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ABSTRACT

This thesis will investigate the accuracy of mechanical property predictions for a
three phase viscoelastic (VE) matrix-based composite using two different micromechanical
models:  the Mori-Tanaka method and a solution based on the stress fields in an analogous
elasticity problem derived by Benveniste. The former was chosen because it is a standard
micromechanical tool which has had success modeling a wide range of problems.  The latter
was chosen because it keeps the physicality of an annular interphase surrounding the fiber
intact.  The solutions given by these two methods were compared to those obtained using
finite element analysis (FEA), where the mesh was continually refined until an appropriate
convergence criterion was satisfied. Since both the FEA and micromechanical solutions
model a composite with transversely isotropic properties, the FEA results will be assumed to
provide the exact numerical solution.

For all work completed in this thesis the composite will consist of an elastic fiber
surrounded by an annular viscoelastic interphase, which in turn is embedded in a binding,
viscoelastic matrix.  Given the viscoelastic nature of the constituent materials one should
expect that the composite behavior as a whole will also be viscoelastic.  In order to utilize
elasticity solutions which exist in the literature it is necessary to invoke the dynamic
correspondence principle.  This allows a viscoelasticity problem in the time domain to be
solved using a suitable elasticity solution in the frequency domain.  Such solutions will
enable the determination of the overall effective properties of the composite as a function of
constituent volume fractions and phase properties.  For simplicity the solutions discussed in
this thesis will involve isotropic phase properties, although these solutions can be extended
for more complex constituent behavior.

Several case studies will be presented which show the effective composite properties
predicted using each of the micromechanical models and compare these results with those
obtained using FEA.  Whereas the MT method better approximates the viscoelastic behavior
of the composite, the Benveniste solution may be more useful from a design perspective
because it always provides conservative estimates of the composite moduli.  In either case,
while the micromechanical methods may provide “orders of magnitude” approximations
for the composite properties, they fail to accurately predict the composite behavior when
compared to the FEA results.  The results presented in this thesis indicate that this is due to
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the phase-averaging process which is necessary for these micromechanical solutions.  This
process fails to model the complex stress state which exists in the composite.

In addition, the finite element analysis was used to investigate the physical aging of
the viscoelastic composite.  Specifically, we used the methods of this thesis to investigate
whether the existence of an interphase with viscoelastic properties different from that of the
bulk matrix could be responsible for the difference in shift rates m2 2 and m6 6 which is seen
experimentally.  Preliminary FEA results indicate that, while a relatively small volume
fraction of interphase can play a significant role in determining the aging characteristics of
the composite, the interphase does not cause a difference in the shift rates describing the
physical aging of ET and mT.
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1.  INTRODUCTION

Polymer matrix composites (PMCs), particularly those consisting of fiber
reinforcement, have become an increasingly popular material for use in structural
applications.  The primary benefit of such systems are impressive strength-to-weight ratios.
Other additional benefits, such as improved corrosion resistance and material property
tailorability, can be of significance for specialized applications.  Due to the unique
properties of PMCs, they are being considered for such diverse applications as civil
structure reinforcement, aircraft and spacecraft skins, and biological implants.

One area of concern with the use of PMCs is the difficulty in modeling their overall
mechanical behavior.  Due to the time-dependent nature of the mechanical properties, and in
particular the polymeric matrix, the overall effective behavior of the composite will be
viscoelastic.  Solution of the viscoelasticity problem in the time domain can be
computationally prohibitive due to the convolution integral form of the constitutive
equations.  However, a simpler approach can be implemented which allows solutions of
suitable elasticity problems in the time domain to be exploited.  This approach renders
viscoelasticity solutions in the frequency domain where the complex material moduli
consists of real and imaginary components.

A further area of complication in the analysis of PMCs is the existence of an
interphase region of significant dimensions.  For PMCs interphase volume fractions on the
order of 25% have been reported experimentally using a method, similar to scanning
electron microscopy, called secondary ion mass spectroscopy (Thomason 1995).  In such
cases one may expect the interphase region to play a significant role in determining the
overall strength of the composite.  The goal of this work is to extend elasticity solutions for
multi-phase materials so that an in-depth study on the role of a viscoelastic interphase on the
mechanical behavior of polymeric composites can be undertaken.  Such analytical models
may prove useful in efforts to

1.) develop more accurate models for predicting overall composite behavior
2.) assess the mechanical properties of the interphase region
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3.) provide a better model with which to develop “engineered interphases”, where
an intentional coating is applied to the included phases to optimize properties

4.) experimentally measure the extent of the interphase through mechanical tests
5.) extend knowledge of the role of the interphase for more complex composite

behavior, such as damage tolerance, physical aging, and moisture absorption

A review of the literature leads to a large source of models developed for the
prediction of the overall effective elastic properties for composite materials.  Excellent
review articles are provided by Hashin (1983) and Christensen (1990).  The latter, in
particular, focuses on micromechanical models developed for elastic composites, although
his discussion focuses mainly on those with spherical inclusions.  He generalizes these
models into five distinct categories:  the differential method views the overall composite as a
sequence of dilute suspensions, and looks at the convergence of the composite moduli as
the number of inclusions fills the entire composite volume.  The self-consistent and the
generalized self-consistent models (Christensen and Lo 1979) both involve embedding the
inclusion phase within an infinite medium, the distinction being that in the generalized
version the infinite medium assumes the unknown mechanical properties of the composite
material.  The Mori-Tanaka (MT) method, originally derived to yield the energy for
materials with misfitted inclusions, has been extended by several researchers to predict the
mechanical behavior of composite materials (Mori and Tanaka 1973; Benveniste 1987).
The final model is the composite spheres (cylinders) model, also referred to as the
replacement method, which was developed by Hashin (1962).  Christensen notes that
although many of these models predict similar results for low volume fractions of
inclusions, large discrepancies (by orders of magnitude) can arise when analyzing
composites with either large volume fractions of inclusions or where there exists a large
variance in constituent mechanical properties.

In addition to the above review articles, several recent works have used
micromechanical methods.  Norris (1990) adapts the differential method to study the
effective moduli of two-phase platelet reinforced elastic composites.  Qui and Weng (1991)
used the composite cylinder assembly to study elastic composites with thick interphases.
Mahiou and Beakou (1998) implemented Aboudi’s method of cells to model imperfect
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phase bonding in fiber-reinforced composites.  Weng (1984) has used the Mori-Tanaka
method for elastic composites with spherical inclusions.  Other researchers have also used
the MT method to study composite behavior (Zhao and Weng 1990; Qui and Weng 1991a;
Chen 1992).  Many other additional micromechanical analyzes of effective composite
behavior can be found in the literature, see, for example, Avery and Herakovich (1986) and
Mikata (1994).

Analysis of viscoelastic composites using micromechanical techniques is much less
developed.  Early work in this area was pioneered by Hashin (1965; 1966; 1970a; 1970b)
and Schapery (1967; 1969).  Several researchers have recently looked at the effect of
inclusion shape on mechanical properties for two phase VE composites (Wang and Weng
1992; Li and Weng 1994).  Brinson and Lin (1996; 1998) have compared the results of the
MT method for two-phase VE composites with those acquired via a finite element analysis.
Li and Weng (1996) studied a viscoelastic interphase with the composite cylinder model
and found that in composites where the interphase is softer than the matrix, a pronounced
decrease in effective composite strength is realized.

Another manner with which to analyze interphase effects on composite materials is
the use of various techniques which bound the effective material moduli.  The most
straightforward of these is the Reuss-Voigt bounds, commonly referred to as the rule of
mixtures.  Since these bounds do not take into account phase geometry, they are often too
far separated and of limited practical use.  A more rigorous set of bounds for the effective
elastic moduli of multiphase composites were developed by Hashin and Shtrikman (1962)
using a variational approach.  These bounds were rederived and extended by Walpole
(1969), who analyzed the problem using the Green’s function.  These bounds, typically
referred to as the Hashin-Shtrikman-Walpole (HSW) bounds, are often quite useful in the
study of elastic materials.  Weng noted that there is a relation between the MT method and
the Hashin-Strikman-Walpole bounds for elastic multiphase composites (Weng 1990).

These bounds are also valid for viscoelastic materials in the Laplace domain, where
the equations and boundary conditions of the elasticity formulation have been transformed
into Laplace space via the correspondence principle.  However, it has been shown that they
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are not rigorous in the Fourier domain, where the complex moduli are written in terms of
storage and loss components.  Gibiansky and coworkers (1993a; 1993b) have recently
developed a complex derivation, based on the HSW bounds, to bound the effective
composite moduli in the Fourier plane.  Although useful for certain applications, these
bounds will not be examined in detail in this thesis.

In this thesis two elasticity solutions for multiphase composites will be extended
into the viscoelastic regime to examine interphase effects:  a version of the popular Mori-
Tanaka method (Mori and Tanaka 1973; Weng 1984; Benveniste 1987), and a
micromechanical method developed by Benveniste (1989).  In addition to these two
solutions, a finite element analysis (FEA) using a unit cell approach with a hexagonal array
will be implemented to provide a criterion with which to judge the accuracy of the analytical
solutions.  Although the micromechanical methods assume a random distribution of
inclusions and the FEA assumes that the inclusions are aligned in an hexagonal array, each
method will yield transversely isotropic composite behavior.  Thus we believe that such a
comparison is justified.  The FEA represents an extension of previous work which sought
to determine the overall composite behavior of a two-phase viscoelastic composite (Brinson
and Knauss 1992).

The first analytical method used to determine the viscoelastic behavior of a three-
phase composite is based on the Mori-Tanaka method.  Key to their analysis is Eshelby’s
(1957) solution for the stress field within an ellipsoidal inclusion.  The Mori-Tanaka
method has been extended by various authors in a wide range of problems and has become
a very popular tool for analysis of multiphase materials (Benveniste 1987; Zhao and Weng
1990; Wang and Weng 1992).  The current work will extend the model proposed by Weng
(1984) to study a three phase fibrous composite consisting of viscoelastic phase materials.

As used in this thesis, the Mori-Tanaka method will treat the fiber and the interphase
regions as separate, distinct regions of a given volume fraction within the binding matrix
(see Figure 3.1).  It will not make the distinction of an annular interphase region
surrounding the fiber inclusion.  Recent work completed by Luo and Weng (1987; 1989)
sought to extend Eshelby’s solutions for a three-phase concentric alignment of inclusions.
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Here they derive slightly different forms of the Eshelby S-tensor describing the perturbed
strains which exist due to the fiber/interphase and interphase/matrix interactions.  The
altered S-tensors, which can then be substituted into the original MT method, allow for the
physicality of the annular interphase to remain intact.  This particular extension of the MT
method will be considered at a later date.

The second analytical model utilizes a model originally proposed by Benveniste
(1989) to study the stress fields for materials with coated inclusions (see Figure 2.4).
Based on a generalized self-consistent model proposed by Christensen and Lo for a two-
phase composite (Christensen and Lo 1979), the displacements of each phase for a related
auxiliary problem are written explicitly in terms of unknown constants.  These constants are
determined by satisfying relevant boundary conditions, allowing the local fields in the fiber
and interphase regions to be determined.  Thus the relationship between an appropriate far-
field applied stress and the average stresses in the included phases for a single coated-
particle embedded in an infinite matrix can be found.  This solution is then used to
determine the unknown average matrix stresses for the composite, which accounts for
particle interaction.

Although the Benveniste solution is based in part on the “average stress in the
matrix” concept of the Mori-Tanaka method, it is a different method of solution due to a)
the consideration of the boundary conditions at the interfaces, and b) the lack of evaluation
of the Eshelby tensor.  Although the Benveniste solution can be carried out for all five of the
transversely isotropic properties of a fibrous composite, this thesis will concentrate on the
transverse properties of the composite, which are typically considered to be matrix-
dominated properties.  Other effective composite properties can be determined by analyzing
the composite response given a different applied far-field stress (Benveniste, Dvorak et al.
1989).

In order to compare the results of these two micromechanical solutions, a finite
element analysis of the problem will be completed.  This FEA model is based on the work
of Brinson and Knauss (1992), which used the dynamic correspondence principle to solve
the boundary value problem on a unit cell to obtain the effective complex moduli of the
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composite.  Other researchers have also used FEA to study the influence of the inclusion on
composite properties with elastic phase materials (Broutman and Agarwal 1974; Haoran,
Feng et al. 1995; Jacobs and Verpoest 1998; Wacker, Bledzki et al. 1998).  Viscoelastic
interphase/interface studies using FEA have also been completed (Gosz, Moran et al. 1991;
Yi, Pollack et al. 1995).  For this thesis the concentric fiber-interphase region will be
assumed to exist in a hexagonal array such that the overall behavior of the composite is
transversely isotropic, in order to allow direct comparison to the results to the Mori-Tanaka
and Benveniste solutions.

The purpose of this thesis is to determine the accuracy of two micromechanical
models in predicting the effect of a viscoelastic interphase on the mechanical properties of a
three-phase composite.  Chapter 2 presents background information on viscoelasticity and
the role of the interphase in polymeric composites.  Chapter 3 introduces the Mori-Tanaka
method by presenting the derivation for an elastic composite.  It then briefly discusses
simplifications which arise for cylindrical inclusions, and finally extends the MT method for
viscoelastic materials.  Chapter 4 introduces the Benveniste solution from the standpoint of
an elastic composite.  After discussing the auxiliary problems which must be analyzed for
its solution, the solution is extended for VE composites.  Chapter 5 explains the finite
element analysis completed for this work.  Chapter 6 uses the methods developed in the
preceding chapters to perform comparison studies using each of the micromechanical
models.  Results in this chapter will show the accuracy with which the micromechanical
models predict the complex composite moduli determined by the FEA over a wide range of
frequencies.  Finally, the models developed in this thesis will be used to investigate the
impact of the interphase on the shift rates describing the physical aging of the polymer
matrix composites.
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2.  BACKGROUND

2.1  VISCOELASTICITY AND THE DYNAMIC CORRESPONDENCE PRINCIPLE

The constitutive equation for a viscoelastic material can be written in terms of a
Stieltjes integral equation of the form

s ij (t) = Cijkl(t - x) dekl(x)
dx

-•

t

Ú dx (2.1)

where Cijkl is the time-dependent modulus of the material, and sij and ekl  are the stress and
strain tensors, respectively.  Analogous to the situation for an elastic analysis, the time-
dependent stress and strain tensors can be written in terms of deviatoric (sij, eij) and
dilitational (sk k, ek k) components,

sij(t) = s ij (t) -
1
3

skk (t) d ij  , eij(t) = eij( t) -
1
3

ekk(t) dij (2.2)

With substitution of (2.2) into (2.1), the constitutive law for a linear, isotropic viscoelastic
material can be written in terms of the time-dependent shear modulus G(t) and bulk
modulus K(t) as follows

sij(t) = 2 G
-•

t

Ú (t - x)
d eij(x)

d x
d x (2.3)

skk (t) = 3K(t - x)
-•

t

Ú
deij (x)

dx
dx (2.4)

In general solution of constitutive equations involving convolution integrals of this
type are computationally prohibitive.  Taylor and co-workers (1970) have developed a
procedure which simplifies the analysis of such a constitutive equation, yet even this
analysis requires a finite time discretization process which limits the realistic time scales
which can be studied.
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However, it is possible to completely avoid time domain analysis of the problem by
utilizing the dynamic correspondence principle.  This tool allows the mechanical
characterization of viscoelastic materials to be accomplished by studying complex
mechanical properties in the transformed domain.  The definition of the appropriate
complex phase moduli will be derived below for the case of isotropic phase materials.

