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Abstract

Results in the literature demonstrate that substantial improvements in the mechanical behavior of polymers have been attained

through the addition of small amounts of carbon nanotubes as a reinforcing phase. This suggests the possibility of new, extremely
lightweight carbon nanotube-reinforced polymers with mechanical properties comparable to those of traditional carbon-fiber
composites. Motivated by micrographs showing that embedded nanotubes often exhibit significant curvature within the polymer, we
have developed a model combining finite element results and micromechanical methods to determine the effective reinforcing mod-

ulus of a wavy embedded nanotube. This effective reinforcing modulus (ERM) is then used within a multiphase micromechanics
model to predict the effective modulus of a polymer reinforced with a distribution of wavy nanotubes. We found that even slight
nanotube curvature significantly reduces the effective reinforcement when compared to straight nanotubes. These results suggest that

nanotube waviness may be an additional mechanism limiting the modulus enhancement of nanotube-reinforced polymers.
# 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Since their discovery in the early 1990s, carbon nano-
tubes have excited scientists and engineers with their
wide range of unusual physical properties. These out-
standing physical properties are a direct result of the
near-perfect microstructure of the nanotubes (NTs),
which at the atomic scale can be thought of as a hex-
agonal sheet of carbon atoms rolled into a seamless,
quasi-one-dimensional cylindrical shape. Besides their
extremely small size, it has been suggested that carbon
nanotubes are half as dense as aluminum, have tensile
strengths 20 times that of high strength steel alloys, have
current carrying capacities 1000 times that of copper,
and transmit heat twice as well as pure diamond [1]. To
take advantage of this unique combination of size and
properties, a wide variety of applications have been
proposed for carbon nanotubes, including chemical and
genetic probes, field emission tips, mechanical memory,
ultrafine sensors, hydrogen and ion storage, scanning
probe microscope tips, and as structural materials [1]. It
has been suggested that nanotechnology, largely fueled
by the remarkable properties of carbon nanotubes, may
ultimately transform technology to a greater extent than
the advances of the silicon revolution [2].
In this paper we will focus on the use of carbon

nanotubes as the reinforcing phase in a bulk polymer
material. Preliminary experimental results suggest that
small amounts of carbon nanotubes can significantly
enhance the overall mechanical behavior of the polymer
[3–7]; we refer to these materials as nanotube reinforced
polymers (NRPs). Other types of nanoscale inclusions,
while not directly addressed in this paper, have also been
proposed as candidate filler materials. NRPs hold vast
potential as structural materials due to the extremely
high strength- and modulus-to-weight ratios that are
likely to be achieved with such materials. Other potential
advantages of NRPs include multifunctionality,
increased energy absorbance, higher toughness, and ease
of manufacturing (particularly if the NRPs can be pro-
cessed using traditional polymer techniques). Despite the
challenges which these materials present in terms of
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modeling, processing, and most notably the availability
and cost of the raw nanotube material, the preliminary
results and inherent potential suggest that further study
of NRPs is warranted.
To increase our understanding of these materials it is

useful to develop models to predict the effective prop-
erties of NRPs, enabling detailed study of the material
response. One means to accomplish this is the extension
of traditional micromechanics and composite models
that address particular characteristics of these materials.
Because micrograph images show that the embedded
nanotubes remain highly curved when dispersed in a
polymer (see Fig. 1), we have developed a hybrid finite
element-micromechanical model that allows the effects
of embedded nanotube waviness to be incorporated into
traditional micromechanical techniques. Using experi-
mental data we demonstrate that nanotube waviness
can limit NRP modulus enhancement, resulting in
improvements that (while still significant) are currently
less than predicted by traditional theories.
At the moment it is impossible to differentiate the
impact of nanotube waviness from competing reinforce-
ment-limiting mechanisms such as a weak NT–polymer
interface, poor NT dispersion, and processing-induced
NT degradation in existing NRP experimental data.
Nevertheless, our results provide a clear picture of how
relatively moderate waviness can hinder the effectiveness
of NTs as structural reinforcement. While the work
reported here is an application of a micromechanics
method to a nanostructured material, the integration of
atomic scale modeling could readily be adapted into
such an analysis. In the future a fusion of true nanoscale
and microscale modeling will provide even more insight
into this material behavior.
The following section discusses the properties of car-

bon nanotubes and issues related to their use in struc-
tural polymers. The micromechanical and finite element
models that were used in this work, and a description of
how inclusion waviness was integrated into micro-
mechanical property predictions, will follow. We then
present results showing how the effective reinforcing
modulus of an embedded wavy nanotube is dependent
on geometry and other parameters. Finally, the effective
modulus predictions for NRPs with various nanotube
orientations are predicted and compared to experi-
mental data.
2. Background

Due to the inherent strength of the carbon–carbon
bond and the potential of a defect-free microstructure, it
has been suggested that nanotubes may approach theo-
retical limits for many important mechanical properties,
including axial stiffness and tensile strength. Large
increases in the fracture strain and toughness, and
superior electrical/thermal properties, are other poten-
tial benefits of using NTs as the filler material in a
polymer-based composite. One possible near-term
application of carbon nanotubes, which is the motiva-
tion for this work, is as a low volume-fraction structural
reinforcement in a polymer matrix.
Carbon nanotubes can be broadly classified into three

categories: single-walled nanotubes (SWNT), multi-
walled nanotubes (MWNT), and nanotube bundles or
ropes (see Fig. 2). SWNTs consist of single layer of
carbon atoms wrapped into a cylindrical shape, while
MWNTs consist of several concentric layers (or shells)
of individual carbon nanotubes that are weakly coupled
to each other through van der Waals forces. Typically,
however, the nanotubes are found to have self-orga-
nized into crystalline bundles [8], consisting of several to
hundreds of SWNTs or MWNTs arranged in a closest-
packed two-dimensional lattice. Within these bundles
the nanotubes normally display a monodisperse range
of diameters, with adjacent tubes weakly coupled via
Fig. 1. Images of nanotube-reinforced polymers showing that the

embedded nanotubes exhibit significant curvature within the polymer.

