‘stiff’’ or
‘‘soft’’ refer to the viscoelastic material moduli descri-
bed earlier.

Also included in these figures are the transformed
Reuss and Voigt bounds (i.e. the Rule of Mixtures).
Note that in Fig. 7 loss moduli predictions appear to
violate these bounds at intermediate frequencies. This
apparent discrepancy is admissible because the trans-
formed bounds are not in fact valid in the frequency
domain. Schapery [16] notes that, for composites with
isotropic phase materials, transformed bounds hold for
the ‘‘operational moduli’’ (i.e. the transformed moduli in
Laplace space) of the composite. Indeed, it was verified
numerically that the micromechanical solutions and
FEA results do fall within the bounds when the Laplace
transform is used in the above formulations. Gibiansky
and co-workers [44,45] have developed bounding meth-
ods in the Fourier domain for a limited number of
moduli for two-phase viscoelastic composites.
Figs. 6 and 7 indicate that, for stiff-interphase com-

posites, the micromechanical predictions for E� �22 are in
close agreement with both each other and the FEA
results; this was found to be true for included phase area
fractions (fiber plus interphase) approaching 70%. Since
the results for G� �44 are similar, a detailed discussion of
these results will not be included. For comparison, the
transverse moduli for the complementary composite
configuration (30% elastic fiber, 10% soft interphase,
60% stiff matrix) are shown in Figs. 8 and 9. For soft-
interphase composites, a large discrepancy was found to
exist between the two micromechanical models, with the
FEA results falling between these two methods. Com-
paring this behavior with that of the constituent phases
(also shown in Figs. 8 and 9), we see that the frequency-
dependence of the Benveniste solution is in general

Fig. 6. Transverse Young’s storage moduli solutions for a composite with 30% elastic fiber, 10% stiff interphase, 60% soft matrix.
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dominated by the interphase material (most explicitly
seen in the loss modulus), even though it is a non-con-
tinuous phase making up only a small portion of the
composite. This result is viewed as a major drawback of
the Benveniste solution, particularly for the analysis of
the soft-interphase composites.
We believe that this flaw is largely due to the inability

of the Benveniste solution to accurately model the
influence of the interphase on the stress transfer between
the fibers and matrix. This is illustrated in Fig. 10,
where the normalized (with respect to the average
matrix stress), phase-averaged real component of ��yy as
calculated via the FEA and the Benveniste solution are
compared for the soft-interphase composite configura-
tion discussed above. For this composite configuration,
the Benveniste solution severely overestimates the aver-
age stress in the included phases at all frequencies. We
believe this is caused by the smearing of the ‘‘phase-aver-
aged’’ stresses required to determine the stress-con-
centration tensors necessary for this procedure. However,
in the case of a stiff-interphase composite (not shown),
the Benveniste solution is able to more closely model the
stress transfer between the soft matrix and the fibers,
which suggests use of the Benveniste model for stiff-
interphase composites only [43].
Fig. 11 shows that the FEA predictions of the stress

distribution for the two complementary composite con-
figurations (soft interphase versus stiff interphase) are
very different, and in both cases, far from uniform. This
agrees with published experimental results for a three-
phase epoxy matrix composite [31]. While Fig. 11 shows

results for a particular frequency within the transition
region of the constituent materials (!=1E-4), this was
found to be true for all configurations and frequencies
tested. It appears that micromechanical models which
assume a uniform stress distribution within the con-
stituent materials may be severely oversimplifying the
analysis of the problem.
The Mori–Tanaka solution, even though it does not

model the actual geometry of the problem, seems to
better approximate the viscoelastic behavior of the
moduli in that the effective moduli are dominated by the
matrix material. Because the MT method treats the fiber
and interphase as separate inclusions, the solution for
soft interphase composites does not rely on the transfer
of stress through the interphase. These conclusions and
results are consistent with those obtained for other
moduli and phase area fractions [43].
Figs. 12 and 13 show the components of E� �22 as a

function of interphase area fraction for a constant cf of
30% and at fixed frequency of 1E-4; this is within the
transition region of each viscoelastic material. The
results show that both micromechanical solutions pro-
vide very good approximations when the interphase is
the stiff VE material, whereas the predictions are again
poor when the interphase is the soft material. Again,
these results were representative of others obtained for
different composite configurations and at different fre-
quencies. In the limit case of zero interphase area fraction,
the micromechanical solutions are identical since both
utilize the concept of an ‘‘unknown average matrix stress’’
to account for inclusion interaction. A comparison of the