To present the derivation, consider a separable form for the displacements u of the
form

ui (x, t) = u i (x,w) eiwt (2.5)

where w is frequency.  Given these displacements, strain fields can be determined using the
strain-displacement relationship

eij =
1
2

(ui, j + uj,i ) = e ij (w) eiwt (2.6)

Substitution of (2.6) into (2.3) and (2.4), respectively, yields

s ij = 2 G *(w) e ij  , s kk = 3K * (w) e kk (2.7)

where

K *(w) ≡ iwK (w) = iw K(t) e- iw t dt
0

•

Ú (2.8)

G *(w) ≡ iwG (w) = iw G(t) e- iwt dt
0

•

Ú (2.9)

are the complex bulk moduli K *(w)  and the complex shear moduli, G *(w) , respectively.
The complex moduli are often written in terms of the storage and loss moduli, i.e.,
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K *(w) = ¢ K (w) + i ¢ ¢ K (w)  , G *(w) = ¢ G (w) + i ¢ ¢ G (w) (2.10)

where single and double primes denote the storage and loss moduli, respectively.  The
storage modulus is a measure of the energy stored and recovered by a viscoelastic material
per cycle of sinusoidal deformation, whereas the loss moduli is a measure of the energy
dissipated as heat for a similar cycle (Tschogel 1989).  Note that as written in (2.10) both
storage and loss moduli are real quantities.

The constitutive equations given in (2.7) are identical to that of a standard elasticity
formulation, where now all field quantities are complex.  Thus there is a direct analogy
between elasticity problems in the time domain and viscoelasticity problems in the
frequency domain.  This relationship can be exploited through the dynamic correspondence
principle by taking the Laplace or Fourier transform of elasticity solutions and replacing the
elastic moduli by corresponding complex viscoelastic moduli using (2.8) and (2.9).  The
benefit of such a scheme is obvious:  the large supply of tools which have been developed
for the analysis of elastic problems can readily be applied to problems involving viscoelastic
materials.

2.2  THE INTERPHASE REGION IN POLYMERIC COMPOSITES

This thesis analyzes two micromechanical approaches with which the effect of a
viscoelastic interphase on the overall effective moduli of fibrous composites may be studied.
These models will be compared to the results of a detailed FEA.  Before discussing the
theoretical aspects of this investigation, it is worthwhile to discuss the interphase region in
polymeric composites.

The interphase (called a “mesophase” by certain authors) is an annular region
surrounding the inclusions in a multiphase material.  It is an inhomogeneous region with
non-constant properties typically intermediate to those of the main bulk constituent
materials of the composite.  The origin of the interphase may be due to voids, mechanical
imperfections, unreacted polymer components, physiochemical interactions, limited
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macromolecular mobility due to the absorption on the fiber surface, and other
inconsistencies (Theocaris 1985; Papanicolaou, Messinis et al. 1989; Gardner, Pittman et al.
1993).  For glass-fiber epoxy composites, the interphase region can be further complicated
by coupling agents and processing aids used to treat the fibers prior to introduction into the
epoxy resin (Bank and Gentry 1995; Thomason 1995).  Regardless of its cause, the
interphase region, although often a relatively small amount of the total volume fraction of a
composite, can play a crucial role in determining its overall mechanical properties.

In addition to these “unintentional” interphase regions, some researchers have
sought to take advantage of the unique role of the interphase by developing “engineered
interphases”. This refers to the deliberate treatment of the fiber phase, or the introduction of
a novel third phase, with properties and dimensions controlled by the manufacturer in order
to optimize composite performance.  Such interphases, with mechanical properties typically
on the order of magnitude of those of the matrix, show promise for increasing the strength
and fracture toughness of composite materials, particularly by reducing the stress-
concentrations in the matrix due to the presence of the fibers (Termonia 1990; Gardner,
Pittman et al. 1993).  Nellipappan and coworkers (1997) sought to determine the optimal
characteristics of an engineered interphase for a polymeric particulate composite.  It is
anticipated that the results of this thesis will be useful for studying the effects of either type
of interphase discussed here.

To better analyze the results of the current work, the interphase will be assumed to
have constant material properties distinct from those of the bulk phases, although other
researchers have used more complex models.  One such model assumes that interphase
properties vary continuously as a function of position, with consistency enforced at the fiber
and matrix interfaces (Papanicolaou, Messinis et al. 1989; Mikata 1994).  The models
developed in this thesis could be extended in such a manner, although the introduction of a
finite number of annular interphase regions to model non-constant interphase properties
would be required.

Another difficulty associated with modeling the interphase region is the
characterization of its location and extent.  Unfortunately, little work has been done to
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characterize the thickness of this region.  In the past, the thickness of the interphase in
fibrous composites has been estimated between 30 to 240 nm by various researchers, as
reported by Termonia (1990).  Papanicolaou (1989), basing his estimates on thermal
capacity measurements, found the interphase thickness to be on the order of hundreds of
nanometers for a fiber diameter of 12 mm.  This corresponds to a fiber volume fraction over
12 times greater than that of the interphase for a fiber volume fraction of 0.65.  This fiber
diameter is typical of a commercial glass fiber for use in polymer composites, where
diameters are on the order of 15 mm; see Thomason (1995) for a representative listing of
glass fiber diameters.

Other researchers have estimated interphase thicknesses for polymeric composite
studies.  Termonia (1990), performing an FEA study on elastic interphase effects, set the
thickness of the interphase equal to 9% of the fiber diameter, suggesting a fiber volume
fraction approximately 5 times that of the interphase.  Ho and Drzal (1996) used a finite
element approach to study the effectiveness of a microindentation technique to measure
interphase properties.  They assumed that the fiber volume fraction was about 12 times that
of the interphase volume fraction.  Gardner (1993) used an adaptation of Aboudi’s method
of cells to determine the residual stresses in polymer matrix composites.  They chose to use
a fiber volume fraction of 36% and an interphase volume fraction of 24%, a rather large
value in comparison with the other works referenced in this section.  However, the rationale
behind the selection of the interphase volume fractions was not presented in any of these
studies, and the choices of these authors seem to be rather arbitrary.

Theocaris (1985) estimated values of the interphase thickness by comparing
experimental data for the longitudinal elastic modulus of an epoxy-glass fiber composite
with a micromechanical model; these values can be found in Table 2.1.  He suggests that the
volume fraction of the interphase, vi, can be related to the volume fraction of the fiber, vf, by
the following relationship

vi = 0.123 vf
2  (2.11)

Although at low fiber volume fractions this model may significantly underestimate the
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extent of the interphase, at fiber volume fractions typical those of PMC materials (roughly
60%), this equation predicts fiber volume fractions approximately 10~15 times larger than
that of the interphase.  At high volume fractions those values certainly agree with the work
of other researchers presented in this section.

vf (%) vi (%) vm (%)

0 0 100.00

10 0.123 89.877

20 0.492 79.508

40 1.960 58.040

50 3.075 46.925

60 4.428 35.572

65 5.200 29.800

70 6.030 23.970

Table 2.1.  Values of characteristic interphase volume fractions for an E-Glass
fiber-epoxy resin unidirectional composite.  (Theocaris 1985)

Work done on block copolymers, which could directly relate to polymer fiber –
polymer matrix composites, suggests interphase volume fractions for polymer-polymer
interactions can range between zero (total phase separation) and 100% (completely
miscible).  The interphase region will typically be rich in one of the constituent materials
(Henderson and Williams 1985; Spontak, Williams et al. 1988).  Such composites could
have extensive interphase regions, and the ability to accurately predict the influence of the
interphase on composite behavior would seem critical for these materials.

Clearly, researchers to date have used a wide range of interphase volume fractions
for the modeling of interphase effects, with fiber volume fractions typically ranging from
approximately 5 to 20 times that of the interphase region.  More work, especially of an
experimental nature, needs to be done to accurately assess the dimensions and composition
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of the interphase in polymeric composites.  One such study, by Thomason (1995), used
secondary ion mass spectroscopy (s.i.m.s) to measure the thickness of an epoxy-glass fiber
interphase as approximately 1mm, corresponding to a fiber volume fraction 7~7.5 times
greater than the interphase.  He acknowledged that this value is higher than the value of 30
to 240 nm typically quoted in the literature.  Alternative methods to characterize the
interphase region of polymer composites are being developed, including atomic force
microscopy (ATM) (Mai, Mader et al. 1998) and scanning force microscopy (SFM)
(Munz, Sturm et al. 1998).

A more accurate understanding of the factors which affect the thickness of the
interphase region will be crucial as models which use the interphase dimension to predict
overall composite behavior are developed and refined.  At the current time, there is little
consensus as to a standard value for the interphase thickness of a PMC.  In addition, one
may expect that the volume fraction of the interphase will be dependent on the combination
of the fiber and matrix materials used within a particular composite.  Thus for a majority of
the work in this thesis, the interphase volume fraction was set equal to 10% of the total
volume fraction of the composite.  Although this value may be high, particularly for low
fiber volume fractions, it was chosen to emphasize the influence of the interphase on the
effective properties of the composite and thus improve our ability to compare the results of
the micromechanical models.

2.3  THE PHYSICAL MODEL

This thesis seeks to determine the overall mechanical properties of a three phase
viscoelastic composite consisting of cylindrical fibers surrounded by an annular interphase
and embedded in a binding, continuous matrix.  Here it will be assumed that both the matrix
and interphase are isotropic, linear viscoelastic materials, and that the fiber is isotropic and
elastic.  It is assumed that there is perfect bonding between the phases.

Although the viscoelastic components of these composites will typically feature
temperature-dependent properties, the current work does not investigate such effects, and
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thus isothermal conditions should be assumed.  Glass transition temperature (Tg) effects
will be neglected, although it should be noted that the glass transition temperature of the
interphase region may vary significantly from those of the fiber and matrix phases.  The Tg

of the interphase can play an important role in the processing of the polymer composite, as
processing temperatures greater than that of the interphase will allow greater molecular
mobility within the interphase region, improving the ability of the interphase to properly
bond with the fiber and matrix materials (Thomason 1995).

 A fibrous composite will in general be transversely isotropic, and its mechanical
behavior quantified by five independent properties (for example, the axial modulus EA,
transverse Young’s modulus ET,  axial shear modulus mA, transverse shear modulus mT, and
the plane strain bulk modulus k).  It is typically understood that the axial modulus EA is
primarily a fiber-dominated property, while the other four properties can vary significantly
depending on interphase and matrix volume fractions and properties (Li and Weng 1996).
In order to better focus the efforts of this research, the transverse Young’s modulus ET  of
the composite will be studied unless otherwise noted.

For this investigation two hypothetical isotropic, linear viscoelastic (VE) materials, a
“stiff” polymer and a “soft” polymer, were implemented as either the matrix or interphase
materials in a three-phase composite.  The designation of “stiff” or “soft” material as the
interphase and matrix material was varied throughout the analysis.  This allowed analysis of
the composite behavior when the interphase was either the softest phase in the composite or
when the interphase had properties intermediate those of the fiber and matrix materials.  At
all times the fiber was the stiffest of the three phases within the composite.  The values of
the elastic moduli for the fiber are given in Table 2.2.

  For all viscoelastic materials the time-dependent bulk and shear moduli were
represented using the standard Prony series representation of the form
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Elastic Properties

G = 40,000

K = 100,000

Table 2.2. Mechanical properties of hypothetical isotropic, elastic fibers.

   Stiff Material                                                                  Soft Material

G• = 100 G• = 3.162

K• = 8000 K• = 200

tj
G Gj tj

G Gj

3 3.162 0.032 2.512

10 17.783 0.100 10.000

32 100.000 0.316 56.234

100 316.228 1.000 316.228

316 1000.000 3.162 1000.000

1000 5623.413 10.000 199.526

3162 10000.000 31.623 50.119

10000 562.341 100.000 19.953

31623 141.254 316.228 12.589

100000 56.234 1000.000 2.512

316228 17.783 3162.278 1.698

1000000 5.623 10000.000 1.202

3162278 3.162 31622.777 1.148

10000000 1.778 100000.000 1.096

tj
K Kj tj

K Kj

10000 40000 100 3000

316.228 100
Table 2.3. Prony series terms for the viscoelastic moduli of the “stiff” and “soft”

hypothetical materials. (Brinson and Lin 1998)
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A(t) = A• + A j e- t /t j

j=1

N

Â (2.12)

where A j  and t j  are the relaxation spectra and relaxation times, respectively, and A •  is the
rubbery asymptotic modulus of either the shear or bulk modulus.  The parameters used to
represent the viscoelastic behavior of the hypothetical “stiff” and “soft” materials are
given in Table 2.3.  A plot showing the mechanical behavior of the time-dependent
constituent phase materials is shown in Figure 2.1.  The corresponding complex moduli of
the viscoelastic constituent materials, obtained via the correspondence principle, are
presented in Figures 2.2 and 2.3 for the storage and the loss moduli, respectively.

 Figure 2.4 shows a schematic of the applied loading in the transverse plane to
determine ET of the composite.  The unit cell models used for the FEA analysis, assuming
the fiber-interphase inclusions are aligned in an hexagonal array, are shown in Figures 2.5
and 2.6.  Due to natural symmetry a hexagonal array represents the transversely isotropic
behavior of fibrous composites (Lin 1996).  Because voids within the composite are
neglected, the sum of the volume fractions of the phases, denoted cf, cg, and cm (fiber,
interphase, and matrix phase, respectively) must equal unity. The displacement on the right
hand side of the unit cell in Figure 2.5 is specified to ensure the side remains straight and
parallel.   The complex boundary conditions imposed on the unit cell for the case of
transverse normal loading are:

u x = 0 T y = 0 on x = 0
u y = 0 T x = 0 on y = 0 (2.13)
u x = - b T y = 0 on x = W
u y = u o + 0 i T x = 0 on y = L

W = 3 L

An example of a mesh generated for the finite element analysis can be found in Appendix
A.1.



24

Figure 2.1.  Viscoelastic phase properties in the time domain.

Figure 2.2.  Complex storage moduli for viscoelastic phase materials.
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Figure 2.3.  Complex loss moduli for viscoelastic phase materials.

The finite element method was also used to investigate the behavior of the overall
transverse shear modulus as a function of phase properties and geometry.  Following
previous work in this area (Brinson 1990), the unit cell necessary to model such behavior is
shown in Figure 2.6.  The boundary conditions which must be enforced on the unit cell to
determine the transverse shear modulus are given below,

u y = 0 T x = 0 on x = 0
u x = 0 T y = 0 on y = 0 (2.14)
u y = 0 T x = 0 on x = W
u x = u o + 0 i T y = 0 on y = L

W = 3 L

Further discussion of the finite element implementation for this thesis will be postponed
until Chapter 5.  Meshes for a given geometry can be used independent of the type of
boundary conditions applied to the unit cell.
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Figure 2.4.  Three phase composite model – transverse normal loading.