(a) TEM image of MWNTs (1 wt.%) in polystyrene. The arrows and

inset in the image are from the original source and show defects in the

as-prepared sample and the homogeneity of the MWNT distribution

over different length scales [5]. (b) SEM image of MWNTs (50 wt.%)

in poly(vinyl alcohol) [4].
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van der Waal interactions. While not modeled in the
continuum approach presented here, explicit differences
in the structural behavior of these various NT forms,
particularly when embedded within a polymer, will need
to be addressed in the future. While SWNTs are more
susceptible to bending due to their extremely small
cross-sections, more intimate contact with the polymer
matrix may lead to more efficient load transfer between
the two phases. For MWNTs and NT bundles, inter-
layer sliding (so-called ‘‘sword and sheath’’ slippage [9])
and weak intertube coupling, respectively, could limit
their potential as structural reinforcement.
Much of the early work studying the mechanical

properties of nanotubes utilized computational methods
such as molecular dynamics and ab initio models. These
models focused primarily on SWNTs because of the
increase in computational resources necessary to model
larger systems. In general these computational studies
have found nominal values for the axial Young’s mod-
ulus on the order of 1 TPa, with values for the Poisson
ratio approximately 0.20 to 0.30 [10,11].2 A different
approach calculated elastic moduli of roughly 1 TPa for
SWNTs and MWNTs, while SWNT bundle moduli
ranged between 0.4 and 0.8 TPa and were dependent on
the diameter of the individual tubes [14]. Most of these
models assume defect-free nanotubes; nanotubes with a
significant number of defects (such as those produced
via chemical vapor deposition methods) are expected to
have much lower moduli [15]. Recently, progress has
been realized in the manipulating and testing of indivi-
dual nanotubes and nanotube bundles [15–20]; in gen-
eral these experiments have validated the predicted
modulus values (see Table 1). We note that computa-
tional and experimental moduli values are typically
reported based on a hollow shell geometry with an
individual shell thickness of 0.34 nm, the interlayer
spacing in graphite.
Optimal material properties will be achievable only if
the nanotubes can be separated and dispersed within the
matrix and their orientation controlled. Current methods
to separate and disperse individual nanotubes include
using sonication, polar solvents, and surfactants. Align-
ment of the nanotubes with a polymer has been achieved
using shear flow [21], tensile loading above the glass
transition temperature of the polymer [22], and a com-
bination of solvent casting and melt mixing technique
[23]. The impact of these processing techniques on the
structural integrity of the nanotubes, and the NT–poly-
mer interface, are the subjects of ongoing research.
Another topic currently being studied is the NT–poly-

mer interface and load transfer between the polymer and
the nanotubes [3–5,24–27]. While poor load transfer for
MWNTs and SWNT ropes embedded in a polymer has
been attributed to the relative slipping of individual tubes
within the MWNT and the rope, respectively [3,26], other
researchers have found evidence of promising nanotube–
polymer interactions in composite materials. For exam-
ple, a strong interface between MWNTs and poly-
styrene (PS) [5] and polyhydroxyaminoether (PHAE)
[22] has been reported. Analysis of SWNT bundle-
PMMA thin films found that PMMA was able to
intercalate within the bundles, which would likely
enhance the interface between the nanotube and poly-
mer phases [28]; significant wetting and interfacial
adhesion for SWNT bundles embedded in an epoxy
resin has also been reported [29]. A recent molecular
dynamics study suggested that polymer morphology,
and specifically the helical wrapping of the polymer
around the nanotubes, was a key factor influencing the
strength of the interface [27]. Functionalization of the
NT to increase its chemical reactivity has also been
proposed as means to further enhance nanotube-polymer
interaction [30]. While it has been estimated that the stress
transfer efficiency between NTs and a polymer matrix
could be an order of magnitude larger than typically
measured in conventional fiber-based composites [31], a
much better understanding of the factors which influence
the nanotube-polymer interface is required.
The issues identified above indicate several key

aspects that will influence our ability to design and
model materials that fully exploit the potential of
nanoscale reinforcements. One issue which has not
typically been associated with the modeling of NRPs,
but which seems critical based on micrograph images of
these materials, is the characteristic waviness or curva-
ture of embedded nanotubes (see Fig. 1). To address
this question we have developed a model that integrates
the waviness of the nanotubes into micromechanical
predictions of the NRP effective modulus. Our results
suggest that such waviness, while potentially beneficial
for other applications (i.e. strength), can drastically
reduce the effective stiffness of the NRP when compared
to straight nanotube models.
Fig. 2. Schematic illustration of the cross-sections of different forms

of nanotubes. The apparent wall thickness and intertube spacing are

slightly larger than the interlayer spacing of graphene (�0.34 nm). (a)

Single-walled nanotube. (b) Multi-walled nanotube. (c) Single-walled

nanotube bundle (or rope), closest-packed in a 2D triangular lattice.
2 It should be noted that other researchers have suggested that in

order to properly model the bending behavior of the nanotubes, more

appropriate values for the Young’s modulus and the shell thickness

would be on the order of 5 TPa and 0.067 nm, respectively [12,13].