Fig. 7. Transverse Young’s loss moduli solutions for a composite with 30% elastic fiber, 10% stiff interphase, 60% soft matrix.
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Mori–Tanaka method and a comparable finite element
analysis for a two phase composite was presented in a
previous study [19].

6. Physical aging case study

Physical aging has been the subject of numerous
investigations; for an in-depth review of the subject see
Ferry [41] and Struik [46]. Physical aging occurs because

a polymeric material below its glass transition tempera-
ture (Tg) is in a non-equilibrated thermodynamic state.
As the polymer slowly approaches equilibrium, changes
in mechanical behavior, and other phenomena, are rea-
lized. Similar to time-temperature superposition, the
mechanical response at different aging times (te) can be
superposed via a horizontal shifting of a master refer-
ence curve by an amount equal to the aging time shift
factor (ate ). These shift factors are related to aging time
via the shift rate �,

Fig. 8. Transverse Young’s storage moduli solutions for a composite with 30% elastic fiber, 10% soft interphase, 60% stiff matrix.

Fig. 9. Transverse Young’s loss moduli solutions for a composite with 30% elastic fiber, 10% soft interphase, 60% stiff matrix.
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� ¼ �
d log ate

d log te
: ð15Þ

Struik [46] has demonstrated that the shift rates
describing all mechanical properties for a homogeneous
polymer are identical. However, experimental work on
polymer matrix composites suggests that different shift
rates, �22 and �66, are required to characterize the phy-
sical aging of the transverse normal and axial shear
responses, respectively; this despite the fact that both
are considered matrix-dominated properties [47,48].
Here we investigate whether an interphase with aging

properties distinct from those of the matrix could be
responsible for the different shift rates measured experi-

mentally. It should be stressed that the investigation
presented here is not rigorous; our 2D finite element
code cannot determine the axial shear modulus of the
composite. Instead we will analyze the aging behavior of
the transverse shear modulus, another matrix-dominated
property. Thus, the shift rates �22 and �44=�55 will be
analyzed via FEA to determine whether differences in
matrix and interphase shift rates could be responsible for
the distinct effective shift rates seen experimentally for
PMCs.
Shift rates of 0.85 for the interphase and 0.70 for the

matrix were assigned for all trials. FEA was then used
to calculate E� �22 and G� �44 of the composite at different
aging times. From the complex moduli, the time-depen-
dent moduli, E(t) and G(t), could be determined using a

Fig. 10. Comparison of the phase-averaged real components of �aveyy from the FEA and Benveniste solutions for a 30% elastic fiber, 10% soft

interphase, 60% stiff matrix composite at three different frequencies (+xx% refers to the difference between the Benveniste solution and the FEA

prediction).

Fig. 11. Comparison of the �Re
yy stress distribution for transverse normal loading at a frequency of 1E-4 for 60% elastic fiber composites with (a) stiff

interphase, (b) soft interphase.
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linear least-squares solver [49]. Time-aging time super-
position was performed on the different aged moduli to
determine the shift rates of the composite for each of the
two moduli. Note that shift rates can only be determined
if the moduli functions at different aging times are
superposable via a simple shift along the ordinate axis.
This represents physical aging having an equal impact on
all relaxation times describing the mechanical behavior.

Fig. 14 shows the frequency-dependent aging beha-
vior of the transverse shear loss modulus for a soft-
interphase composite as predicted by the finite element
analysis. The reference curve in Fig. 14 (assigned as the
initial aging time tage=1) has been shifted so as to best
coincide with the moduli curves at other aging times.
Note that while the reference curve has been shifted to
superpose low frequency data, the high frequency ends

Fig. 12. Complex transverse Young’s moduli versus interphase volume fraction for composites with 30% fiber, stiff interphase, and soft matrix

material at a frequency of 1E-4.