Figure 2.5.  Unit cell finite element analysis for a three phase composite –
transverse Young’s modulus (hexagonal array)
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Figure 2.6.  Unit cell finite element analysis for a three phase composite –
transverse shear modulus (hexagonal array)

2.4 PHYSICAL AGING OF VISCOELASTIC MATERIALS

Much effort to date has focused on the physical aging of polymers.  Physical aging
has been the subject of numerous investigations, and only a very brief description of its
background is warranted here.  For a more in-depth review of the subject, several books
discuss physical aging and its effect on the mechanical behavior of polymeric materials
(Struik 1978; Ferry 1980).

Physical aging is due to the fact that a polymeric material, below its glass transition
temperature Tg, is in a non-equilibrated thermodynamic state.  As the time below Tg

continues to increase, the polymer slowly approaches its equilibrium state; this is realized by
a gradual decrease in volume, among other phenomena.  The time below Tg is referred to as
the aging time te.  As the process of physical aging continues, the mechanical behavior of the
material changes; as the volume decreases, the material becomes stiffer and less ductile.  In
most instances of physical aging of polymeric materials, the material property curves at
different initial aging times can be superposed through a horizontal shift.  The amount of
shifting necessary to superpose the material curves is referred to as the aging time shift
factor at e

.  An example of the use of at e
to shift moduli curves is given in Figures 6.42 and
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6.45.  For a wide variety of materials, including PMCs, experiments have shown that the
shift factors are linearly related to the initial aging time in log-log space via the shift rate m,

 m = -
d log ate

d log te
(2.15)

Thus the shift rate m is a material parameter which may be used to determine the
modulus for a given amount of initial aging time given the master reference curve.  Physical
aging therefore has the effect of altering the relaxation times of the polymeric material,
corresponding to the horizontal shifting of the curves.  Along these lines, the relaxation
times of the aged material are related to the relaxation times of the reference material via

t(te ) =
t(te ,ref )

a te

(2.16)

where t e,ref  is the reference aging time.  For our purposes the reference aging time can be
set equal to one without loss of generality.  More complicated versions of physical aging,
and in particular effective time theory (Brinson and Gates 1995), were not investigated in
this thesis.

For an isotropic material one value of m is sufficient to characterize the physical
aging of all mechanical properties (Struik 1978).  However, experimental work (Gates and
Feldman 1993; Hastie and Morris 1993) suggests that different shift rates, m2 2 and m6 6, are
necessary to characterize the physical aging of polymeric composites subjected to transverse
normal and transverse shear loadings, respectively.  This is despite the fact that the
transverse shear and Young’s moduli are both matrix-dominated properties.  The fact that
the shift rates measured for these variables is different may suggest that there are
fundamental differences in the way in which composite materials respond to such loadings.
We will use the methods developed in this thesis to investigate whether the existence of an
interlayer with distinct viscoelastic and aging properties could be responsible for the
different shift rates measured experimentally.
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3.  MORI-TANAKA METHOD

3.1  INTRODUCTION

In this section the derivation of the Mori-Tanaka method for the determination of the
effective properties of an elastic composite is briefly presented.  More detailed derivations
can be found in the literature (Mori and Tanaka 1973; Weng 1984; Benveniste 1987).  The
extension of this method for viscoelastic materials will be postponed until Section 3 of this
chapter.

As will be seen below, the Mori-Tanaka method entails use of the Eshelby tensor to
account for cylindrical included phases.  Thus the standard MT method cannot capture the
exact geometry of the interphase problem, where the interphase is an annular region
surrounding each cylindrical fiber inclusion.  Consequently, for the MT analysis here, we
will approximate the fiber-interphase problem using a composite with distinct cylindrical
inclusions of the interphase material in addition to the cylindrical fiber inclusions (see
Figure 3.1).  Since the Mori-Tanaka method is such a standard and popular
micromechanical tool, it will be useful to determine the accuracy of the approximate solution
the Mori-Tanaka method provides in this context.  On completion of this work it was
discovered an extension of the Mori-Tanaka method for annular regions has been developed
(Luo and Weng 1989), but this has not yet been examined for the VE problem considered
here.  Such as analysis may provide further insight as to the role of the interphase in the
determination of composite behavior.  A more sophisticated micromechanical solution
which keeps intact the physicality of the annular interphase will be presented in Chapter 4.

Consider the three phase composite material shown in Figure 3.1.  Again, this is a
simplification of the actual geometry of the problem shown in Figure 2.4.  Here we assume
that the individual phases which comprise the composite are elastic in nature and are
denoted f, g, and m for the fiber, interphase, and matrix, respectively.  In addition,
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Figure 3.1.  Interphase modeled as a distinct inclusion region for the Mori-Tanaka
method.

we will consider an identically shaped comparison material, assumed to have the mechanical
properties of the matrix.

Further assume that both the composite material and the comparison material are
subjected to a prescribed boundary displacement condition causing a uniform strain e  in
each material, where an overbar • ( )  here and throughout this section denotes an uniform
value.   (Note that an equivalent derivation can proceed using a prescribed traction condition,
see Weng (1984).)  The stresses required within the composite and the comparison material,
respectively, to cause this uniform strain e  are given by

s = Le  , s o = Lm e (3.1)

where L is the effective modulus of the composite and Lm  is the modulus of the matrix.
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However, the actual average stress of the matrix material within the composite will
differ from the stress of the comparison material, s o , due to the stress-concentrations
caused by the fiber and interphase regions.  Denoting this average difference as ˜ s , it
follows from (3.1) that the stress in the matrix material within the composite, s m  is

s m = s o + ˜ s = Lm (e + ˜ e ) (3.2)

The average stresses of the included phases (i.e. the fiber and the interphase), on the other
hand, will differ from that of the matrix phase within the composite.  Writing this additional
stress perturbance of phase k as sk

pt , the stress state in each phase can now be represented
(where em

pt  is zero by definition)

sk = s o + ˜ s + sk
pt = Lk e + ˜ e + ek

pt( ) k={f,g,m} (3.3)

where Lk  represents the modulus of the kth phase.  Likewise, the strain in each phase can
be written in terms of the material compliances, Mk  where k={f,g,m}, given that the
standard inverse relationship between modulus and compliance exists.  By definition the
perturbed stress within the matrix, sm

pt , is identically zero, and one can write

ek = e + ˜ e + ek
pt = Mk sk = Mk s o + ˜ s + sk

pt( ) k={f,g,m} (3.4)

Equation (3.3) can be recast in terms of the matrix modulus using the idea of an
equivalent transformation strain ek

* , the strain which would be necessary to restore the
transformed inclusion back to its original, pre-deformed shape (Weng 1984).  Using this
idea,

sk = s o + ˜ s + sk
pt = Lm e + ˜ e + ek

pt - ek
*( ) k={f,g} (3.5)

where
ek

pt = Sk e k
* (3.6)
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and Sk is the Eshelby tensor (Eshelby 1957), the components of which are given in
Appendix A.2 for circular, cylindrical inclusions.  The Eshelby tensor is a function of the
shape of the inclusion and the material properties of the matrix.

Using (3.6), equation (3.5) provides the average stress for each included (i.e. non-
matrix) phase of the composite, namely,

sk = s o + ˜ s + sk
pt = Lm e + ˜ e + ek

* Sk - I( ){ } k={f,g} (3.7)

From consistency considerations, we must enforce that the sum of the volume
average strains within the composite is equal the total resultant strain of the composite
material, e .  Using (3.4), this condition yields

e = ck ek = ck e + ˜ e + Sk ek
*{ }

k
Â

k
Â = e + ˜ e + ck

k
Â Sk ek

*  k={f,g,m} (3.8)

where e  and ˜ e  are identical for all phases, the sum of all volume fractions is equal to unity
(assuming zero void content), and the summation index k is over all phases within the
composite.  Note that by definition the transformation strain of the matrix em

*  is identically
zero.  Equating the first and last terms of (3.8), one can show that

˜ e = - ck Sk
k
Â e k

* k={f,g} (3.9)

Finally, it is necessary to evaluate the average phase strain, ek , of the included
phases within the composite.  Consider the slightly altered form of (3.7) using (3.4),

sk = Lk ek = Lm e + ˜ e + ek
pt - ek

*( ) = Lm ek - e k
*( ) k={f,g} (3.10)

Solving this expression for ek ,

ek = -
Lm

Lk - Lm
e k

* k={f,g} (3.11)
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Rewriting (3.4), and substituting appropriate expressions,

ek = e + ˜ e + ek
pt = e + ˜ e + Sk ek

* k={f,g} (3.12)

-
Lm

Lk - Lm
ek

* = e - cn Sn
n
Â en

* + Sk ek
* k,n={f,g} (3.13)

Sk ek
* +

Lm
Lk - Lm

ek
* - cn Sn

n
Â en

* = -e k,n={f,g} (3.14)

Now define the strain-concentration tensor A k  such that it relates the uniform strain e  to
the transformation strain of the k-th included (non-matrix) phase, ek

* ,

ek
* = Ak e k={f,g} (3.15)

Substitution into (3.14) yields

Sk +
Lm

Lk - Lm

È 

Î Í 
˘ 

˚ ˙ Ak - cn Sn
n
Â A n = -I k,n={f,g} (3.16)

where n is a dummy variable summed over all included phases, and I is the fourth-order
identity tensor.  Solution of (3.16) provides the strain-concentration tensors Af  and Ag

describing the strain state in the fiber and interphase regions, respectively.

Going back to (3.12), the strain in each of the included phases can be now be written
as

ek = I - cn Sn An +S k Ak
n
Â

È 

Î 
Í 
Í 

˘ 

˚ 
˙ 
˙ 

e k,n={f,g} (3.17)

Averaging the stresses over all phases, starting with (3.5) and using (3.2) and (3.7),
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s = ck
k
Â s k = ck

k
Â s o + ˜ s + sk

pt( )

= s o + ˜ s + ck
k
Â sk

pt

= s o - Lm ck
k
Â Sk e k

* + Lm ck
k
Â ek

* Sk - I( )

k={f,g,m} (3.18)

where s o  and ˜ s  are constant for all phases.  Further simplifying (3.18), and using the
constitutive law for the comparison material given in (3.1),

s = Le = Lm e - Lm ck
k
Â ek

*

= Lm e - Lm ck
k
Â Ak e 

k={f,g} (3.19)

at which point the effective modulus of the composite, L, is found to be

L = Lm I - ck A k
k
Â

È 

Î 
Í 

˘ 

˚ 
˙ k={f,g} (3.20)

In application, the determination of the strain concentration tensors in (3.16) is used with
(3.20) to determine the effective modulus of a multiphase composite.  This completes the
derivation of the Mori-Tanaka for the determination of the effective modulus for a
multiphase composite.

Once the effective modulus of the composite has been determined, one can
determine the five transversely isotropic material properties.  Assuming that the modulus is
written in the standard contracted notation such that

s11 Æ s1, s22 Æ s2 , s33 Æ s3
s23 Æ s4, s13 Æ s5, s12 Æ s6

(3.21)

where the fibers are aligned in the 1-direction, five independent engineering constants can be
determined as follows (Aboudi 1991):
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EA = L11 - 2 L12
2 / (L22 + L33)

nA = L12 / (L22 + L23)

nT = (L11L23 - L12
2 ) / (L11L22 - L12

2 )
mT = L44
mA = L66

(3.22)

where EA is the axial modulus, nA the axial Poisson’s ratio, nT the transverse Poisson’s
ratio, mT the transverse shear modulus, and mA is the axial shear modulus.  Assuming that
the material is in a state of plane strain, the transverse Young’s modulus is given by

ET =
s22
e22

= L22 -
L23

2

L22
(3.23)

Using the dynamic correspondence principle, the work of this section can readily be
extended to viscoelastic materials by replacing elastic stiffness and compliance terms with
the corresponding complex moduli terms.  This extension will be discussed in Section 3.3.

3.2  SIMPLIFICATIONS FOR CYLINDRICAL INCLUSIONS

The analysis in the preceding section is valid assuming that the inclusions are
ellipsoidal regions. Weng (1990) showed that, for an elastic analysis of cylindrical
inclusions, the Mori-Tanaka method will coincide with the Hashin-Shtrikman-Walpole
upper (lower) bounds should the matrix be the hardest (softest) phase.  Otherwise, the
Mori-Tanaka method falls somewhere within these bounds.

Such an observation is powerful in that the Hashin-Shtrikman-Walpole bounds are
algebraic expressions which can be evaluated directly, sidestepping the machinery of the
Mori-Tanaka method described above.  This is a particularly attractive feature when
considering composites with multiple phases.  In his paper Weng (1990) presents the
solution for five transversely isotropic parameters of a multiphase cylindrical fibrous
composite as follows,
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k = ck / (kk + mm )
k
Â

È 

Î 
Í 
Í 

˘ 

˚ 
˙ 
˙ 

-1

- mm

l = cklk / (kk + mm )
k
Â

È 

Î 
Í 
Í 

˘ 

˚ 
˙ 
˙ 
⋅ ck / (kk + mm)

k
Â

È 

Î 
Í 
Í 

˘ 

˚ 
˙ 
˙ 

-1

(3.24)

n = cknk
k
Â + ck lk cs(ls - lk ) / (ks + mm)

s
Â

È 

Î 
Í 
Í 

˘ 

˚ 
˙ 
˙ k

Â / (kk + mm )
Ï 
Ì 
Ô 

Ó Ô 

¸ 
˝ 
Ô 

˛ Ô 
/ ck / (kk + mm )

k
Â

È 

Î 
Í 
Í 

˘ 

˚ 
˙ 
˙ 

m = ck / [mk + mmkm / (km + 2mm )]
k
Â

Ï 
Ì 
Ô 

Ó Ô 

¸ 
˝ 
Ô 

˛ Ô 

-1

- mmkm / (km + 2mm )

p = ck / (pk + pm)
k
Â

È 

Î 
Í 
Í 

˘ 

˚ 
˙ 
˙ 

-1

- pm

where the subscripts k and s refer to the corresponding phase property {f,g,m}, and
subscript m refers to the matrix phase.  Here k is the plain strain bulk modulus, l the
transverse cross modulus and n the axial modulus under a uniaxial strain, m the transverse
shear modulus, and p is the axial shear modulus.  Once five independent transversely
isotropic material parameters have been determined, one can derive auxiliary engineering
constants (such as the transverse Young’s modulus) using appropriate relationships.