However, the values in the main text will be used in the current work.
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3. The model

Based on the discussion of the last section, we are
interested in using micromechanical techniques to study
the effective elastic moduli of nanotube-reinforced
polymers. The basis of the model is to determine the
effective reinforcing modulus (ERM) of an embedded
wavy nanotube; that is, a representative value denoted
EERM that accounts for the reduction in reinforcement
provided by the wavy nanotube in comparison to the
reinforcement provided by a straight NT (of modulus
ENT).

3 Thus while the nanotube modulus ENT is a
material property, the effective reinforcing modulus
EERM (EERM4ENT) is a material parameter that is a
function of the geometry of the wavy nanotube and
other variables (see the Appendix). This effective mod-
ulus is then available for use in standard micro-
mechanical models in lieu of the true (actual) nanotube
modulus. While such a procedure can be applied in
general to any class of curved and wavy inclusions,
embedded nanotubes and NRPs are the focus of the
present discussion.
In this regard, we note the results of several research-

ers who found that continuum models provide useful
insight into nanotube behavior [33,34], despite the dis-
crete nature of their atomic structure.4 To simplify the
geometry we will treat the nanotube geometry as a solid
element of circular cross-sectional area, which implicitly
introduces two simplifications into the analysis. First,
treating the inclusion as a solid cylinder neglects the
hollow nature of the nanotubes. Second, by modeling
the nanotube as a continuum we are disregarding the
specific form of the nanotube (SWNT, MWNT, or
bundle) and neglecting any possible relative motion
between individual shells or tubes in a MWNT and an
NT bundle, respectively. Each of these assumptions
suggests that EERM as calculated here is an ‘‘upper
bound’’ for the given model, in that accounting for the
hollow nature of the NTs or modeling sliding of the
tubes or shells would further reduce the effective stiff-
ness of a wavy nanotube. Thus nanotube waviness may
be even more significant than the results presented in
this work would indicate. While this approach will
highlight the impact of nanotube waviness on the effec-
tive modulus of an NRP, a more rigorous analysis that
accounts for the discrete nature of the nanotube and the
atomic interaction between the nanotube and polymer is
warranted and will be the subject of future work.
In addition to the continuum assumption, several

other simplifications are invoked throughout this work
to aid in the interpretation of the results. The individual
phase materials are modeled as linear elastic and iso-
tropic, and perfect bonding between the phases is
assumed. The waviness of a nanotube of diameter d will
be introduced by prescribing an embedded NT shape of
the form y ¼ a cos 2� z=lð Þ, where l is the sinusoidal
wavelength and z is the fiber axial direction (see Fig. 3).
Unless otherwise noted, Poisson ratios of 0.30 were
assumed for all phases in the simulations; this value is
representative of a wide range of polymer materials and
is consistent with the range of values estimated for car-
bon nanotubes. This assumption will be discussed in
more detail later in this paper.
Table 1

Experimental values for the Young’s modulus of carbon nanotubes
Type of CNT
 Method
 Modulus values
 Comments
Laser ablated SWNTs (diameters

1.0–1.5 nm) [16]
Amplitude of thermal vibration

within a TEM
1.3–0.4/+0.6 TPa
 Weighted average value of

1.25 TPa
Laser ablation SWNT bundles [17]
 Nanostressing stage within a SEM
 320–1470 GPa, mean of 1002 GPa
 Load carried by SWNTs on rope

perimeter
Carbon arc SWNT bundles (bundle

diameters 3–20 nm) [18]
Beam-bending via AFM
 �1 TPa for 3 nm diameter, decreasing

to <0.1 GPa for larger diameter
Estimated bundle shear moduli

�1 GPa
Carbon arc MWNTs [19]
 Electromechanical deflection and

resonance within a TEM
�1 TPa for small diameter (<10 nm)

to 0.1 TPa for large diameter (>30 nm)
Modulus a strong function of

diameter
Carbon arc MWNTs [20]
 Nanostressing stage within a SEM
 Modulus of outer shell from �270 to

�950 GPa
‘‘Sword-in-sheath’’ failure

mechanism
Carbon arc and CVD MWNTs [15]
 Beam-bending via AFM
 CVD: �10–50 GPa
 Order of magnitude increase after

annealing CVD NTs at 2500 �C
Arc: 810–160/+410 GPa
3 This effective reinforcing modulus EERM is identical to what we

have called the wavy nanotube modulus (Ewavy) in previous work [32].
4 Others have found a large number of atomic layers was necessary

to justify the treatment of the nanotube as a continuum [35]. However,

for the purposes of moduli predictions we believe that a continuum

assumption is an acceptable simplification. Other mechanical beha-

vior, such as crack propagation and fracture, will undoubtedly be

more dependent on atomic structure and may be especially ill-suited

for such an assumption.
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The details of the finite element analysis of an embed-
ded wavy nanotube, which considers the constraint of
the surrounding matrix, follows. Next, the formulation
of the Mori–Tanaka method for a multiphase compo-
site with randomly aligned cylindrical inclusions in two-
and three-dimensional space will be presented. Finally,
a multiphase composite analysis where the nanotubes
are modeled as a finite number of discrete inclusion
phases with different effective moduli based on their
embedded waviness, is discussed.