Fig. 13. Complex transverse Young’s moduli versus interphase volume fraction for composites with 30% fiber, soft interphase, and stiff matrix

material at a frequency of 1E-4.
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do not overlap and thus prevent a unique shift factor
from being determined. This type of behavior was found
for all soft-interphase composites studied and is indica-
tive of thermorheologically complex (TRC) behavior.
To circumvent this difficulty in shifting frequency

domain moduli, the data were transformed into the time
domain using a linear least squares solver [49]. Although
the behavior of the material in the time domain is still
TRC (see Fig. 15), the degree of mismatch between the
moduli functions at different aging times is relatively
small and, in practice, could easily be attributed to
experimental scatter. If the slight non-overlap of the
superposed curves in Fig. 15 is ignored, the results at
different aging times can be shifted and a characteristic
shift factor for the composite property determined.2

These numerical tests in the time domain are then a rea-
sonable model to ascertain if the interphase is respon-
sible for the differences in shift rates seen experimentally.
Thus, Eq. (15) was used to determine the effective shift
rates as a function of composite configuration.
Table 3 shows shift rates calculated for different effec-

tive moduli via the FEA and the micromechanical solu-
tions. The results suggest that the shift rates determined
via FEA are largely dependent on the composite config-
uration. For composites where the interphase is the stiff

viscoelastic material, the shift rates �22 and �44=�55

calculated using FEA are strongly dependent on the
shift rate of the isotropic matrix. This is not the case
when the interphase is the softest phase; here the overall
shift rates of the composite are intermediate those of the
viscoelastic phases (more evident for the 60% fiber case,
where there is more interphase material per unit of
matrix material). This suggests the influence of two
separate factors which determine the effective physical
aging of the composite: the shift rate of the softest VE
material and the shift rate of the matrix phase. For stiff-
interphase composites, both conditions suggest aging
behavior dominated by the matrix, and in these instances
the TRC behavior of the composite response is negli-
gible. Similar results for other soft-interphase composite
configurations support this hypothesis [43].
On the other hand, for soft-interphase composites, the

shift rate of the matrix and the shift rate of the softest
VE material (in this case the interphase) oppose each
other, which may be responsible for the TRC behavior
apparent in Fig. 14. This effect is magnified for larger
fiber area fractions, as the ratio of the viscoelastic pha-
ses approaches unity. While TRC behavior has been
seen in previous numerical studies of two-phase viscoe-
lastic composites [20,25], the present work suggests that
a relatively small area fraction of interphase can have a
large role in determining the overall TRC behavior of
the composite.
However, as the FEA results presented in Table 3

indicate, the interphase does not seem to cause a differ-
ence in the shift rates �22 and �44=�55. Although this is
circumstantial evidence (since the shift rate �66 was not

Fig. 14. Aged transverse shear loss moduli in the frequency domain for composite with 30% fiber, 10% soft interphase, 60% stiff matrix via FEA.

Reference curve (tage=1) is shifted (shown as light gray lines) to the aged moduli such that low frequency data is matched.

2 An important point illustrated by this analysis is that time domain

data is much more forgiving than frequency domain data. Thermo-

rheological complexity, which can invalidate time-temperature and

time-aging time superposition, which may be masked in the time

domain, may be more easily detected in the frequency domain.
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determined numerically in this work), these results sug-
gest that the interphase is not responsible for the differ-
ence in composite aging shift rates that is measured
experimentally. Although this should be verified by a 3D
finite element analysis, these results imply that perhaps
other mechanisms (e.g. residual stresses) cause poly-
meric composites to respond to physical aging differ-
ently than homogeneous polymer materials.
The shift rates determined via the micromechanical

methods are also given in Table 3. In general, the solu-
tions found using the Benveniste method are dominated
by the softest VE phase in the composite, whereas the
MT results are dictated by the shift rate of the matrix
material. It is also interesting to note that the Benveniste

solution predicts a large difference in the transverse and
axial shear shift rates, �44=�55 and �66, respectively,
for the soft-interphase composite. While the Benveniste
method was earlier demonstrated to have difficulties in
predicting the effective moduli of composites with soft
interphases, these results suggest that a full 3D FEA to
analyze the interphase-dependence of the axial shear
shift rate �66 may be warranted.