Although this simplification is only valid in those instances where the matrix is the
softest or the hardest of the composite phases, this situation is often relevant as the
interphase typically has properties intermediate to those of the fiber and matrix.  Evaluation
of (3.24) simply requires the substitution of volume fractions and phase properties into the
appropriate algebraic expressions, whereas  (3.16) requires more advanced methods to
determine the strain-concentration tensors Ak and the composite modulus L.  Thus the
expressions of this section can be quite useful for the study of certain classes of composite
systems.
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3.3  EXTENSION FOR VISCOELASTIC MATERIALS

Using the correspondence principle introduced in Chapter 2 of this thesis, it is
straightforward to extend the Mori-Tanaka solution for composites with viscoelastic
constituent phases.  Only the highlights of the extension will be shown here.  It is first
necessary to take the Laplace (or Fourier) transform of the tensor equation in (3.16), which
is now rewritten as

S k
*(s) +

L m* (s)
L k* (s) - L m* (s)

È 

Î 
Í 

˘ 

˚ 
˙ A k (s) - cn S n

*(s)
n
Â An (s) = -I k={f,g} (3.25)

where the standard notation for the transformed moduli is used, n is a dummy variable
summed over all included phases (i.e. {f,g}), I is again the fourth-order identity tensor, and
S k

*(s)  are the transformed Eshelby tensors, evaluated by replacing the elastic moduli of the
Eshelby tensor (given in Appendix A.2 for circular cylinders) with the corresponding
transformed moduli.  Once the strain-concentration factors A k(s)  have been determined
within the transformed domain via (3.25), they can be used to find the effective transformed
modulus of the viscoelastic composite, L * (s) , via the Laplace transform of (3.20), which is
given below

L * (s) = L m
* (s) I - ck A k (s)

k
Â

È 

Î 
Í 
Í 

˘ 

˚ 
˙ 
˙ 

k={f,g} (3.26)

Relations similar to (3.22) and (3.23) in Laplace space can then be used to determine the
effective viscoelastic engineering constants for the composite.  It should be noted that a
procedure identical to that presented in this section can be undertaken using the Fourier
transform rather than the Laplace transform.  In this instance the effective viscoelastic
engineering constants will be given in complex form.

Likewise, the simplification of the Mori-Tanaka method for cylindrical inclusions,
which holds when the matrix material is either the hardest or the softest phase material, can
also be extended for viscoelastic composites by a similar procedure.  Specifically, one must
replace the elastic moduli terms in (3.24) with the corresponding transformed moduli.  The
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expression for the plane-strain bulk modulus for a viscoelastic composite with multiple
cylindrical inclusions could thus be written

k *(s) = ck / k k
* (s) + m m

* (s){ }
k
Â

È 

Î 
Í 
Í 

˘ 

˚ 
˙ 
˙ 

-1

- m m
* (s) (3.27)

The other transversely isotropic effective properties of (3.24) can be rewritten in an
analogous manner.  Again, the Fourier transform can replace the Laplace transform in the
discussion above, such that the effective properties of the composite will be in the complex
form covered in Chapter 2.
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4.  ANALYTICAL INTERPHASE SOLUTION (BENVENISTE METHOD)

4.1  INTRODUCTION

Another micromechanical method has been proposed to evaluate the effective
properties of a three phase elastic composite.  This model can also be converted to a
viscoelastic solution using the correspondence principle discussed earlier.  Specifically, the
model introduced by Benveniste et al. (1989) is concerned with the evaluation of the local
fields of composites with coated inclusions.  It is derived for a three phase composite
consisting of an annular interphase surrounding a cylindrical fiber within a binding matrix.
The solution for the transverse Young’s modulus of the composite will be considered as the
superposition of the two problems as shown in Figure 4.1; the solution for the axial shear
modulus is considered in Section 4.6.

For this method the local stress fields in the fiber and matrix are approximated by
those fields found when a single fiber-interphase inclusion is embedded in an infinite matrix
medium subjected to appropriate far-field stresses.  Particle interaction is described by the
determination of the unknown average matrix stresses, a procedure similar to that used in
the Mori-Tanaka method and described in detail below.  Although the Benveniste paper
presents this procedure for the determination of five transversely isotropic mechanical
properties, we will only concentrate on the effective transverse Young’s modulus, transverse
shear modulus, and axial shear modulus of the composite.  Other moduli for the composite
are determined by considering different far-field loadings and will not be considered here.
The interested reader is referred to the original work of Benveniste for the derivation of
other composite properties.
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4.2  AUXILIARY PROBLEMS FOR TRANSVERSE YOUNG’S MODULUS OF THE

COMPOSITE

The first step of this procedure is to determine the average phase stresses in the fiber
and interphase regions for a single fiber-interphase inclusion in an infinite matrix.  This will
be accomplished via analysis of appropriate auxiliary problems.  The auxiliary problems
necessary to determine the transverse Young’s modulus of the three phase composite are
shown in Figure 4.2; that necessary for the axial shear modulus is shown in Figure 4.3.
The average stress fields of the included phases for each of these auxiliary problems will be
determined.  The derivation presented within this section will follow the original work of
Benveniste (1989) and be valid for elastic phase materials.  Once the field averages of the
included phases in the auxiliary problems have been determined, the analysis proceeds to
determine the average stresses in the matrix material, accounting for particle interaction as
described later in this chapter.  The extension of this model for viscoelastic materials, using
the correspondence principle, will be given in Section 7 of this chapter.

Figure 4.1.  Superposition of transverse hydrostatic loading and transverse shear
loading for the determination of the transverse Young’s modulus.

4.3  TRANSVERSE HYDROSTATIC LOADING AUXILIARY PROBLEM

To solve for the effective transverse Young’s modulus of the composite a
superposition approach will be used, requiring solution of two separate loading problems as
shown in Figure 4.1.  The transverse hydrostatic auxiliary problem is shown in Figure 4.2a.
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The three phase composite consists of a fiber (f) coated by an annular interphase region (g)
and embedded in an infinite matrix (m).  The areas of the included phases are given by

cf = p a2 , cg = p (b2 - a2 ) (4.1)

where a is the outer radius of the fiber, b is the outer radius of the interphase region, and r is
the radius extending from an origin fixed at the center of the fiber.

Figure 4.2.  Auxiliary problems for the transverse Young’s modulus.
(a)  Transverse hydrostatic loading.  (b)  Transverse shear loading.

Note that the following far-field boundary conditions exist for the auxiliary problem
shown in Figure 4.2a,

sxx rÆ• = so syy rÆ•
= so (4.2)
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One can verify that this problem is axisymmetric.  From standard elasticity theory, the only
possible form which the displacements can take is the following (Timoshenko and Goodier
1970)

ur
f = Af r  , ur

g = A g r +
Bg

r
 , ur

m = Am r +
Bm
r

(4.3)

where subscript r refers to radial displacements, superscripts refer to the respective phases,
and Ak (k={f,g,m}) and Bk (k={g,m}) are unknown quantities which are determined via
enforcement of the boundary conditions.  All other displacements are identically zero.
Throughout this section, arguments of the respective functions will be omitted for clarity
unless required to avoid confusion.

The analysis then proceeds along the lines of a standard elasticity solution.  The
strain fields in each phase can be found from the strain-displacement relations.  The only
such relations which give non-zero strains for the displacement fields of (4.3) are

err =
∂ ur
∂r

(4.4)

eqq =
1
r

∂uq

∂q
+ ur

Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

Here we will assume a plane-strain analysis, implying the ezz  strain components are zero.
Applying these expressions to the phase displacements given in (4.3), the strain components
in each phase can be written as

err
f = A f  , err

g = A g -
Bg

r2  , err
m = A m -

Bm
r2 (4.5)

eqq
f = Af  , eqq

g = Ag +
Bg

r2  , eqq
m = A m +

Bm
r2
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Given the strain fields in each phase, one can now use Hooke’s Law, given below,
to determine the stresses in each phase,

s ij
k = 2mk eij

k + lk enn
k d ij k={f,g,m} (4.6)

where d ij  is the Kronecker function, repeated indices imply summation, and the superscript
over the material property again denotes phase.  Upon substitution, the stress fields in each
phase can be written

srr
f = 2m f A f + lf 2 Af( ) = 2 Af m f + lf( )

 srr
g = 2mg Ag -

Bg

r2
Ê 

Ë 
Á ˆ 

¯ 
+ lg 2A g( ) = 2Ag mg + lg( ) - 2mg Bg

r2 (4.7)

srr
m = 2mm A m -

Bm
r2

Ê 
Ë 

ˆ 
¯ + lm 2A m( ) = 2 Am mm + lm( ) - 2mm Bm

r2

sqq
f = 2m f Af + lf 2A f( ) = 2A f mf + lf( )

 sqq
g = 2mg A g +

Bg

r2
Ê 

Ë 
Á ˆ 

¯ 
+ lg 2Ag( ) = 2 Ag mg + lg( ) + 2mg Bg

r2 (4.8)

sqq
m = 2mm A m +

Bm
r2

Ê 
Ë 

ˆ 
¯ + lm 2A m( ) = 2 Am mm + lm( ) + 2mm Bm

r2

In addition, invoking the assumption of plane strain leads to

szz
k = nk sxx

k + syy
k( ) = nk srr

k + sqq
k( ) k={f,g,m} (4.9)

Now that the displacement and stress fields have been derived for each phase within
the auxiliary problem, one can enforce suitable boundary conditions.  Five boundary
conditions will be required to determine the displacement constants.  These conditions are
given below,
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ur
f = ur

g  ; srr
f = srr

g at r = a

ur
g = ur

m  ; srr
g = srr

m at r = b (4.10)

srr
m = so as r Æ •.

Inserting the displacement and stress expressions above into the boundary
conditions of (4.10), one can solve the following system of equations for the unknown
displacement constants in terms of so , material properties, and geometry,

A f a = Ag a +
Bg

a

A g b +
Bg

b
= Am b +

Bm
b

2 Af m f + lf( ) = 2 Ag mg + lg( ) - 2mg Bg

a2 (4.11)

2 Ag mg + lg( ) - 2 mg Bg

b2 = 2 Am mm + lm( ) - 2mm Bm
b2

2 Am mm + lm( ) = so

Solving (4.11) completes the determination of the fields associated with the
transverse hydrostatic auxiliary problem of a single fiber-interphase inclusion embedded
within an infinite matrix.  Through substitution of these displacement constants , it is
possible to solve for the phase-average stresses in the fiber and the interphase, using the
expression

s ij
k =

s ij
k ⋅ r

ri

ro
Ú0

2p

Ú d r d q

p ro2 - ri2( )
k={f,g} (4.12)

 Following Benveniste (1989), one can now define scalar quantity stress-
concentration factors WTT

k  (transverse direction) and WLT
k  (longitudinal direction) which
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relate the far-field applied hydrostatic stress of the auxiliary problem to the corresponding
phase-average stresses

s xx
k = WTT

k so , s yy
k = WTT

k so

k={f,g} (4.13)

s zz
k = WLT

k so = 2 nk WTT
k so

where the overbars denote phase average stresses, superscript k refers to the appropriate
phase, and so  is the hydrostatic stress applied to the auxiliary geometry of Figure 4.2a.
The solution for the stress-concentration factors of the included phases given in (4.13) can
be written explicitly as

WTT
f =

2A f
so

m f + lf( )  , WLT
f =

2A f lf

so
(4.14)

WTT
g =

2A g

so
mg + lg( )  , WLT

g =
2A g lg

so
(4.15)

These stress-concentration factors, which relate the average phase stresses for the transverse
loading auxiliary problem, will be used in Section 5 of this chapter to determine the effective
transverse Young’s modulus of the composite.

4.4  TRANSVERSE SHEAR LOADING AUXILIARY PROBLEM

Now consider the auxiliary problem of Figure 4.2b.  Given the geometry considered
in the previous section, one can directly write the forms of the phase displacements.  These
displacements, found via the solutions of equations of equilibrium, are given as (Christensen
and Lo 1979; Benveniste, Dvorak et al. 1989)
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ur
f =

b so
4m f

Ê 

Ë 
Á ˆ 

¯ 
˜ a1 hf - 3( ) r

b
Ê 
Ë 

ˆ 
¯ 

3
+ d1

r
b

Ê 
Ë 

ˆ 
¯ 

Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

cos2q

0 ≤ r ≤ a (4.16)

uq
f =

bso
4mf

Ê 

Ë 
Á ˆ 

¯ 
˜ a1 hf + 3( ) r

b
Ê 
Ë 

ˆ 
¯ 

3
- d1

r
b

Ê 
Ë 

ˆ 
¯ 

Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

sin2q

ur
g =

bso
4mg

Ê 

Ë 
Á ˆ 

¯ 
˜ a2 hg - 3( ) r

b
Ê 
Ë 

ˆ 
¯ 

3
+ d2

r
b

Ê 
Ë 

ˆ 
¯ + c2 hg + 1( ) b

r
Ê 
Ë 

ˆ 
¯ + b2

b
r

Ê 
Ë 

ˆ 
¯ 

3Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

cos2q

a ≤ r ≤ b (4.17)

uq
g =

bso
4mg

Ê 

Ë 
Á ˆ 

¯ 
˜ a2 hg + 3( ) r

b
Ê 
Ë 

ˆ 
¯ 

3
- d2

r
b

Ê 
Ë 

ˆ 
¯ - c2 hg -1( ) b

r
Ê 
Ë 

ˆ 
¯ + b2

b
r

Ê 
Ë 

ˆ 
¯ 

3Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

sin 2q

ur
m =

bso
4mm

Ê 

Ë 
Á ˆ 

¯ 
˜ 2 r

b
Ê 
Ë 

ˆ 
¯ + hm +1( )a3

b
r

Ê 
Ë 

ˆ 
¯ + c3

b
r

Ê 
Ë 

ˆ 
¯ 

3Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

cos2q

r ≥ b (4.18)

uq
m =

bso
4mm

Ê 

Ë 
Á ˆ 

¯ 
˜ -2 r

b
Ê 
Ë 

ˆ 
¯ - hm -1( )a3

b
r

Ê 
Ë 

ˆ 
¯ + c3

b
r

Ê 
Ë 

ˆ 
¯ 

3Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

sin 2q

where all other displacements are equal to zero, and

hk = 3 - 4 nk k={f,g,m} (4.19)