3.1. Finite element analysis

To determine the effective reinforcing moduli EERM of
an embedded wavy nanotube, ANSYSTM was used to
create and analyze a three-dimensional finite element
model of a single, infinitely long wavy nanotube of dia-
meter d perfectly bonded within a matrix material. Note
that finite end effects were not included in the analysis.
For axial loading the problem is symmetric about the
x=0 and z=nl/2 (where n is an integer) planes; thus the
quarter-symmetric unit cell shown in Fig. 3 is used for
the analysis. The size of the cell was chosen such that
the effective cell response is independent of additional
matrix material (see the Appendix). A more complete
discussion of the finite element modeling used here is
provided in the second part of this paper [36].
For the finite element simulations symmetry condi-

tions ux=0 and uz=0 were prescribed on the x=0 and
z=0 planes, respectively. The model was constrained in
the y direction at a single point to prevent free body
translation, and an infinitesimally small axial displace-
ment, �, prescribed to all nodes on the plane z=l/2.
The effective modulus of the cell is defined as

EFEA
cell ¼

Ftot l
2AD

ð1Þ

where Ftot is the sum of all nodal resultant forces on the
displaced plane and A is the cross-sectional area of the
cell.
In order to extract the effective reinforcing moduli of

the embedded wavy inclusion (as it exists in the matrix)
from (1), we propose a parallel model of the effective
cell response,

Eparallel
cell ¼ cNTEERM þ 1� cNTð ÞEmatrix; ð2Þ

where cNT is the nanotube volume fraction within the
finite element cell and Ematrix is the matrix modulus.

5

From (1) and (2), EERM of the embedded inclusion can
be calculated as

EERM ¼
EFEA

cell � 1� cNTð ÞEmatrix

cNT
: ð3Þ

EERM can be considered to represent the modulus of a
straight inclusion that, under identical loading condi-
tions, would yield the same effective cell response as that
obtained with the wavy inclusion.
This finite element solution is a powerful tool to model

the effective response of embedded wavy inclusions.While
at first glance the number of parameters affecting EERM
appears quite large, in the appendix we show that for the
model described above, and the assumption that the
Poisson ratios of the phases are equal, EERM will only be
dependent on three variables: the waviness ratio (w=a/
l) and wavelength ratio (l/d) of the nanotube and the
ratio of the phase moduli (Eratio=ENT/Ematrix). A sys-
tematic analysis of the impact of these parameters on
EERM was undertaken and the key results will be pre-
sented in Section 4 of this paper. The benefit of such an
analysis is that it allows inclusion waviness to be inte-
grated into traditional micromechanics techniques by
simply modeling the wavy inclusions as straight inclu-
sions with a reduced reinforcing modulus EERM based
on the embedded geometry and determined via finite
element modeling.

3.2. Micromechanical analysis

We will illustrate how inclusion waviness can be
incorporated into traditional micromechanical techni-
ques by using the Mori–Tanaka method, a popular tool
Fig. 3. Schematic of the finite element cell model of an embedded

wavy nanotube. For the particular model shown w=a/l=0.1 and l/
d=35.
5 The authors appreciate the insight of a reviewer who pointed out

that Ecell can be approximated using analytical expressions developed

for flexible fiber composites [37,38]. Further discussion of the use of

these analytical expressions is presented elsewhere [39].
F.T. Fisher et al. / Composites Science and Technology 63 (2003) 1689–1703 1693



for the analysis of multi-phase materials [40,41]. The
Mori–Tanaka method has been used by a wide range of
researchers to model the effective behavior of compo-
sites, and allows the average stress fields and overall
effective stiffness of a composite with a non-dilute
concentration of inclusions to be determined. Of parti-
cular interest for the current work is that the Mori–
Tanaka method can readily model composites with
multiple inclusion phases and random orientations of
inclusions.
For completeness we highlight those expressions from

the Mori–Tanaka method of interest below. For a more
complete derivation the reader is directed to the litera-
ture [41]. Here we assume that the composite is com-
prised of N phases; the matrix will be denoted as phase 0
with a corresponding stiffness C0 and volume fraction
f0, while an arbitrary rth inclusion phase (where r=1 to
N�1) has a stiffness of Cr and a volume fraction fr. For
simplicity we will assume that all fiber phases can be
modeled as infinitely long cylindrical inclusions.
Following the standard Mori–Tanaka derivation, one

can develop the expression for the dilute strain-concen-
tration factor of the rth phase, Adil

r , which relates the
volume-averaged strain in the rth inclusion to that of
the matrix such that

"rh i ¼ Adil
r "0h i; ð4Þ

where

Adil
r ¼ I þ SrC

�1
0 Cr � C0ð Þ

� ��1
; ð5Þ

I is the fourth order identity tensor, Sr is the standard
Eshelby tensor (see the Appendix), and brackets h i

denote a volume-averaged quantity. Given (5), the
effective composite stiffness C as determined using the
Mori–Tanaka method is given as

C ¼
XN�1

r¼0

fr CrA
dil
r

� � ! XN�1

r¼0

fr Adil
r

� � !�1

ð6Þ

where the curly brackets fg represent an orientational
average6 (necessary to account for random orientations
of inclusions) and Adil

0 ¼ I by definition. Once the com-
ponents of the effective stiffness have been determined,
the standard relationships can be used to find the cor-
responding elastic constants.
To model the nanotube-reinforced polymer we parti-
tion the nanotube inclusions into distinct phases, based
on their embedded waviness, and treat the problem as
that of a multiphase composite. Each nanotube phase is
then assigned a distinct effective reinforcing modulus
EERM, based on the average waviness of the phase and
the results of the preceding finite element analysis. In
practice, such a solution could be developed by imaging
a representative portion of the NRP and developing an
appropriate waviness distribution function characteriz-
ing the magnitude and pervasiveness of the nanotube
waviness, leading to an appropriate multiphase compo-
site model (see Figs. 4 and 5). This waviness distribu-
tion, along with the spatial orientation of the NTs, can
be used within an appropriate micromechanical method
to provide a refined estimate of the effective moduli of a
nanotube-reinforced polymer. This is demonstrated in
the next section using the Mori–Tanaka method for 2D
and 3D randomly orientated inclusions and an assumed
distribution of nanotube waviness.
The critical step of the analysis is the determination of