7. Conclusions

This paper investigated the results of two micro-
mechanical methods, the original Mori–Tanaka method

Table 3

Effective shift rates found in the time domain for various composite configurations. Shift rates of the phase materials were �mat=0.70 for the matrix

and �int=0.85 for the interphase

Method Property Geometry

30% fiber

10% stiff interphase

60% soft matrix

30% fiber

10% soft interphase

60% stiff matrix

60% fiber

10% stiff interphase

30% soft matrix

60% fiber

10% soft interphase

30% stiff matrix

FEA �22 0.7003 0.7168 0.7003 0.7904

FEA �44 0.6989 0.7144 0.6988 0.7847

BENV �22 0.7007 0.8395 0.7006 0.8447

BENV �44 0.7016 0.8421 0.7007 0.8461

BENV �66 0.7011 0.7080 0.7008 0.7761

MT �22 0.6989 0.7012 0.7011 0.7014

MT �44 0.6997 0.7010 0.7000 0.7103

MT �66 0.6987 0.7009 0.6988 0.6933

Fig. 15. Aged transverse Young’s moduli in the time domain for composite with 30% fiber, 10% soft interphase, 60% stiff matrix composite found

via FEA. Reference curve (tage=1) is shifted (shown as light gray lines) to the aged moduli.
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and an extension of the Mori–Tanaka model developed
by Benveniste, for predicting the effective moduli of a
three phase viscoelastic composite. The main conclu-
sions of this work are outlined below:

. The micromechanical methods provide satisfac-
tory approximations for the effective moduli in
those cases where the matrix is the softest of the
three phases. The difference between the MT and
Benveniste solutions is minimal in these cases.

. When the interphase is the softest material, the
integrity of the micromechanical methods is
greatly diminished. Here the MT method is more
effective in modeling the viscoelastic behavior of
the composite because it predicts matrix-domi-
nated effective moduli for the composite.

. For further work, it may be interesting to compare
the methods used in this paper to a micro-
mechanical analytic method with periodic unit cell
arrangement, such as Aboudi’s method of cells [50],
although in general effective moduli have been
shown to be independent of inclusion packing [31].

. The physical aging study indicated that thermo-
rheologically complex behavior can be masked in
time domain data, suggesting that frequency
domain data may be preferred in order to identify
TRC viscoelastic response. The loss modulus exhi-
bits the greatest sensitivity to TRC behavior.

. The FEA results suggest that the interphase plays
a large role in determining the overall shift rates of
the composite. However, the interphase does not
cause a difference in shift rates describing the
physical aging of the transverse shear and axial
shear moduli, �22 and m44=m55, respectively. With
this evidence, it seems unlikely that the interphase
is responsible for the difference in �22 and �66 shift
rates measured experimentally, although further
verification with a 3D finite element analysis may
be warranted.
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Appendix A. Transverse hydrostatic loading auxiliary

problem for the Benveniste solution

Consider the single-inclusion auxiliary problem for
the transverse hydrostatic loading shown as part of
Fig. 3. Using standard elasticity theory [51] and the
Correspondence Principle, the radial displacements in
the transformed domain must take the following
form,

u�fr ¼ A� f r; u�gr ¼ A� g r þ
B� g
r
; u�mr ¼ A� m r þ

B�m
r

; ð16Þ

where A� i (i=f,g,m) and B� j (j=g,m) are the unknown
displacement constants, which are complex in nature.
These constants are determined by requiring that the
displacements satisfy suitable boundary conditions,
including the far-field boundary conditions

��xx r ! 1 ¼ ��o ; ��yy
		 		

r ! 1
¼ ��o: ð17Þ

The analysis then proceeds along the lines of a stan-
dard elasticity solution. Assuming a state of plane
strain, the non-zero stresses in each isotropic phase can
be written in terms of the complex Lame and shear
moduli, l��i and G� �i , respectively,