The displacement equations (4.16)-(4.18) contain eight unknown displacement
constants, namely, {a1, d1, a2, b2, c2, d2, a3, c3}.  To determine these constants the appropriate
boundary conditions again must be satisfied.  These eight boundary conditions for the case
of a transverse shear loading are as follows:
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ur
f = ur

g ;uq
f = uq

g at r=a

ur
g = ur

m ;uq
g = uq

m at r=b (4.20)

srr
f = srr

g ;srq
f = srq

g at r=a

srr
g = srr

m ;srq
g = srq

m at r=b

Since the procedure to determine the displacement constants is analogous to that
described in the previous section, it will only be briefly highlighted here.  The necessary
strain-displacement relations are given below,

err =
∂ ur
∂r

erq =
1
2

r ∂

∂ r
uq

r
Ê 
Ë 

ˆ 
¯ +

1
r

∂ur
∂q

Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

(4.21)

eqq =
1
r

∂uq

∂q
+ ur

Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

Once the strains in each phase are determined, Hooke’s Law is employed to determine the
stresses in each phase.  After lengthy manipulations, the stresses in each phase can be
written as

srr
f = F f 2m f 3a1 hf - 3( )r2

b3 +
d1
b

Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

+ lf 6a1 hf -1( )r2

b3

Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

È 

Î 
Í 

˘ 

˚ 
˙ cos2q

sqq
f = Ff 2 mf 3a1 hf +1( )r2

b3 -
d1
b

Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

+ lf 6a1 hf -1( )r2

b3

Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

È 

Î 
Í 

˘ 

˚ 
˙ cos2q (4.22)

srq
f = Ff 2m f 6a1 r2

b3 -
d1
b

Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

È 

Î Í 
˘ 

˚ ˙ sin2q
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srr
g = F g cos2q 2 mg 3a 2 hg - 3( )r2

b3 +
d2
b

-
c2 hg +1( )b

r2 -
3b2 b3

r4

Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

È 

Î 
Í 

˘ 

˚ 
˙ 

+ Fg cos2q lg 6a2 hg -1( )r2

b3 -
2c2 hg -1( )b

r2

Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

È 

Î 
Í 

˘ 

˚ 
˙ 

sqq
g = Fg cos2q 2mg 3a2 hg +1( )r2

b3 -
d2
b

+
c2 3 - hg( )b

r2 +
3b2 b3

r4

Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

È 

Î 
Í 

˘ 

˚ 
˙ 

+ Fg cos2q lg 6a2 hg -1( )r2

b3 -
2c2 hg -1( )b

r2

Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

È 

Î 
Í 

˘ 

˚ 
˙ 

(4.23)

srq
g = Fg sin2q 2mg 6a2 r2

b3 -
d2
b

-
2c2 b

r2 -
3b2 b3

r4
Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

È 

Î Í 
˘ 

˚ ˙ 

srr
m = F m cos2q 2mm 2

b
- a3

hm +1( ) b
r2 -

3c3 b3

r4

Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

+ lm 2a3 1- hm( )b
r2

Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

È 

Î 
Í 

˘ 

˚ 
˙ 

         sqq
m = Fm cos2q 2mm -

2
b

+ a3
3 - hm( )b

r2 +
3c3 b3

r4

Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

+ lm 2a3 1 - hm( )b
r2

Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

È 

Î 
Í 

˘ 

˚ 
˙ (4.24)

srq
m = Fm sin 2q 2 mm -

2
b

-
2a3 b

r2 -
3c3 b3

r4
Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

È 

Î Í 
˘ 

˚ ˙ 

where
F k =

bso
4mk k={f,g,m} (4.25)

Plugging the suitable displacement and stress expressions into the boundary
conditions of (4.20), one has the system of eight equations given below with which to
determine the eight unknown displacement constants (where a=b/a):
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mg a1 hf - 3( ) + d1 a2[ ] = m f a2 hg -3( ) + d2 a2 + c2 hg +1( )a4 + b2 a6[ ]
mg a1 hf + 3( ) - d1 a2[ ] = m f a2 hg +3( ) - d2 a2 - c2 hg - 1( )a4 + b2 a6[ ]

mm a2 hg - 3( ) + d2 + c2 hg +1( ) + b2[ ] = mg 2 + a3 hm + 1( ) + c3[ ]
mm a2 hg + 3( ) - d2 - c2 hg -1( ) + b2[ ] = mg -2 - a3 hm -1( ) + c3[ ] (4.26)

2mg m f 3a1 hf - 3( ) + d1a 2{ } + mg lf 6a1 hf - 1( ){ } = 2mg mf

* 3a2 hg - 3( ) + d2 a2 - c2 hg +1( )a4 - 3b2 a6{ } +

m f lg 6a2 hg -1( ) - 2c2 hg -1( )a 4{ }

6a1 - d1a2 = 6a2 - d2 a2 - 2c2 a4 - 3b2 a6

2mm mg 3a2 hg - 3( ) + d2 - c2 hg +1( ) -3b2{ } + mmlg 6a2 hg - 1( ) - 2c2 hg -1( ){ } =

2mm mg 2 - a3 hm +1( ) - 3c3{ } + mg lm 2a3 1- hm( ){ }
6a2 - d2 - 2c2 -3b2 = -2 - 2a3 -3c3

These stress fields can be converted to Cartesian coordinates via

sxx
k = srr

k cos2 q + sqq
k sin2 q - 2 srq

k sinqcosq

syy
k = srr

k sin2 q + sqq
k cos2 q + 2srq

k sinqcosq k={f,g,m} (4.27)

sxy
k = (srr

k - sqq
k )sinq cosq + srq

k (cos2 q - sin2 q)

As an additional check, one can verify algebraically that the following condition is satisfied,

sxx
m |rÆ• = -so, syy

m |rÆ• = so (4.28)
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Similar to the procedure of the preceding section, one is now in a position to define
stress-concentration scalars, WTS

k , which relate the phase-average stresses in the included
phases to the far-field applied stress, so ,

s xx
k = -WTS

k so , s yy
k = WTS

k so k={f,g} (4.29)

Explicit expressions for these factors are given below,

WTS
f = -

3a1 a2

2 b2 +
d1
2

(4.30)

WTS
g = -

3a2 (b2 + a2 )
2b2 +

d2
2

(4.31)

Now that the stress-concentration factors, relating the applied far-field stress to the
average stresses in the included phases, have been determined for the transverse shear
loading auxiliary problem, we are ready to consider the superposition of the two auxiliary
problems.  This will be the topic of the next section.

4.5  THE EFFECTIVE TRANSVERSE YOUNG’S MODULUS OF THE COMPOSITE

We have analyzed the auxiliary problems of Figure 4.2 in the previous two sections
and are now prepared to superpose the solutions.  Using the definitions of the stress-
concentration factors given in (4.14)-(4.15) and (4.30)-(4.31), and further assuming that the
far-field stress which the fiber-interphase inclusion will experience will be the average stress
in the matrix phase, s yy

m , the average stress components in the fiber and interphase region of
the composite can be written as

s yy
k = WTT

k + WTS
k( )s yy

m k={f,g} (4.32)

s xx
k = WTT

k - WTS
k( )s yy

m k={f,g} (4.33)

s zz
k = WLT

k s yy
m k={f,g} (4.34)
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Enforcing that the sum of the average phase stresses in the y-direction must equal the
applied far-field stress, 2 so , due to the superposition of the auxiliary problems (see Figure
4.1), yields

2 so = ck s yy
k

k
Â = cm s yy

m + cf s yy
f + cg s yy

g

= cm s yy
m + cf WTT

f + WTS
f( )s yy

m + cg WTT
g + WTS

g( )s yy
m

k={f,g,m} (4.35)

where cf and cg are the normalized areas of the included phases and cm = 1 – cf – cg.  Solving
for the average y-component of matrix stress in the composite material,

s yy
m =

2so
cm + cf WTT

f + WTS
f( ) + cg WTT

g + WTS
g( )

(4.36)

Likewise, the average x-component of stress in the matrix can be found by enforcing that
the overall average stress in this direction equal zero,

s xx
m = -

cf WTT
f - WTS

f( ) + cg WTT
g - WTS

g( )
cm

s yy
m (4.37)

Assuming plane strain loading conditions, the average phases stresses in the z-direction are

s zz
k = nk s xx

k + s yy
k( ) k={f,g,m} (4.38)

We are now in a position to evaluate the transverse Young’s modulus of the
composite.  Consider the expression

e yy =
s yy

ET = ck
k
Â e yy

k (4.39)
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where e yy  is the overall composite strain in the y-direction, s yy  is the applied far-field
stress in the same direction, and ET is the effective transverse Young’s modulus of the
composite.  For the superposition problem considered here, s yy = 2so  such that (4.39) can
be rewritten

2 so
ET = cf e yy

f + cg e yy
g + cm e yy

m (4.40)

Since all phase average stresses have now been determined, the average strain in the phases
can be found using Hooke’s Law,

e yy
k =

1
2mk s yy

k - nk s xx
k + s yy

k + s zz
k( ){ } k={f,g,m} (4.41)

where nk  are the poisson ratios of the isotropic phase materials.  Appropriate substitution
into the two expressions above, using the average phase stresses, allows for the numerical
calculation of the transverse Young’s modulus of the composite.  This expression is too
unwieldy to present in its algebraic form.

As a final note, Benveniste uses the stress-concentration scalars determined
previously to calculate the effective transverse shear modulus, mT , of the composite.
Following a procedure similar to that of this section, the transverse shear modulus of the
composite can be written (Benveniste, Dvorak et al. 1989),

1
2mT =

cm
1

2mm + cf
1

2m f WTS
f + cg

1
2mg WTS

g

cm + cfWTS
f + cgWTS

g (4.42)
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4.6  THE EFFECTIVE AXIAL SHEAR MODULUS OF THE COMPOSITE

A similar, albeit easier, derivation will yield the axial (or longitudinal) shear modulus
of a three phase composite.  Because it follows a procedure identical to that of the preceding
sections, only an abbreviated presentation will follow.

Figure 4.3.  Auxiliary geometry for the axial shear modulus.

First, consider the associated auxiliary problem of Figure 4.3.  A suitable
displacement field for the auxiliary problem can be written as

uz
f = Af r sin q (4.43)

uz
g = Ag r +

Bg

r
Ê 
Ë 
Á 

ˆ 
¯ 
˜ sin q (4.44)

uz
m = Am r +

Bm
r

Ê 
Ë 

ˆ 
¯ sinq (4.45)

where all other displacements are equal to zero.  The five constants in the above
displacement equations can be determined by enforcing continuity of the uz displacements
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and the srz stresses at the interfaces r=a and r=b, as well as the far-field condition that
syz=so as r tends towards infinity. Similar to the preceding sections, we seek to develop a
relationship between the far-field applied stress, so, and the phase-average stresses in the
auxiliary problem, namely,

s yz
k = WLS

k so k={f,g} (4.46)

The following expression will be necessary to convert from cylindrical to Cartesian stress
components,

syz = srz sin q + sqz cosq (4.47)

Following the outline of earlier sections, the stress-concentration factors WLS
k  of

(4.46) can be determined explicitly,

WLS
f =

mf A f
so

, WLS
g =

mg Ag

so
(4.48)

It can be shown that the unknown average matrix stress can written as

s yz
m =

so
cm + cf WLS

f + cg WLS
g (4.49)

Using this unknown average matrix stress, along with the stress-concentration factors given
in (4.48), it then follows that the effective axial shear modulus of the composite is

mA =
cm + cf WLS

f + cg WLS
g

cm
mm +

cf WLS
f

m f +
cg WLS

g

mg

(4.50)
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4.7  ADAPTATION FOR VISCOELASTICITY

The formulation of this analytical solution for a three-phase composite with a finite
interphase, derived by Benveniste for elastic materials, can be extended to viscoelastic
materials using the correspondence principle.  Similar to Chapter 3.3, this method will only
be highlighted here.

It is first necessary to determine the unknown displacement constants for each of the
auxiliary problems, described in Sections 4.3, 4.4, and 4.6 of this thesis, by satisfying the
appropriate boundary conditions.  To use these equations in the transformed domain it will
be necessary to replace all elastic phase moduli by the corresponding complex moduli as
discussed in Chapter 2 of this thesis.  In the Fourier domain, this will cause the
displacement constants to be complex in nature.  Standard math packages (such as Matlab)
which permit complex algebra should suffice to solve for these unknown parameters.

Once the displacement constants have been determined, one can proceed directly to
the definitions of the stress-concentration factors (i.e. WTT

k , WLT
k , etc.) presented in this

chapter.  Simply substitute the complex phase moduli for the elastic phase moduli given in
these formulas.  These stress-concentration factors may also be complex in the Fourier
domain.  Completing the final steps of Sections 4.5 and 4.6, the effective moduli of the
viscoelastic composite will be given in complex form, where the real and imaginary
components are the storage and loss moduli as presented in Chapter 2.  The results of this
formulation will be presented in Chapter 6.



56

5.  FINITE ELEMENT ANALYSIS

5.1  INTRODUCTION

A detailed finite element analysis (FEA) was undertaken on the unit cell models of
Figures 5.1 and 5.2.  The mesh was continually refined until a convergent solution was
found.  An hexagonal array of inclusions was used for the FEA to provide the exact
numerical solution for a transversely isotropic composite.  Although the analytical methods
used in this thesis assume a random array of inclusions, the overall composite medium in
these models also acts as a transversely isotropic material; thus we believe that comparisons
between the micromechanical models and the FEA are warranted.  Although stress fields
and related localized phenomena (such as plasticity and failure initiation) are very dependent
on the inclusion arrangement, it has been shown that the effective properties of composite
materials are largely independent of inclusion packing (Ostoja-Starzewski, Alzebdeh et al.
1995).  The results of this section will provide a baseline by which the accuracy of the two
micromechanical methods presented earlier in this thesis may be judged.

Because it is assumed that the reader is familiar with the finite element method for
elastic materials, this chapter will only focus on those changes necessary to modify an
elastic finite element code for use with a viscoelastic boundary value problem.  Haoran and
co-workers (1995) have used the self-consistent method of Benveniste to develop an
interphase element for use in an elastic self-consistent finite element analysis.  This was
done to prevent numerical difficulties which may arise if the interphase is sufficiently stiff.
Since such difficulties were not encountered here, these special interphase elements were not
used in this thesis.  Other interphase elements have been developed to model imperfect
bonding between phases (Gosz, Moran et al. 1991).

The Finite Element Analysis Package (FEAP), developed at Berkeley (Taylor 1982)
and later modified at Brown University, was used for this work.  It was chosen because it is
an academic package with an available source code; it is written in a segmented structure
which allows for straightforward modification of the program.  The FEA work done in this
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thesis extends the work of Brinson and co-workers (Brinson 1990; Brinson and Knauss
1992; Brinson and Lin 1998) for two phase viscoelastic materials.

Meshing was done using the FASTQ mesh generation program.  The output from
this program was input into FEAP for the numerical calculations.  The mesh was
continuously refined until the convergence of the FEA solution was established.  A sample
mesh can be found in Appendix A.1.

5.2  FINITE ELEMENT FORMULATION FOR VISCOELASTIC ANALYSIS

Consider the two-dimensional unit cell analysis of a three phase composite
consisting of a circular fiber surrounded by an annular interphase and embedded in a
matrix.  Perfect bonding is assumed between phases.  The unit cells are shown in Figures
5.1 and 5.2 for cases of transverse normal and transverse shear loading, respectively.  The
boundary conditions placed on these unit cells are given in (5.15) and (5.19).  For these
models the fiber-interphase inclusions are arranged in a hexagonal array, as is appropriate to
represent the transversely isotropic behavior of the composite material (Lin 1996).  Whereas
the fiber is an isotropic, elastic material, the matrix and interphase materials may be
viscoelastic in nature, as outlined in Chapter 2.

Analogous to an elastic FEA, we wish to write the equilibrium equations for the
viscoelastic formulation in the form

 K [ ]e u + f = 0 (5.1)

where K [ ]e  represents the transformed element stiffness matrix, u  is a vector containing
nodal displacements, f  is the vector of nodal forces, and (• )  denotes the transformed
quantities discussed below.
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Figure 5.1.  Unit cell analysis of a three-phase composite – transverse Young’s
modulus.