the dilute strain-concentration tensor Adil
r relating the

average strain of the rth inclusion to that of the matrix.
In the present analysis Adil

r is found via (5) where the
stiffness tensor(s) of the inclusion phase(s) Cr are found
using the appropriate values of EERM (based on the pre-
vious section and assuming that the Poisson ratio of the
inclusion remains unchanged), and where the Eshelby
tensors Sr assume cylindrical inclusions. Thus to account
for the waviness of a particular NT phase we first find
EERM, based on the embedded geometry and other
applicable parameters, via the finite element analysis
Fig. 4. Illustrative example of evaluating nanotube waviness (image

from [5]). (inset) Approximate values for the parameters w=a/l and
l/d for the highlighted nanotubes.
6 The orientational average of a fourth-order tensor is

Bijkl

� �
¼ 1

�

Ð
OairajsaktaluBrstu d�, where � represents the orientational

space, aij are the components of the appropriate transformation matrix

relating local to global coordinates, Brstu is the fourth-order tensor in

the local coordinate system, and � is an integration factor. Explicit
expressions for the orientational averages for 2D and 3D random

orientations are given elsewhere [39]. For unidirectional inclusions

orientational averaging is not required and the brackets in (10) can be

dropped.
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described in this paper. We then model the NT as an
isotropic material of modulus EERM and a given value
for the Poisson ratio, from which the stiffness tensor Cr

can be obtained in the usual manner. We thus treat the
wavy inclusion as a straight inclusion, but with an
adjusted stiffness tensor to account for the effects of the
wavy geometry.7 To summarize, the following proce-
dure is used to determine the effective modulus of an
NRP with embedded, wavy nanotubes:

1. The embedded NTs are divided into distinct

nanotube phases based on their waviness.

2. For each nanotube phase, r=1, 2, . . .N, the

effective reinforcing modulus EERM is calculated
from the finite element analysis via (3).

3. Given the EERM of each NT phase, the effective

stiffness tensor Cr of each phase is determined
assuming an isotropic, cylindrical inclusion. Adil

r

is then calculated for each NT phase via (5).
4. Theoverall effectivemodulusof theNRPisobtained

from themultiphaseMori–Tanaka analysis, see (6),
whereeachNTphasehasacorrespondingstiffnessCr

and volume fraction fr (where!fr=fNT).

Our results suggest that neglecting the curvature of the
embeddedNTgeometry is a simplification thatwill severely
overestimate the reinforcement that the NTs provide the
polymer. While the procedure here is demonstrated using
EERM calculations based on finite element results, alter-
native means to evaluate EERM, such as atomistic and rela-
ted models [42], could also be used in a similar analysis.
Adaptations of the current model to include such effects as
inter-layer (MWNTs) and inter-tube (NT bundles) sliding,
aswell as imperfect interfacebetween thenanotubes and the
polymer, will be addressed in future work.
4. Results

The objective of this work is to develop a method to
incorporate the typically observed waviness of embedded
nanotubes into standard micromechanics techniques.
Because the nanotube has been modeled as a con-
tinuum, the method is also in general applicable to other
types of inclusions that may exhibit similar embedded
geometries. We note that EERM will be less than (or
equal to) the true NT modulus due to its waviness, and
that a distribution of NT waviness within the material is
likely. Thus rather than treat the NRP as two-phase
(nanotube/polymer) composite, we have developed a
multiphase composite model where the NTs are parti-
tioned into distinct phases and assigned characteristic
EERM based on their embedded waviness.
Before we begin our analysis it is insightful to estimate

the range of values that may be characteristic of the
waviness and wavelength ratios associated with the wavy
geometry of embedded nanotubes. For illustrative pur-
poses, Fig. 4 shows an image of an NRP with different
wavy nanotubes marked by solid lines, with approximate
values for a/l and l/d given in the inset. We will show in
this section that for even relatively minor waviness, the
decrease in effective reinforcement can be appreciable.
Several nanotubes in Fig. 4 are approximately straight

(and not identified in the inset), while others show kinks
and bends which, while not demonstrating the exact
sinusoidal shape assumed in the model, will similarly
limit the effective reinforcement of those nanotubes.
Finally we note that waviness perpendicular to the plane
of the picture is masked in this TEM image, and that it
is possible that straightening of the NTs may have been
induced during processing of the sample used in the
TEM analysis. Thus the waviness parameters shown in
Fig. 4 are to be seen as illustrative only, and for a par-
ticular NRP sample will be dependent on the quality of
the nanotubes and the NRP processing conditions.
While a more thorough procedure to determine the NT
Fig. 5. Model of an NRP using a multiphase composite analysis with a known waviness distribution function.
7 In a related work we show that Adil
r can be computed directly

from an appropriate finite element analysis [36]; in either case once Adil
r

has been determined the implementation of the Mori–Tanaka solution

remains unchanged.
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waviness for a particular sample may be warranted, for
the purposes of this paper a hypothetical waviness dis-
tribution is sufficient to demonstrate the impact of
nanotube waviness on the effective NRP modulus.
With this in mind, the remainder of this section is

divided into two parts. In the first part we discuss
impact of nanotube waviness and other model para-
meters on EERM. We will then use these results to com-
pare the predictions of our micromechanical analysis,
accounting for the embedded nanotube geometry, with
predictions obtained assuming straight nanotube inclu-
sions and with published experimental data for NRP
effective modulus.