�� frr ¼ 2 G� �f A� f þ l��f 2 A� f


 �
¼ 2 A� f G� �f þ l��f


 �

��grr ¼ 2 G� �g A� g �
B� g
r2

 !
þ l��g 2 A� g


 �

¼ 2 A� g G� �g þ l��g

 �

� 2 G� �g
B� g
r2

��mrr ¼ 2 G� �m A�m �
B�m
r2

 !
þ l��m 2 A� m


 �

¼ 2 A� m G� �m þ l��m

 �

� 2 G� �m
B�m
r2

;

ð18Þ

�� f�� ¼ 2 G� �f A
�
f þ l��f 2 A� f


 �
¼ 2 A� f G� �f þ l��f


 �

��g�� ¼ 2 G� �g A� g þ
B� g
r2

 !
þ l��g 2 A� g


 �

¼ 2 A� g G� �g þ l��g

 �

þ 2 G� �g
B� g
r2

��m�� ¼ 2 G� �m A� m þ
B�m
r2

 !
þ l��m 2 A� m


 �

¼ 2 A� m G� �m þ l��m

 �

þ 2 G� �m
B�m
r2

:

ð19Þ

Enforcing the boundary conditions provides the fol-
lowing five simultaneous equations, from which the
unknown displacement constants can be determined,

A� f a ¼ A� g a þ
B� g
a

A� g b þ
B� g
b

¼ A� m b þ
B�m
b
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2 A� f G� �f þ l��f

 �

¼ 2 A� g G� �g þ l��g

 �

� 2 G� �g
B� g
a2

2 A� g G� �g þ l��g

 �

� 2 G� �g
B� g
b2

¼ 2 A� m G� �m þ l��m

 �

� 2 G� �m
B�m
b2

2 A� m G� �m þ l��m

 �

¼ ��o;

ð20Þ

where a and b are the outer radius of the fiber and the
interphase, respectively.
Given these displacement constants, one can now

solve for the phase average stresses in the fiber and
interphase (k=f,g) using the relationship

��~kij ¼

Ð 2

0

Ð ro
ri
��kij �r dr d �


 r2o � r2i
� � : ð21Þ

Note that phase-averaged quantities are denoted by
�~ð Þ. Following the work of Benveniste [24], we now
define scalar stress concentration factors W� k

ij which
relate the applied far-field stress of the auxiliary pro-
blem to the corresponding phase-averaged stresses in
the included phases (k=f,g),

��~kxx ¼ W� k
XX ��o ; ��~kyy ¼ W� k

YY ��o

��~kzz ¼ W� k
ZZ ��o ¼ 2 ��k W� k

XX ��o
; ð22Þ

where ��k is the complex Poisson ratio of the kth phase.
Note that due to symmetry, W� k

XX and W� k
YY are iden-

tical. These stress concentration factors can be written
explicitly as

W� f
XX ¼

2 A� f

��o
G� �f þ l��f

 �

; W� f
ZZ ¼

2 A� f l��f
��o

; ð23Þ

W� g
XX ¼

2 A� g

��o
G� �g þ l��g

 �

; W� g
ZZ ¼

2 A� g l��g
��o

: ð24Þ

Appendix B. Transverse shear loading auxiliary pro-

blem for the Benveniste solution

Consider the single-inclusion auxiliary problem for
the transverse shear loading, the second of the two
auxiliary problems shown in Fig. 3. The displacements
for this problem can be written [52] as follows,

u�fr ¼
b ��o

4 G� �f

 !
a�1 ���f � 3

 � r

b


 �3
þd�1

r

b


 �� �
cos2�

u�f� ¼
b ��o

4 G� �f

 !
a�1 ���f þ 3

 � r

b


 �3
�d�1

r

b


 �� �
sin2�;

04r4a;