Figure 5.2.  Unit cell analysis of a three-phase composite – transverse shear
modulus.
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We will assume that the time-dependent displacements can be written in separable
form as

ui (x , t) = ˆ u i (x,w)eiwt (5.2)

where x is the position vector.  Taking the Fourier transform of (5.2) provides the
transformed displacements

u = ˆ u i (x,w) (5.3)

The two-dimensional strain vector can be defined as

e = B[ ]u =

e 11
e 22
e 33
e 23

Ï 

Ì 
Ô 
Ô 

Ó 

Ô 
Ô 

¸ 

˝ 
Ô 
Ô 

˛ 

Ô 
Ô 

(5.4)

where B[ ] is a matrix comprised of the derivatives of the shape functions.  As in the elastic
formulation, defining the strain in this manner permits the elemental stiffness matrix of (5.1)
to be defined as

K [ ]e
= B[ ]T

Ve
Ú D [ ] B[ ] dVe (5.5)

where V e  is the volume of the element.  For a linear viscoelastic analysis one may write the
governing constitutive equations

s = D [ ]e (5.6)

where s  is the stress vector corresponding to the strain vector defined earlier.

It is now necessary to determine the form of D [ ]  above.  The deviatoric (sij, eij) and
dilitational (sk k, ek k) components of the stress and strain tensors were written in terms of
time-dependent properties for viscoelastic materials in (2.2).  Implementing the
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correspondence principle, the transform of these equations in the Fourier domain are given
below,

s ij = s ij -
1
3

s kk dij

(5.7)
e ij = e ij -

1
3

e kk d ij

Further, given a linear, isotropic viscoelastic material, the constitutive laws of the phase
materials can be written as

s ij(w) = 2i w G (w)e ij
(5.8)

s kk (w) = 3iw K (w) e kk

where s ij , e ij , s kk , and e kk  are the transformed stress and strain fields, and G (w)  and
K (w)  are the half-sided Fourier transform of the shear and bulk moduli.  For a more
explicit derivation, please refer to Chapter 2.

The dilitational and deviatoric components of the stresses in (5.8) can be
recombined using (5.7) to yield

s ij = 2 iw G (w) e ij + i w K (w) -
2
3

G (w)Ê 
Ë 

ˆ 
¯ e kk dij (5.9)

Using (5.9), the constitutive law in (5.6) can now be written in the transformed domain as
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(5.10)

where the 4 x 4 matrix in (5.10), referred to as D [ ] , may be written in terms of real and
imaginary components,
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D [ ] = D[ ]Re + i D[ ]Im (5.11)

Upon substitution, the element stiffness matrix of (5.5) can now be written in the
transformed domain as

K [ ]e
= B[ ]T D [ ]

Ve
Ú B[ ] dVe

= B[ ]T D[ ]Re + i D[ ]Im{ }
Ve
Ú B[ ] dVe

= ˆ K [ ]Re

e
+ i ˆ K [ ]Im

e

(5.12)

Note that B does not contain complex quantities. It is necessary, however, to reformat the B
matrix in a manner different from an elastic analysis in order to account for the extra
degrees of freedom required by the real and imaginary components of the other matrices.

Upon substitution of the above results into (5.1), one can now write the equilibrium
equations in the transformed domain as

ˆ K [ ]Re

e
+ i ˆ K [ ]Im

eÏ 
Ì 
Ó 

¸ 
˝ 
˛ 

u Re + i u Im{ } + f Re + i f Im{ } = 0 (5.13)

or, in matrix form,
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(5.14)

where the second row of (5.14) has been multiplied by (–1) so that the stiffness matrix is
symmetric.  Note that (5.14) is analogous to the elastic form of the FEA solution, except
that the number of degrees of freedom have been doubled and quantities may be complex.
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The FEAP code was modified in such a way to permit the solution of (5.14) for a
series of frequencies (in the preceding derivation the dependence of the solution on the
frequency w was not written explicitly).  The input procedure of the FEAP code was
extended to allow for time-dependent material properties, and the dimensions of certain
matrices were altered to account for complex quantities.  Implementing the results of this
section, a complete profile of various effective storage and loss moduli may now be
determined over a wide range of frequencies.

The FEAP code was also modified to enable physical aging of the constituent
phases of the composite, following the work of Chapter 2.4.  This procedure was
straightforward and will not be discussed here.  The remaining two sections of this chapter
discuss the specifics of modeling the transverse normal and transverse shear problems.
Results obtained using these finite element models will be given in Chapter 6.
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5.3  TRANSVERSE YOUNG’S MODULUS

The unit cell and boundary conditions necessary to model the transverse Young’s
modulus of the composite shown in Figure 5.1 are given below,

u x = 0 T y = 0 on x = 0
u y = 0 T x = 0 on y = 0 (5.15)
u x = - b T y = 0 on x = W
u y = u o + 0 i T x = 0 on y = L

W = 3 L

To modify the boundary conditions for the viscoelastic domain, replace the time-
dependent boundary conditions uy = uo eiwt  and ux = -beiwt  with the transformed
boundary conditions u y = u o , u x = -b  as in Figure 5.1.  Note that the second boundary
condition, the prescribed displacement at x=W, will be used to ensure that the right hand
side of the unit cell remains straight and parallel.  For a hexagonal array, W = 3 L .

The displacement b  is chosen in an iterative fashion such that a suitable b  is
determined which satisfies the condition

T x dy
0

L

Ú = 0 at x=W (5.16)

where T x  are the resultant nodal tractions on the right hand side of the unit cell.  First, an
arbitrary displacement b  is chosen and the resulting average T x  calculated.  This value of
T x  is then used to determine the value of b  necessary such that (5.16) is satisfied.  In
general b  will be complex.  This provides boundary conditions which are consistent with
those shown in Figure 5.1.  Other methods which can be employed in order for the FEA to
satisfy (5.16) are discussed in the literature (Brinson and Knauss 1992).

To determine the effective transverse Young’s modulus of the composite, the
average resulting normal stress, s y,ave , was obtained by summing the resultant nodal forces
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at y=L and dividing by the area of the top face of the unit cell.  The applied normal strain
prescribed across the top face of the unit cell is given by

e y =
u o
L

(5.17)

The effective complex transverse Young’s modulus of the composite is then calculated as

E T* (w) = i w E (w) ≡
s y,ave

e y
(5.18)

5.4  TRANSVERSE SHEAR MODULUS

The unit cell necessary to model the transverse shear modulus of the composite is
shown in Figure 5.2.  The boundary conditions specified on this unit cell are given below
(Brinson 1990),

u y = 0 T x = 0 on x = 0
u x = 0 T y = 0 on y = 0 (5.19)
u y = 0 T x = 0 on x = W
u x = u o + 0 i T y = 0 on y = L

W = 3 L

Solution of this problem is more straightforward in that it does not entail iteration to provide
suitable boundary conditions.  Applying a uniform displacement across the top face of the
unit cell, the shear modulus is determined via

G T*(w) = i w G (w) ≡
s xy,ave

g xy
(5.20)

where s xy,ave(w)  is the sum of the resultant nodal forces along the top face of the unit cell
in the x-direction divided by the width of the unit cell, and g xy ≡

u o
L .
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6.  RESULTS AND DISCUSSION

6.1  INTRODUCTION

The analytical models discussed in the previous sections were used to predict the
effective behavior of composites as a function of the properties and volume fraction of the
interphase.  The results of the investigation will be presented below, along with a
comparison of the results obtained from a finite element analysis following the outline of
Chapter 5.  Although it would be impractical to present every possible composite
configuration in this thesis, these results should provide insight as to the ability of the
analytical models to capture the mechanical behavior of the composites as predicted by the
more extensive FE analysis.

6.2  APPROPRIATE USE OF BOUNDS FOR SOLUTIONS

The storage and loss components of the transverse Young’s modulus of a
composite consisting of 30% elastic fiber, 10% stiff interphase, and 60% soft matrix are
shown in Figures 6.1 and 6.2.  (Here and throughout this chapter, “stiff” (or “soft”)
refers to a constituent phase with materials properties of the “stiff” (or “soft”) idealized
polymers of Chapter 2.)  Included in the figures are the standard Reuss and Voigt bounds
(i.e. the Rule of Mixtures) for the given composite configuration.  As one can see from
Figure 6.2, the loss moduli solutions appear to violate these bounds at certain frequencies,
particularly those intermediate of the high frequency (glassy) and low frequency (rubbery)
domains.  This behavior was typical of all of the material properties and composite
configurations investigated in this thesis.

This apparent discrepancy is caused by the fact that these bounds are not in fact
valid in the frequency domain.  Schapery (1967) notes that, for composites with isotropic
phase materials, the corresponding bounds from elasticity are valid on the “operational
moduli” of the composite.  These operational moduli are the analog of the complex moduli
discussed in this thesis when the Laplace (rather than the Fourier) transform is
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Figure 6.1.  Calculated transverse Young’s storage moduli for a composite with
30% elastic fiber, 10% stiff interphase, 60% soft matrix.

Figure 6.2.  Calculated transverse Young’s loss moduli for a composite with 30%
elastic fiber, 10% stiff interphase, 60% soft matrix.
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Figure 6.3.  Operational modulus satisfies bounds in Laplace domain (phase
properties same as those of Figures 6.1 and 6.2.)

used within the context of the dynamic correspondence principle to formulate the
viscoelastic solution.  Note that when formulated in the Laplace domain, the composite
moduli are real numbers only.

Figure 6.3 shows that the predicted Benveniste operational moduli for the same
composite configuration shown in Figures 6.1 and 6.2; it does indeed fall within the
Reuss/Voigt bounds in the Laplace domain.  While the Reuss/Voigt bounds and the tighter
HSW bounds (not shown) are valid for multiphase composites with aligned, identically
shaped inclusions (as is the case in this thesis), these bounds may not hold for multiphase
composites with inclusions of different shapes (Qui and Weng 1990).

The material properties in the frequency domain, namely the storage and loss
moduli, provide physical insight into the mechanical behavior of the composite.  Thus, the
models studied in this thesis will be analyzed almost exclusively in this domain, and the
discussion of bounds for these solutions will not be continued.  Gibiansky and co-workers
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(1993; 1993) have developed methods for developing appropriate bounds for a viscoelastic
composite material in the Fourier domain; however, their work to date is limited to two
phase materials, and they have obtained solutions for only a limited number of mechanical
properties.

6.3  COMPARISON OF MODEL PREDICTIONS

The results of the numerical simulations for the overall composite mechanical
behavior as a function of interphase properties and volume fractions are presented.  All
cases presented in this thesis assume an elastic fiber with the mechanical properties given in
Chapter 2; this was done in an effort to isolate the effects of the interphase on the overall
composite behavior.  Figures 6.1 and 6.2 indicate that the Mori-Tanaka and the Benveniste
solutions are in very good agreement for this particular configuration.  Additional results are
presented for the following cases:

• 30% elastic fiber, 10% soft interphase, 60% stiff matrix (Figures 6.4 and 6.5)
• 60% elastic fiber, 10% stiff interphase, 30% soft matrix (Figures 6.6 and 6.7)
• 60% elastic fiber, 10% soft interphase, 30% stiff matrix (Figures 6.8 and 6.9)

Figures 6.10-6.13 show frequency domain plots (for the storage moduli only) comparing
analytical and FEA solutions for the transverse shear modulus.  Since the results for the
transverse shear modulus are similar to those for the transverse Young’s modulus, a detailed
discussion of the former will not be included.

Analysis of the transverse Young’s modulus results shows that the Benveniste and
Mori-Tanaka solutions are practically identical for those composites where the matrix is the
softest of the three phase materials.  While the results of these two methods agree quite well
with the detailed finite element analysis for low volume fraction of inclusions, the solutions
drift from the FEA analysis as the inclusion volume fraction is increased.  This is consistent
with the fact that both micromechanical methods are derived using the analysis of a single
inclusion within an infinite medium; as the concentration of
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Figure 6.4.  Transverse Young’s storage modulus for a composite with 30% elastic
fiber, 10% soft interphase, 60% stiff matrix.

Figure 6.5.  Transverse Young’s loss modulus for a composite with 30% elastic
fiber, 10% soft interphase, 60% stiff matrix.
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Figure 6.6.  Transverse Young’s storage modulus for a composite with 60% elastic
fiber, 10% stiff interphase, 30% soft matrix.

Figure 6.7.  Transverse Young’s loss modulus for a composite with 60% elastic
fiber, 10% stiff interphase, 30% soft matrix.
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Figure 6.8.  Transverse Young’s storage modulus for a composite with 60% elastic
fiber, 10% soft interphase, 30% stiff matrix.

Figure 6.9.  Transverse Young’s loss modulus for a composite with 60% elastic
fiber, 10% soft interphase, 30% stiff matrix.
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Figure 6.10.  Transverse shear storage modulus as a function of frequency for 30%
fiber, 10% stiff interphase, 60% soft matrix composite.

Figure 6.11.  Transverse shear storage modulus as a function of frequency for 30%
fiber, 10% soft interphase, 60% stiff matrix composite.



73

Figure 6.12.  Transverse shear storage modulus as a function of frequency for 60%
fiber, 10% stiff interphase, 60% soft matrix composite.

Figure 6.13.  Transverse shear storage modulus as a function of frequency for 60%
fiber, 10% soft interphase, 60% stiff matrix composite.
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inclusions is increased one might expect that these methods may fail to accurately model the
complex state of particle-particle interaction.

However, the analytical results for the transverse Young’s modulus are not as
accurate for those trials where the interphase is the softest of the three materials.  In these
instances, there is also a large discrepancy between the two analytical models (as seen in
Figures 6.4, 6.5, 6.8, and 6.9), with the values calculated from the FEA falling between these
two methods.  It is surprising that the frequency-dependence of the Benveniste solution, for
the case of a soft interphase, is dominated by the interphase material (most explicitly seen in
the loss modulus), even though it is a non-continuous phase of small volume fraction within
the composite.  This suggests that there is a serious defect in the Benveniste when the
interphase is the softest material.  The Mori-Tanaka solution, even though it does not model
the physical geometry of the problem, seems to better approximate the behavior of the
moduli.  Since the Benveniste method always predicts moduli lower than the corresponding
FEA results, we conclude that the Benveniste method inaccurately models the influence of
the interphase on the stress transfer between the fibers and matrix.  This discrepancy is
magnified in those cases where the interphase is the softest material.  Nonetheless, the
Benveniste model may be useful from a design perspective in that it always provides
conservative estimates of the composite moduli.

It is interesting to note that, in the high frequency regime where the material may be
expected to exhibit “pseudo-elastic” (glassy) behavior, the Benveniste model does seem to
provide an adequate, if not rigorous, approximation for the transverse Young’s modulus as
predicted by the FEA.  However, the Benveniste model does not do well in predicting the
low frequency (“rubbery elastic”) effective moduli.  Thus although it may at first seem that
the Benveniste model provides satisfactory solutions in the psuedo-elastic regime, this
conclusion is probably flawed due to the limited number of composite configurations tested
(see Appendix A3).  While the Benveniste solution for elastic composites may be very
accurate in predicting composite moduli for some cases, blanket use of the Benveniste
method for a random composite (particularly one with a soft interphase) may provide poor
estimates for the composite moduli.
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On the other hand, the Mori-Tanaka method, even though it does not account for the
physicality of the annular interphase, may do a better job in modeling the composite moduli.
It at least seems to captures the “matrix-dominated” aspect of the viscoelastic properties.
Because it treats the fiber and interphase as separate inclusions, the MT method overpredicts
the effective moduli when the interphase is the stiff VE material and underpredicts the
composite moduli when the interphase is the soft VE material.  Since the interphase is
physically separate from the fiber inclusion it does not effect the stress transfer to the fiber.
The Benveniste model was noted to always underpredict the effective composite moduli.