4.1. Effective reinforcing modulus EERM

As discussed previously (and shown in the Appendix)
we have shown that the model described here can be
considered to be dependent on three variables: the
waviness (w=a/l) and wavelength ratio (l/d) of the
nanotube and the ratio of the phase moduli (Eratio).
Fig. 6 shows EERM as a function of waviness for several
different values of Eratio and a wavelength ratio of 100.
For all simulations a matrix modulus of 1 GPa was
used. As expected for zero waviness we obtain the
straight nanotube results EERM=ENT. In addition we
see that EERM is strongly dependent on the waviness
and quickly decreases with increasing nanotube curva-
ture. This behavior is less pronounced for smaller Eratio
values, as the mechanical constraint that the surround-
ing matrix material provides the embedded wavy nano-
tube can be significant.
Fig. 7 shows the dependence of EERM on the wave-

length ratio of the nanotube for different values of
waviness and Eratio=200. We see that for increasingly
large wavelength ratios the value of EERM converges to
a constant value (dependent on the waviness). Note that
the critical wavelength ratio at which EERM can be
considered to have reached a maximum is dependent on
the waviness such that for a given value of waviness
nanotubes with larger wavelength ratio act stiffer. While
we have shown that for longer wavelength ratios (l/d >
1000) curves of EERM versus waviness for different
values of Eratio can be superposed via vertical shifting
[39], for practical NRP materials the wavelength ratio is
much smaller. Unless otherwise specified, to simplify the
remainder of this section we will only consider wave-
length ratios of 100.
In Fig. 8 EERM (normalized with respect to ENT) is

presented as a function of Eratio for different values of
waviness with l/d=100. Note that when the phase mod-
uli are equal (Eratio=1) the finite element cell is homo-
geneous such that EERM=ENT=Ematrix as shown; while
not shown explicitly in the figure all curves monotonically
approach this point. With this in mind we note the strong
initial decrease in EERM/ENT for small values of Eratio,
revealing the critical role of the mechanical constraint of
surrounding matrix for this case. As Eratio increases the
impact of the mechanical constraint diminishes, resulting
in minimal changes in EERM/ENT for larger values of
Eratio (in the limit as Eratio!1 the response is that of a
free-standing wavy rod). From Fig. 8 the impact of
nanotube waviness on EERM is again evident; for
w=0.056 the effective reinforcement provided by the
wavy nanotube decreases by almost 20% for an
Eratio=200, a modulus ratio representative of those
anticipated for NRPs. For larger values of waviness the
decrease in EERM is even more apparent. Note that in
Fig. 6. EERM as a function of nanotube waviness ratio (a/l) for different ratios of phase moduli (for wavelength ratio l/d=100 and Ematrix=1 GPa).
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our simulations we are interested in the initial reinfor-
cing modulus of the wavy nanotube, and do not con-
sider the effects of nanotube straightening due to the
application of an applied load.
For all previous simulations the Poisson ratios of the

matrix and nanotube were assumed to be equal
(	NT=	matrix=0.30) to simplify the analysis. For many
practical nanotube-polymer systems the difference in
Poisson ratio is expected to be relatively small, with 	NT
typically predicted in the range of 0.20–0.30 and 	matrix
for a typical structural polymer approximately 0.25–
0.40. To check the validity of this assumption simula-
tions were conducted where the wavy NT parameters
were held constant (Eratio=200, l/d=1000, and
w=0.1) while varying the Poisson ratio of each phase
(see Fig. 9). We found that the effect of the Poisson
ratio of the nanotube on the simulation is negligible,
which is not surprising considering the small volume
fraction of nanotube (<0.05%) modeled in the cell to
provide the dilute approximation. While the effect of
	matrix is more apparent, we note that for these results
the difference in EERM is only approximately 5% for
Fig. 8. Normalized EERM (with respect to ENT) as a function of the ratio of the phase moduli (for l/d=100). For Eratio=1, the material is homo-

geneous and EERM=1 as marked; all curves monotonically approach this point (not shown for clarity).
Fig. 7. EERM as a function of nanotube wavelength ratio (l/d) for different values of nanotube waviness (for Eratio=200).
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	matrix between 0.25 and 0.40. Thus the results pre-
sented in this paper for 	NT=	matrix=0.30 are in gen-
eral applicable to a wide range of typical NT-polymer
composite materials.
In summary, we have found that the effective rein-

forcing modulus (EERM) of an embedded, wavy
nanotube is strongly dependent on its geometry and
the ratio of the phase moduli. As expected, the stif-
fening effect of the wavy nanotube decreases as the
waviness of the nanotube increases, while stiffening
increases as the wavelength ratio of the wavy nano-
tube l/d increases. We have also shown that EERM is
a function of the ratio of the phase moduli, as the
constraint of the surrounding matrix on the straigh-
tening of the wavy nanotube can be significant. Further,
we have seen that for values of these parameters which
are likely to be representative of the wavy nanotubes
embedded in a polymer matrix, this reduction in effec-
tive modulus can be quite substantial, suggesting that
the waviness of the embedded nanotubes will result in
less than optimal reinforcement. In the following section
we will illustrate the impact of this waviness on the
effective moduli of an NRP nanotube via a micro-
mechanical analysis.