ð25Þ

u�gr ¼
b ��o

4 G� �g

 !(
a�2 ���g � 3

 � r

b


 �3
þd�2

r

b


 �
þ c�2 ���g þ 1


 � b

r

� �

þ b�2
b

r

� �3
)
cos2�

a4r4b;

u�g� ¼
b ��o

4 G� �g

 !(
a�2 ���g þ 3

 � r

b


 �3
�d�2

r

b


 �
� c�2 ���g � 1


 � b

r

� �

þ b�2
b

r

� �3
)
sin2�; ð26Þ

u�mr ¼
b ��o

4 G� �m

 !
2

r

b


 �
þ ���m þ 1
� �

a�3
b

r

� �
þ c�3

b

r

� �3
( )

cos2�

r5b

u�m� ¼
b ��o

4 G� �m

 !
�2

r

b


 �
� ���m � 1
� �

a�3
b

r

� �
þ c�3

b

r

� �3
( )

sin2�;

ð27Þ

where ���k ¼ 3� 4 ��k and all other displacements are
equal to zero.
These displacement equations contain 8 unknown

constants, which again can be complex in nature. These
constants are determined using the set of simultaneous
equations given below, where �=b/a:

G� �g a�1 ���f � 3

 �

þ d�1 �
2

h i
¼ G� �f

h
a�2 ���g � 3

 �

þ d�2 �
2 þ c�2 ���g þ 1


 �
�4 þ b�2 �

6
i

G� �g a�1 ���f þ 3

 �

� d�1 �
2

h i
¼ G� �f

h
a�2 ���g þ 3

 �

� d�2 �
2 � c�2 ���g � 1


 �
�4 þ b�2 �

6
i

G� �m a�2 ���g � 3

 �

þ d�2 þ c�2 ���g þ 1

 �

þ b�2

h i
¼ G� �g 2þ a�3 ���m þ 1

� �
þ c�3

� �
G� �m a�2 ���g þ 3


 �
� d�2 � c�2 ���g � 1


 �
þ b�2

h i
¼ G� �g �2� a�3 ���m � 1

� �
þ c�3

� �

ð28Þ

2G� �g G� �f 3a�1 ��
�
f �3


 �
þd�1 �

2
n o

þG� �gl�
�
f 6a�1 ���f �1


 �n o
¼2G� �g G� �f

� 3a�2 ���g � 3

 �

þ d�2 �
2 � c�2 ���g þ 1


 �
�4 � 3b�2 �

6
n o

þ G� �f l�
�
g 6a�2 ���g � 1


 �
� 2c�2 ���g � 1


 �
�4

n o
6a�1 � d�1 �

2 ¼ 6a�2 � d�2 �
2 � 2c�2 �

4 � 3b�2 �
6

2G� �m G� �g 3a�2 ���g � 3

 �

þ d�2 � c�2 ���g þ 1

 �

� 3b�2

n o
þ G� �ml�

�
g 6a�2 ���g � 1


 �
� 2c�2 ���g � 1


 �n o
¼ 2G� �m G� �g 2� a�3 ���m þ 1

� �
� 3c�3

� �
þ G� �gl�

�
m 2a�3 1� ���m

� �� �
6a�2 � d�2 � 2c�2 � 3b�2 ¼ �2� 2a�3 � 3c�3:
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Following the procedure outlined in the previous sec-
tion, stress concentration factors W� k

TS are defined relat-
ing the phase-averaged stress in the included phases to
the applied far-field stress in the auxiliary problem, such
that

��~kxx ¼ �W� k
TS ��o; ��~kyy ¼ W� k

TS ��o: k ¼ f; g
� �

ð29Þ

After algebraic manipulation, these factors can be
simplified as

W� f
TS ¼ �

3 a�1 a2

2 b2
þ

d�1
2

W� g
TS ¼ �

3 a�2 b2 þ a2
� �
2 b2

þ
d�2
2
:

ð30Þ

Appendix C. Effective transverse Young’s modulus of

the composite via Benveniste solution

Having analyzed the previous two auxiliary problems,
we are now in a position to superpose the solutions to
determine the effective transverse Young’s modulus of
the composite. The procedure to determine the trans-
verse shear modulus is similar and will not be covered
here. We first assume that the stress concentration fac-
tors W� k

ij, which were calculated using the single-inclu-
sion auxiliary problem, are sufficient to use for the
multiple-inclusion composite. In addition, we assume
that for the actual composite, the far-field stress to
which each inclusion is subjected is the unknown aver-
age stress in the matrix, which for the current loading
mode is ��~myy.
Using the stress-concentration factors derived pre-

viously, the average stress components in the fiber and
interphase regions of the composite can be written in
terms of this unknown stress,