To better show the relationship between the predicted transverse Young’s moduli of
the composite with changing volume fraction of inclusion, Figures 6.14-6.17 show results
as a function of fiber volume fraction at a constant interphase fraction of 10% and fixed
frequencies of 100 (high frequency / glassy behavior), 1E-3 (mid frequency / transition
region), and 1E-7 (low frequency / rubbery behavior), respectively.  Again, two trends are
noticeable from the limited data in these figures; namely, that both micromechanical
solutions provide adequate approximations in those instances where the matrix is the softest
material, and that the predictions seem more accurate for lower volume fraction of
inclusions.  The high accuracy in the glassy domain is believed to be caused by the
fortuitous selection of material properties for the constituent phases.  For those composites
where the interphase is the softest material, both micromechanical methods are not effective
in predicting the effective transverse Young’s moduli in the transition region (w = 1E-1 ~
1E-4 ) and at low (w = 1E-7) frequencies, when compared to the FEA results.

Finally, trials were run to determine the role of the interphase volume fraction on the
accuracy of the analytical models.  These results are shown in Figures 6.20-6.25 as a
function of interphase volume fraction for fixed fiber volume fractions of 30% and
frequencies of 100 (glassy elastic behavior), 1E-3 (transition region) and 1E-7 (rubbery
elastic behavior).  Once again, the two trends that have been noted previously are
apparent:  the predictions from the analytical models are very poor in those cases where
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Figure 6.14.  Complex transverse Young’s moduli versus cf with 10% stiff
interphase and soft matrix material at a frequency of 100.
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Figure 6.15.  Complex transverse Young’s moduli versus cf with 10% soft
interphase and stiff matrix material at a frequency of 100.
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Figure 6.16.  Complex transverse Young’s moduli versus cf with 10% stiff
interphase and stiff matrix material at a frequency of 1E-3.

Figure 6.17.  Complex transverse Young’s moduli versus cf with 10% soft
interphase and stiff matrix material at a frequency of 1E-3.
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Figure 6.18.  Complex transverse Young’s moduli versus cf with 10% stiff
interphase and soft matrix material at a frequency of 1E-7.

4

3

2

1

0

lo
g 

m
od

ul
us

6050403020

volume fraction of fiber

 FEM            
 Benveniste
 Mori-Tanaka

 FEM  
 Benveniste
 Mori-Tanaka'

soft interphase
FREQ = 1E-7

Storage Moduli

Loss Moduli

Figure 6.19.  Complex transverse Young’s moduli versus cf with 10% soft
interphase and stiff matrix material at a frequency of 1E-7.
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Figure 6.20.  Complex transverse Young’s moduli versus cg with 30% fiber, stiff
interphase, and soft matrix material at a frequency of 100.

Figure 6.21.  Complex transverse Young’s moduli versus cg with 30% fiber, soft
interphase, and stiff matrix material at a frequency of 100.
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Figure 6.22.  Complex transverse Young’s moduli versus cg with 30% fiber, stiff
interphase, and stiff matrix material at a frequency of 1E-3.

Figure 6.23.  Complex transverse Young’s moduli versus cg with 30% fiber, soft
interphase, and stiff matrix material at a frequency of 1E-3.
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Figure 6.24.  Complex transverse Young’s moduli versus cg with 30% fiber, stiff
interphase, and soft matrix material at a frequency of 1E-7.

Figure 6.25.  Complex transverse Young’s moduli versus cg with 30% fiber, soft
interphase, and stiff matrix material at a frequency of 1E-7.
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the interphase is the softest material, while the predictions are relatively close for
those composites where the matrix is the softest material.

The accuracy of the analytical models slightly decreases as the interphase volume
fraction is increased.  However, the FEA results indicate that the effective composite moduli
are largely independent of the volume fraction of the interphase (exceptions being the loss
moduli in Figures 6.23 and 6.25).  These results are contrary to the results obtained using a
composite cylinders approach (Li and Weng 1996).  This suggests that a highly accurate
knowledge of the interphase volume fraction is not necessary to determine the effective
composite behavior.  It is worth noting that in the limiting case where the volume fraction of
interphase is zero, the Mori-Tanaka and Benveniste solutions are identical.  This is because
both solutions use an identical “average stress in the matrix” argument to account for the
interaction between inclusions.

6.4 STRESS PROFILES IN THE PHASES

We next sought to determine possible reasons why the analytical models and the FEA
results drastically differ for some of the composite configurations.  One manner to analyze
the differences between the methods is to examine the stress fields which each method
predicts.  This was done by examining the stresses along a particular line of the unit cell for
the FEA, and comparing those results to the average phase stresses predicted by the
Benveniste solution.

For other comparisons, the phase-averaged stresses obtained through the FEA were
determined.  These stresses were calculated by finding the area of each element used in the
FEA, and then implementing the formula

ˆ s ij
k =

s ij
k An

k

n
Â

An
k

n
Â

   k={f,g,m} (6.1)
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where   
) 
s ij

k  is the phase average of the stress component s ij  for phase k, A n
k  is the nth

elemental area of phase k, and the summations are implied over all elements of a particular
phase.

For the Benveniste solution, the procedure was somewhat more complicated.  Once
the phase averaged stress within the matrix was determined via FEA, this value was back-
substituted to determine the appropriate far-field stress so  of the auxiliary problem
necessary to provide the same value for the phase-average matrix stress.  This was done to
simplify the stress-field comparisons between models.  Note that the effective moduli are
independent of the applied stress in the auxiliary problem.

Using this procedure, the syy  stress profiles along the unit cell at y=0 were plotted
with the corresponding average stress values found via the Benveniste method.  For practical
purposes, the stress values at the centroid of those elements where the centroid was within a
certain (small) distance from y=0 were plotted.  These results are shown (for the real
component of the stress only) in Figures 6.26-6.29 for different composite configurations.
The fiber and interphase volume fractions were maintained at 30% and 10%, respectively.

We see that the stress profiles obtained via the FEA are far from uniform within the
phases (which is contrary to the main assumption used in the Benveniste analysis).
Nonetheless, in those cases where the matrix is the softest of the constituent materials, the
phase averages obtained from the Benveniste solution seem to approximate the FEA
solution.  This, however, is obviously not the case when the interphase is the softest of the
three phases, as seen in Figures 6.28 and 6.29 for frequencies of 100 and 1E-7,
respectively.  Here, and in Table 6.1, we see that the FEA solution suggests that the syy

stress components of the interphase experience a significant decrease in magnitude.
However, this feature is not captured in the Benveniste solution, which may be one reason
why the Benveniste analysis provides such a poor approximation in those cases where the
interphase is the softest of the three phase materials.

To further show the difference between the calculated phase average stress values
between the Benveniste solution and the FEA, Table 6.1 compares these values for several
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different composite configurations.  All results compiled in this table are for an interphase
volume fraction of 10% and an elastic fiber.  Selected data from this table are displayed in
graphical form in Figures 6.30 to 6.33.  The data in these figures were normalized with
respect to the phase average matrix stresses.  In all cases where the interphase is the stiff VE
material the phase average sy y stresses in the included phases determined via the Benveniste
model are less than those calculated via FEA.  The opposite is true for the composite
configurations where the interphase is the soft VE material.

Contour plots showing the variation of the real component of the syy  stress
throughout the unit cell under a transverse normal load are shown in Figures 6.34 to 6.37
for various composite configurations at a constant frequency of 1E-7.  Note that since the
stress profiles were determined given identical prescribed displacements along the top face
of the unit cell, the magnitudes of the stresses can vary greatly between composite
configurations.

It is interesting to note how the stress profile within the unit cell is dependent on the
composite configuration.  For the trials where the matrix is the softest material, we see that
the location of highest stress within the unit cell is in the matrix phase; this suggests that a
soft interphase material fails to transfer the stress to the load-carrying fibers under
transverse loading.  FEA results on composites where the interphase is the softest material
suggest that compressive stresses can develop in the interphase for this configuration.  This
could impact the material selection process for an engineered interphase.  In all of these
figures we see that the stress-fields in the matrix are non-uniformly distributed, which is
consistent with published results for an elastic analysis of a three phase composite with an
epoxy matrix (Al-Ostaz and Jasiuk 1996).
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Figure 6.26.  Stress profiles along y=0 of unit cell for composite with 30%
fiber, 10% stiff interphase, 60% soft matrix.  Frequency = 100.

Figure 6.27.  Stress profiles along y=0 of unit cell for composite with 30%
fiber, 10% stiff interphase, 60% soft matrix.  Frequency = 1E-7.
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Figure 6.28.  Stress profiles along y=0 of unit cell for composite with 30%
fiber, 10% soft interphase, 60% stiff matrix.  Frequency = 100.

Figure 6.29.  Stress profiles along y=0 of unit cell for composite with 30%
fiber, 10% soft interphase, 60% stiff matrix.  Frequency = 1E-7.



87

f r e q F i be r I n t e r ph . Mat r i x Fiber avg. Interph. avg. Matrix avg.

100 30% elastic 10% stiff 60% soft F E 1503.2+6.21i 1298.5+5.33i 985.0+3.91i

B M 1456.5+6.14i 1190.2+5.07i 985.0+3.91i

1.E-04 '' '' '' F E 10.35+4.76i 8.10+4.05i 6.41+3.05i

B M 9.24+4.41i 6.64+3.32i 6.41+3.05i

1.E-07 '' '' '' F E 5.60+.0336i 4.32+.0349i 3.42+.0213i

B M 4.90+.0309i 3.69+.0210i 3.42+.0213i

100 30% elastic 10% soft 60% stiff F E 4437.5+8.80i 2733.7+6.44i 5744.2+4.40i

B M 5513.7+7.046i 3580.1+4.01i 5744.2+4.40i

1.E-04 '' '' '' F E 213.45+59.60i 109.50+31.88i 530.44+956.97i

B M 538.36+576.17i 371.57+352.02i 530.44+956.97i

1.E-07 '' '' '' F E 60.78+3.06i 27.63+1.39i 53.76+3.53i

B M 72.87+4.47i 54.25+3.30i 53.76+3.53i

100 60% elastic 10% stiff 30% soft F E 2965.05+9.19i 2380.63+7.92i 1805.42+5.81i

B M 2651.8+9.26i 2180.6+7.65i 1805.42+5.81i

1.E-04 '' '' '' F E 40.69+16.28i 26.83+11.80i 21.22+8.83i

B M 29.57+12.39i 22.29+9.53i 21.22+8.83i

1.E-07 '' '' '' F E 23.56+0.170i 15.42+0.122i 12.07+0.0861i

B M 16.72+0.121i 13.30+0.086i 12.07+0.0861i

100 60% elastic 10% soft 30% stiff F E 5415.07+10.88i 3418.69+7.75i 6067.35+6.70i

B M 6246.9+9.48i 4135.9+4.71i 6067.35+6.70i

1.E-04 '' '' '' F E 306.28+83.86i 145.39+27.27i 551.77+589.67i

B M 497.48+218.56i 379.02+145.33i 551.77+589.67i

1.E-07 '' '' '' F E 82.57+3.57i 40.87+1.70i 70.01+4.17i

B M 93.13+5.27i 73.66+4.15i 70.01+4.17i

Table 6.1.  Phase average stresses as a function of composite configuration at
different frequencies.  (FE = finite element results; BE = Benveniste results)
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Figure 6.30. Transverse normal load:  30% fiber, 10% stiff interphase, 60% soft
matrix

Figure 6.31. Transverse normal load:  30% fiber, 10% soft interphase, 60% stiff
matrix
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Figure 6.32. Transverse normal load:  60% fiber, 10% stiff interphase, 30% soft
matrix

Figure 6.33. Transverse normal load:  60% fiber, 10% soft interphase, 30% stiff
matrix



90

Figure 6.34.  Real component of syy
Re  stress distribution.  Phase average stresses:

FEAP (psi):  fiber = 5.60, coating = 4.32, matrix = 3.42
Benveniste (psi):  fiber = 4.90, coating = 3.69, matrix = 3.42

Figure 6.35. Real component of syy
Re  stress distribution.  Phase average stresses:

FEAP (psi):  fiber = 60.78, coating = 27.63, matrix = 53.76
Benveniste (psi):  fiber = 72.87, coating = 54.25, matrix = 53.76
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Figure 6.36. Real component of syy
Re  stress distribution.  Phase average stresses:

FEAP (psi):  fiber = 23.59, coating = 15.42, matrix = 12.07
Benveniste (psi):  fiber = 16.72, coating = 13.30, matrix = 12.07

Figure 6.37. Real component of syy
Re  stress distribution.  Phase average stresses:

FEAP (psi):  fiber = 82.57, coating = 40.87, matrix = 70.01
Benveniste (psi):  fiber = 93.13, coating = 73.66, matrix = 70.01
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6.5 SHIFT RATES FOR MATRIX-DOMINATED PROPERTIES

For PMCs, it has been shown experimentally that different aging shift rates, m2 2 and
m6 6, exist for the transverse Young’s and axial (longitudinal) shear moduli, respectively
(Gates and Feldman 1993; Hastie and Morris 1993; Brinson and Gates 1995).  This is
somewhat surprising since both are typically considered matrix-dominated properties, and
Struik (1978) has demonstrated that the shift rates describing all properties of a single
polymer are identical.  To the author’s knowledge, the origin of the different shift rates for
composite materials has yet to be explained.  Here we will investigate whether the presence
of an interphase with a shift rate different from that of the bulk matrix could account for the
different shift rates under transverse shear and transverse normal loading measured
experimentally.

We will use the finite element methods of this thesis, along with the results obtained
via the analytical solutions, to investigate whether the difference m2 2 and m6 6 can be modeled.
It should be stressed that this investigation is cursory in nature; the 2D finite element code
used here cannot be used to determine the axial shear modulus.  However, the shift rate
describing the transverse shear modulus can be determined numerically using the 2D finite
element code.  Such results will provide an indication of whether interphase effects can
account for the different composite shift rates depending on the loading mode.

Physical aging causes the free volume of the polymeric material to decrease over
time; thus the behavior of the material is a function of initial aging time.  This is typically
manifest as an increase in the stiffness of the material, with a corresponding reduction in
properties such as ductility, as the material undergoes aging.  Figures 6.38-6.41
demonstrate how physical aging affects the calculated transverse Young’s modulus and the
transverse shear modulus of a composite as calculated via the finite element solution.
Unless otherwise indicated, all individual phase shift rates were 0.85 for the interphase and
0.70 for the matrix materials.
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As Figures 6.38-6.41 show, the shape of the curves are not exactly identical for all
aging times shown.  This trend is more noticeable in the loss moduli components at long
aging times, as the curves, when shifted by a suitable amount, do not completely overlap due
to a breakdown in shape.  In order to better demonstrate this effect, the transverse shear loss
moduli curves in Figures 6.42 and 6.43 for an initial aging time tage = 1 have been shifted so
as to best coincide with the moduli curves at other aging times.  Note that when the
interphase is the stiff VE material, the curves superpose very well (Figure 6.42).  The
shifting of the curves is not nearly as straightforward for composite configurations where
the interphase is the soft VE material (Figure 6.43).