4.2. Micromechanical effective modulus predictions using
EERM

In the previous section we have seen how the effective
reinforcing modulus of an embedded wavy nanotube is
dependent on the geometry of the NT and other para-
meters. The results of the previous section can now be
used within traditional micromechanics techniques for
predictions of the effective modulus of NRPs. Here we
highlight this procedure (see Section 3.2 and Fig. 5) by
comparing effective modulus predictions obtained using
the Mori–Tanaka method with experimental tensile
modulus data for various loadings MWNTs, grown via
a chemical vapor deposition method, in polysytrene
(Dow 666) [7]. While the researchers report good dis-
persion of the NTs within the matrix, we note that in
situ TEM straining studies have found evidence of an
inadequate interface between the phases [43].
Figs. 10 and 11 present the experimental data for the

effective tensile modulus as a function of volume frac-
tion of MWNTs, together with the Mori–Tanaka pre-
dictions for several cases. The first predictions assume a
single phase of straight NT inclusions (i.e. NT waviness
not considered), randomly orientated inclusions in 3D
and 2D space, respectively. Also shown are the predic-
tions obtained considering nanotube waviness by
assuming each of the nanotube waviness distributions
given in Table 2. Lacking an appropriate image of the
nanostructure of the material, these waviness distribu-
tions are loosely based on the NRP images shown in
Fig. 1 and represent two potential types of waviness
(minimal waviness and more moderate waviness) that
may be anticipated for nanotubes embedded in a poly-
mer matrix. (While it would be desirable to image a
representative portion of the NRP to obtain the wavi-
ness distribution, our results clearly demonstrate how
nanotube waviness can significantly decrease the pre-
dicted effective properties of the material.) For each
waviness distribution the effective reinforcing moduli
for each nanotube phase was estimated using EERM
from the preceding finite element analysis for Eratio
=200 (with l/d=100); these values were then scaled for
an NT modulus of 450 GPa [44] and are given in
Fig. 9. Effect of Poisson ratio on the EERM values calculated from the FEM simulations. (l/d=1000, Eratio=200, w=0.1).
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Table 2. Given the waviness distribution and the
appropriate values of EERM the multiphase composite
analysis described in the previous section can be
implemented.
What is most striking about the results presented in

Figs. 10 and 11 is the large discrepancy between the
Mori–Tanaka predictions assuming straight nanotubes
and the experimentally measured moduli. While the
experimental modulus has been enhanced significantly
with the addition of the NTs (the modulus increases by a
factor of two for 15 vol.%NT), the realized improvements
in modulus are significantly less than the micro-
mechanics predictions assuming straight nanotubes.
Integrating moderate nanotube waviness (Table 2, NT
distribution 2) into the effective moduli predictions is
shown to drastically decrease the moduli predictions,
suggesting that NT waviness may be one factor limiting
the modulus enhancement of NRPs.
Fig. 11. Experimental data for MWNTs in polysytrene [7] and micromechanical predictions of NRP effective moduli assuming a 2D random

orientation of straight and wavy nanotubes. (ENT=450 GPa).
Fig. 10. Experimental data for MWNTs in polystyrene [7] and micromechanical predictions of NRP effective moduli assuming a 3D random

orientation of straight and wavy nanotubes. (ENT=450 GPa).
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Similar results are found using other NRP experi-
mental data sets found in the literature. Fig. 12 shows
the experimental modulus and micromechanics predic-
tions obtained for 5 wt.% MWNTs embedded in epoxy
[3], using the second waviness distribution (see Table 2)
with corresponding EERM values found as before. Again
the results show that the micromechanics predictions for
randomly orientated wavy NTs, assuming moderate NT
waviness, can reduce the predicted effective modulus of
the NRP by a factor of two or more in comparison to
the predictions obtained assuming straight NTs. A
reduction in effective modulus is also evident when
comparing the micromechanical predictions for an
aligned NRP with wavy versus straight nanotubes.
In the existing experimental data it is impossible to

distinguish the effects of nanotube waviness from other
mechanisms that would tend to decrease the effective
properties of the nanotube-reinforced polymer. Other
conditions, such as a weak NT–polymer interface,
inadequate dispersion, nanotube degradation, and finite
NT length effects can also reduce the experimental
moduli of the NRPs. However, based on images of
nanotubes embedded in polymer films and the results
presented in this paper, we have demonstrated that
nanotube waviness is an additional mechanism which
can strongly control the effectiveness of nanotubes as
structural reinforcement.
5. Conclusions

Motivated by micrographs showing that nanotubes
embedded within polymers often exhibit significant cur-
vature, we have developed a model that incorporates
this curvature into traditional micromechanical meth-
ods via a multiphase composite approach. Finite ele-
ment results of embedded wavy inclusions show that the
effective reinforcing moduli of the inclusions quickly
decreases as a function of the inclusion waviness and is
also dependent on the wavelength ratio and the ratio of
the phase moduli. Using material properties representa-
tive of nanotube-reinforced composites, we have shown
that nanotube waviness can reduce the predicted effective
moduli of these materials by a factor of two or more, and
may be one reason why the modulus enhancement of
NRPs, while significant, is somewhat less than predicted
using standard micromechanical techniques. While for
some applications (such as impact resistance and energy
absorption) nanotube waviness may be beneficial, for
structural applications waviness may significantly limit
the magnitude of modulus enhancement.
While the procedure here is demonstrated using EERM

calculations based on finite element results, alternative
means to determine the appropriate value of EERM,
incorporating more detailed information on the atomic
Fig. 12. Experimental data (5 wt.% MWNTs in epoxy) [3] and micromechanical predictions of NRP effective moduli assuming straight and wavy

nanotubes with different NT orientations.
Table 2

Effective reinforcing moduli and hypothetical NT waviness distribu-

tions used in the wavy micromechanics calculations. EERM values are

for Eratio=200 and l/d=100
Waviness

(w=a/l)