��~kyy ¼ W� k
XX þW� k

TS


 �
��~myy;

��~kxx ¼ W� k
XX � W� k

TS


 �
��~myy;

��~kzz ¼ W� k
LT ��~myy: ð31Þ

Enforcing that the sum of the average phase stresses
in the y-direction must equal the applied far-field stress,
in this case 2 ��o, yields

2 ��o ¼
X
k

ck ��~
k
yy ¼ cm ��~myy þ cf ��~

f
yy þ cg ��~

g
yy

¼ cm ��~myy þ cf W� f
XX þW� f

TS


 �
��~myy

þ cg W� g
XX þ W� g

TS


 �
��~myy; ð32Þ

where cf and cg are the normalized areas of the included
phases, and cm=1–cf�cg. Thus the average y-compo-
nent of the matrix stress can be found,

��~myy ¼
2 ��o

cm þ cf W� f
XX þW� f

TS


 �
þ cg W� g

XX þW� g
TS


 � : ð33Þ

Likewise, other average stress components in the
matrix can be determined. Once this is completed, we
are in a position to evaluate the transverse Young’s
modulus of the composite, as shown in Fig. 2. Consider
the expression

"�yy ¼
��yy

E� �22
¼
X
k

ck "�~
k
yy; ð34Þ

where "�yy is the overall composite strain in the y-direc-
tion, ��yy is the applied far-field stress in the same direc-
tion, and E� �22 is the effective transverse Young’s
modulus of the composite. For the superposition pro-
blem considered here, we have

2 ��o

E� �22
¼ cf "�~

f
yy þ cg "�~

g
yy þ cm "�~myy: ð35Þ

Since all phase average stresses can now be deter-
mined, the average strain in the phases can be found
using Hooke’s Law,

"�~kyy ¼
1

2G� �k
��~kyy � ��k ��~kxx þ ��~kyy þ ��~kzz


 �n o
: k ¼ f; g;m

� �
ð36Þ

Substitution into (35) allows the numerical calculation
of the transverse Young’s modulus of the composite.
This expression is too unwieldy to present in its alge-
braic form.
As a final note, the stress-concentration scalars defined

in (30) can be used to calculate the effective transverse
shear modulus, G� �44, of the composite. Again following
the procedure of [24], the transverse shear modulus of
the composite is found to be,

1

2G� �44
¼

cm
1

2G� �m
þ cf

1

2G� �f
W� f

TS þ cg
1

2G� �g
W� g

TS

cm þ cfW�
f
TS þ cgW�

g
TS

: ð37Þ

Appendix D. Effective axial shear modulus of the

composite via Benveniste solution

The solution for the axial shear auxiliary problem
follows an identical procedure. Suitable displacement
equations for this problem are as follows,
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u�fz ¼ A� f r sin�; u�gz ¼ A� g r þ
B� g
r

 !
sin�;

u�mz ¼ A�m r þ
B�m
r

 !
sin�:

ð38Þ

By defining the appropriate stress concentration fac-
tors for the included phases as

��~kyz ¼ W� k
LS ��o; ð39Þ

where ��~yz ¼ ��~ rzsin� þ ��~ �zcos�, one can find these fac-
tors to be equal to

W� f
LS ¼

G� �f A� f

��o
; W� g

LS ¼
G� �g A� g

��o
: ð40Þ

Solving for the unknown average matrix stress for the
actual geometry as

��~myz ¼
��o

cm þ cf W�
f
LS þ cg W� g

LS

; ð41Þ

one can use the following expression for the effective
axial shear modulus of the composite,

G� �66 ¼
cm þ cf W�

f
LS þ cg W� g

LS

cm

G� �m
þ

cf W�
f
LS

G� �f
þ

cg W� g
LS

G� �g

: ð42Þ
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