EERM
(GPa)
NT phase volume fraction
NT distribution 1
 NT distribution 2
0
 450
 0.4
 0.05
0.05
 383
 0.4
 0.15
0.1
 260
 0.2
 0.3
0.25
 57
 0
 0.3
0.5
 10
 0
 0.2
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level interactions in the material, could also be used in a
similar analysis. Adaptations of the current model to
include transversely isotropic NT behavior, inter-layer
(MWNTs) and inter-tube (NT bundles) sliding, finite
end effects, and imperfect bonding between the nano-
tubes and the polymer, were not addressed here and
warrant further work. While at the moment it is impos-
sible to isolate the effects of nanotube waviness from
other reinforcement-limiting mechanisms, these results
demonstrate that nanotube waviness can severely limit
the effective modulus of nanotube-reinforced polymers.
Finally, our results suggest that methods of NRP fab-

rication that reduce the waviness of embedded NTs
would allow the NTs to provide maximum structural
reinforcement. One may also hypothesize that nanotube
waviness may be one reason why NRP modulus
enhancement has sometimes only been reported at higher
temperatures [4]; if compressive stresses developed dur-
ing the polymer cure introduce bending (and hence cur-
vature) into the nanotubes, significant NT reinforcement
may only be realized as the NTs straighten due to poly-
mer softening at elevated temperatures.
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Appendix A. Convergence of EERM for a sufficiently

large matrix

In order to eliminate the size of the finite element
model as a parameter in the analysis, it is necessary to
show that EERM converges for a sufficiently large
matrix. Consider a finite element cell of an embedded
wavy nanotube (see Fig. 3), where for simplicity we
redefine the length of the cell as L (to eliminate carrying
a factor of two in our analysis below). We assume that
the matrix boundary at the top and bottom of the cell is
such that fields at these boundaries are undisturbed by
the presence of the nanotube, and denote the volumes of
the NT, matrix, and total cell as VNT, Vmat, and V,
respectively. We now apply an infinitesimally small uni-
form strain "z in the fiber axial direction and measure
the total resultant force Ftot necessary to cause this
strain. From (1) and (2), EERM for this particular cell is

EERM1
¼

Ftot L

V "z
�

Vmat

V
Emat

VNT

V

¼
Ftot L

VNT "z
�

Vmat

VNT
Emat: ð7Þ
Now consider a second finite element cell, identical to
the previous cell except that additional matrix material,
with a volume Vmat2, has been evenly divided between
the top and bottom of the first cell. Due to the size of
the first cell this additional matrix material is also
unaffected by the presence of the wavy nanotube, thus
the force necessary to produce a uniform strain "z in this
additional material is F2 ¼

Emat Vmat2
"z

L . Using the total
force that must be applied to the second cell (Ftot + F2),
one can show that the EERM1=EERM2. Thus for a
sufficiently large matrix EERM is independent of the
size of the finite element cell; all simulations met this
condition (typically VNT <0.01% in the finite ele-
ment cell).
Appendix B. Reduction of EERM parameters for the finite

element analysis

Because we have shown that EERM converges given a
sufficiently large cell, it is sufficient to consider the
model parameters that influence Ecell

FEA in the present
analysis. Assuming isotropic behavior of the phase
materials, the model at first appears to the dependent on
seven parameters, such that

EFEA
cell ¼ f ENT;Emat; 	NT; 	mat; a; d; lð Þ: ð8Þ

To first simplify the analysis we assume that the
Poisson ratios of the phases are identical and equal to
0.30, an assumption that is discussed in more detail in
the text. We now use the Buckingham Pi theorem to
rewrite (8) asY

1
¼ G1

Y
2
;
Y

3
;
Y

4


 �
; ð9Þ

whereY
1
¼ Ea

NT lb Ecell;
Y

2
¼ E�c

NT ld EmatY
3
¼ Ee

NT lf a;
Y

4
¼ Eg

NT l�h days
ð10Þ

Completing the dimensional analysis of (10) and sub-
stituting into (9) yields

EFEA
cell

ENT
¼ G1

ENT

Emat
;
a

l
;
l
d

� 

; ð11Þ

where G1 is the determined via our finite element
analysis.
Appendix C. Components of the Eshelby Sijkl tensor along

the x3 axis

Below are the components of the Eshelby tensor
for a circular, cylindrical inclusion with an infinite
length-to-diameter ratio (l/d !1) parallel to the 3-
axis, where 	0 is the Poisson ratio of the matrix,
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and all other components of the Eshelby tensor are
zero.

S3333 ¼ S3311 ¼ S3322 ¼ 0

S1111 ¼ S2222 ¼
5� 4 	0
8 1� 	0ð Þ

S1122 ¼ S2211 ¼
4 	0 � 1

8 1� 	0ð Þ

S1133 ¼ S2233 ¼
	0

2 1� 	0ð Þ

S1212 ¼
3� 4 	0
8 1� 	0ð Þ

S3131 ¼ S3232 ¼
1

4
ð12Þ

For the general form of the Eshelby tensor valid for
ellipsoidal inclusions, see [45].
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Elastic modulus of ordered and disordered multiwalled carbon

nanotubes. Advanced Materials 1999;11(2):161.

[16] Krishnan A, Dujardin E, Ebbesen TW, Yianilos PN, Treacy

MMJ. Young’s modulus of single-walled nanotubes. Physical

Review B 1998;58(20):14103.

[17] Yu M-F, Files BS, Arepalli S, Ruoff RS. Tensile loading of ropes

of single wall carbon nanotubes and their mechanical properties.

Physical Review Letters 2000;84(24):5552.

[18] Salvetat J-P, Briggs G, Bonard J-M, Basca R, Kulik A, Stöckli T,
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