In particular, note that while the reference curve in Figure 6.43 has been shifted in
order to superimpose low frequency data, the high frequency ends do not match.  In effect,
this difficulty prevents a unique shift factor from being determined.  The fact that these
curves are not superposable by means of a horizontal shift is indicative of thermo-
rheologically (TRC) complex behavior. Such behavior is also characterized by the
differences in curvature amongst the curves at intermediate frequencies.  This behavior
violates the assumptions necessary to use the standard definitions of shift factor and shift
rate to characterize the aging behavior of the material.

In the first case (Figure 6.42), the aging behavior of the curves is dominated by the
matrix because it is the softest VE material.  In the latter case (Figure 6.43), however, where
the matrix is the stiff VE material, the aging behavior seems to be controlled by two factors:
the aging of the matrix material and the aging of the softest VE material in the composite
(i.e. the interphase).  As a result, one sees the influence of dual factors affecting the physical
aging of the composite.  This is characterized by the spreading of the loss moduli peak,
which is responsible for the inability to simultaneously superpose low and high frequency
portions of the curves.  This type of behavior has been seen in other work on viscoelastic
composites (Brinson and Knauss 1992; Lin 1996).  The present work now indicates that a
relatively small volume fraction of interphase can have a large role in determining the overall
TRC behavior of the composite.
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To circumvent the difficulty of shifting frequency domain moduli, the data were
transformed into the time domain using a linear least squares solver (Bradshaw and Brinson
1997).  The solver found a 20-term Prony series able to reproduce the original complex
moduli with less than 2% total rms error.  Though the behavior of the material in the time
domain is clearly TRC, the errors in shifting these curves are not unlike those which would
be realized in shifting experimental data, where the TRC behavior may be attributed to
experimental error.  Thus these numerical tests are a reasonable model to ascertain if the
interphase is responsible for the different shift rates seen experimentally.

This interconversion minimizes the difficulty in properly shifting the reference curve
to corresponding aged curves which may exhibit TRC behavior.  Figure 6.44 shows the
transverse shear modulus curves of Figure 6.38-6.39 converted to the time domain (again
note that the moduli are real numbers only in the time domain).  A procedure was then
developed to determine the best shift factor for curve superposition.  One difficulty is the
definition of the “best” superposition of curves that are not identically the same

Figure 6.38.  Storage component of the transverse Young’s Modulus at various
initial aging times.  (FEA:  30% elastic fiber, 10% stiff interphase, 60% soft

matrix)
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Figure 6.39.  Loss component of the transverse Young’s Modulus at various initial
aging times.  (FEA:  30% elastic fiber, 10% stiff interphase, 60% soft matrix)

Figure 6.40.  Storage component of the transverse shear modulus at various initial
aging times.  (FEA:  30% elastic fiber, 10% stiff interphase, 60% soft matrix)
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Figure 6.41.  Loss component of the transverse shear modulus at various initial
aging times.  (FEA:  30% elastic fiber, 10% stiff interphase, 60% soft matrix)

Figure 6.42.  Transverse shear loss modulus:  30% fiber, 10% stiff interphase, 60%
soft matrix via FEA.  (solid shapes represent the shifted reference curve)
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Figure 6.43.  Transverse shear modulus:  30% fiber, 10% soft interphase, 60% stiff
matrix via FEA.  (shift factors chosen such that low frequency data was matched.)

Figure 6.44.  Time domain plot of transverse Young’s modulus via FEA:  30%
elastic fiber, 10% stiff interphase, 60% soft matrix.
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Figure 6.45.  Shifting of time domain plots for transverse Young’s modulus (FEA
analysis).  NOTE:  for clarity, the reference curve was shifted to the aged curves.

shape.  This was particularly troublesome for composites with interphases of the soft VE
material, as shown in Figure 6.45.  (Curves where the interphase material was the stiff VE
material, as shown in Figure 6.42, demonstrated much less breakdown in shape for various
aging times.)  The best shift factor for a given initial aging time was defined as the shift
factor which minimized the following expression,

q(at ) =
Gshift(a t ) - G ref( )2

Grefn
Â (6.2)

where q(at) is defined as the error produced by a given shift factor, Gshift (at )  and Gref are
the moduli curves of the aged composite shifted by at and the reference moduli curves,
respectively, and n is the number of discrete points in the time domain at which
the moduli values were evaluated.  An example of shift factors calculated in this manner can
be found in Figure 6.45.
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The final step of the procedure was to determine the shift rate given the shift factors
and initial aging times of the composite.  Given the definition presented earlier in this thesis
(see Chapter 2), the shift rates were determined via a linear best fit through the data points as
shown in Figure 6.46.  Table 6.2 shows shift rates calculated for different mechanical
properties via the FEA and micromechanical solutions.

Upon analysis of the data presented in Table 6.2, we see that the shift rates
determined via FEA are largely dependent on the composite configuration.  For composites
where the matrix is the softest of the constituent phases, the overall shift rates
provided via FEA are strongly dependent on the shift rate of the matrix material.  On the
other hand, for those composites where the interphase is the softest of the VE materials,

Figure 6.46.  Determination of the shifts rate calculated for the FEA solution of
transverse Young’s modulus (30% fiber, 10% stiff interphase, 60% soft matrix).
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Method Property Geometry†

30f/10stiff 30f/10soft 60f/10stiff 60f/10soft
FEAP ET 0.7003 0.7168 0.7003 0.7904
FEAP mT 0.6989 0.7144 0.6988 0.7847

BENV ET 0.7007 0.8395 0.7006 0.8447
BENV mT 0.7016 0.8421 0.7007 0.8461
BENV mA 0.7011 0.7080 0.7008 0.7761

MT ET 0.6989 0.7012 0.7011 0.7014
MT mT 0.6997 0.7010 0.7000 0.7103
MT mA 0.6987 0.7009 0.6988 0.6933

Table 6.2.  Shift rates calculated for 3 phase composites.  († - geometry given as
fiber volume fraction, interphase volume fraction, interphase VE material)

mint = 0.85; mmat = 0.70

the shift rates are intermediate of the constituent shift rates; this effect is magnified for
larger fiber volume fractions as the ratio of volume fractions of the VE phases approaches
unity.  This type of behavior was noted earlier when discussing the role of the interphase on
the TRC behavior of composites.

To look at two specific examples, consider the FEA results for composites with 60%
elastic fiber.  The first such composite, consisting of a 10% stiff interphase and 30% soft
matrix, has shift rates dominated by the matrix material.  On the other hand, the composite
with 10% soft interphase and 30% stiff matrix has shift rates intermediate of the individual
phase shift rates.  Such a result indicates that the shift rate of the interphase can have a large
impact on the overall effective shift rates of the composite.

On the other hand, the FEA results do not indicate that the interphase causes a
difference in the shift rates describing the aging behavior of ET and mT.  Although this is
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circumstantial evidence (since the shift rate m6 6 was not determined numerically in this
work), these results suggest that the interphase is not responsible for the difference in shift
rates that is measured experimentally.  Although this should be verified by a 3D finite
element analysis which determines the aging behavior of the effective axial shear modulus,
there may be another cause of the difference in shift rates m2 2 and m6 6 measured
experimentally.  One possible explanation is that the assumption of perfect bonding
between the phases, used in this work, is invalid.  This bonding imperfection may be
characterized by different responses to applied loadings, accounting for the different shift
rates which are measured experimentally.  This, and other possible models, may need to be
investigated in order to account for the difference in shift rates seen experimentally.

Analysis of the shift rates determined via the micromechanical methods show that
they do not reproduce the general results produced by the FEA.  This is not surprising
considering that these methods did not accurately predict the overall composite moduli for
many composite configurations.  It is interesting, however, that the Benveniste solution
predicts a large difference in the shift rates for the transverse and axial shear behavior.
Although this observation is seriously compromised due to the questions of the legitimacy
of the solution, it does suggest that a full 3D finite element analysis to determine the shift
rate m6 6 may be warranted.

6.6  CONCLUSIONS AND FUTURE WORK

This thesis investigated whether two micromechanical methods, the Mori-Tanaka
method and a model developed by Benveniste, could accurately determine the effective
moduli of a three phase viscoelastic composite.  The Mori-Tanaka method was chosen
because it is a popular micromechanical tool which has been used in a wide variety of
applications and is simple to apply.  The Benveniste solution was chosen because it allows
the physicality of the annular interphase surrounding the fiber inclusion to be maintained.
The main conclusions of this work are outlined below:
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2 The micromechanical methods provide good approximations for the effective composite
moduli in those cases where the matrix is the softest of the three materials.  However,
the difference between the MT and Benveniste solutions is very small in these cases,
such that either model will give roughly the same prediction.

3 When the interphase is the softest material, the accuracy of the micromechanical
methods is greatly diminished.  In these cases the MT method is more effective in
modeling the viscoelastic behavior of the composite because it predicts matrix-
dominated effective properties for the composite.  The Benveniste model suggests that
the effective behavior of the composite is dominated by the interphase, which seems
unlikely in that it is a small volume fraction, discontinuous phase within the composite.

4 However, from a design perspective, the Benveniste model may be more useful because
it provides conservative estimates of the effective composite moduli for all composite
configurations.  For composites where the interphase is the softest material, the MT
method overestimates the composite moduli.  As noted in Appendix A3, this behavior
holds for an elastic analysis of composites as well.

5 According to the FEA results, the effective properties of the composite seem to be fairly
independent of the volume fraction of the interphase (at least once a critical interphase
volume fraction is exceeded).  This suggests that a precise measurement of the
interphase may not be necessary to predict effective properties.

• The micromechanical methods are not successful in modeling the physical aging
of the composite when compared to the FEA results.  The use of these
micromechanical models to study complex composite behavior beyond effective
properties is limited.

• TRC composite behavior which is evident in the Fourier domain may be masked
in the time domain.  Thus experimental time domain data may hide  crucial
information concerning possible TRC behavior.  The loss modulus exhibits the
greatest sensitivity to TRC behavior.
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• The FEA results suggest that the interphase can play a large role in determining
the overall shift rates describing the physical aging of the composite.  However,
the interphase did not cause a difference in shift rates describing the physical
aging of ET and mT.  Whether the interphase is responsible for the difference in
m2 2 and m6 6 shift rates should be verified with a 3D FEA.

Thus the use of one of these micromechanical solutions as opposed to the other
should be determined based on the composite effect to be studied.  While the MT method
better approximates the viscoelastic nature of the composite, the Benveniste solution may be
useful for design purposes since it always provides conservative predictions for the overall
effective moduli.  It should be noted that from a computational perspective the MT method
is easier to implement.

Although both of these methods are useful in providing rough estimates of the
effective composite properties, it will undoubtedly be useful to develop an analytical model
which can provide more accurate predictions.  It would seem necessary that such a model
would need to treat the interphase as a annular inclusion in order to ultimately provide a
suitable micromechanical model with which to study interphase effects.  Perhaps another
analytical model, for which the “phase-averaging” of the stresses does not play such a
crucial role, may be better suited for such work.  On the other hand, it may be worthwhile to
extend the Benveniste model following the procedure of the generalized self-consistent
model.  Such a model, where a fiber-interphase-matrix particle is embedded in an infinite
medium of unknown composite properties, has proven useful for the study of elastic
composites.  Other analytical models, which allow the interphase properties to vary with
location, may be useful in developing analytical models which accurately model
experimental results.

It seems that it would also be beneficial to extend the FEA analysis described here
so that a 3D analysis could be conducted.  Such work would allow for the shift rate m6 6 to
be determined via FEA, a result which could not be obtained here.  This would provide
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substantial proof, as opposed to the circumstantial evidence offered here, that a viscoelastic
interphase, with an effective shift rate different from that of the matrix, is not responsible for
the different shift rates measured experimentally.  Another extension of this work could
incorporate effective time theory into the physical aging model to account for an on-going
accumulation of actual aging time (Brinson and Gates 1995).
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APPENDIX A.1.  SAMPLE MESH USED FOR FINITE ELEMENT
ANALYSIS

A sample mesh used for the finite element analysis is given below.  This mesh
represents the geometry of a 30% fiber, 10% interphase, 60% matrix composite.  All
meshes were continually refined until a convergence criterion based on the relative
differences in solution were met.  At least 5 elements were used across the thickness of the
interphase, independent of its thickness.  A thin zone of matrix material around the
interphase was also meshed in a fine manner to capture possible stress concentrations which
may arise in these locations.  All meshes used for the finite element work in this thesis were
created using the FASTQ mesh generation program.

Figure A.1.  Example mesh for cf=0.30, cg=0.10, cm=0.60.
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Appendix A.2.  Eshelby Tensor for Circular, Cylindrical Inclusions

Below are the components of the Eshelby tensor for a composite material with
circular, cylindrical fibers.  Note that the distinction of an annular interphase region cannot
be captured using the Mori-Tanaka method with the Eshelby tensor given below.  It is

assumed that the fibers are aligned parallel to the 1-axis.  Below nm  is the poisson ratio of
the matrix, and all other components of the Eshelby tensor are identically zero.

s1111 = s2222 =
5 - 4 nm

8 1 -nm( )

s1122 = s2211 =
4nm -1

8 1 -nm( )

s3333 = s3311 = s3322 = 0

s2233 = s1133 =
nm

2 1- nm( )

s1212 =
3 - 4 nm

8 1 - nm( )

s2323 = s3131 =
1
4

For the general form of the Eshelby tensor valid for ellipsoidal inclusions of random
dimensions, see Mura (1982).
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APPENDIX A.3.  ELASTIC ANALYSIS OF THE MICROMECHANICAL
METHODS

Although the Benveniste solution seems to provide more accurate results for the
viscoelastic composite in the glassy elastic (high frequency) range, it was noted this same
accuracy was not seen in the rubbery elastic (low frequency) range.  In order to provide a
better understanding of the micromechanical solutions for elastic composites, trials with
elastic phase properties were completed.  This appendix details the results of this analysis.

The pseudo-elastic properties of the same phase materials used in the viscoelastic
analysis were estimated.  The values used for the elastic analysis can be found in Table A1.
Using these values, a purely elastic analysis of the effective composite behavior was
completed for a limited number of the composite configurations presented in this thesis.
The results for the transverse Young’s modulus ET and the transverse shear modulus mT are
presented in Table A2.

phase property Glassy elastic Rubbery elastic

K 100,000 100,000Fiber
G 40,000 40,000

K 48,000 8,000Stiff inclusion
phase G 8,000 100

K 3,162 200Soft inclusion phase
G 1,600 3.162

Table A1.  Elastic phase materials.



115

Geometry=Property Method

30f/10stiff 30f/10soft 60f/10stiff 60f10soft

MT 3.9168 4.5035 4.2207 4.6558

BENV 3.9102 4.4014 4.2186 4.5154

ET - glassy

FEA 3.9223 4.4087 4.2607 4.5154

MT 3.4695 4.0005 3.7706 4.1772

BENV 3.4600 3.9012 3.7674 4.0396

mT - glassy

FEA 3.5971 4.0297 3.9457 4.1601

MT 1.4507 2.7516 1.8285 3.0290

BENV 1.4291 2.0776 1.8144 2.1700

ET – rubbery

FEA 1.4999 2.6030 2.1658 2.7501

MT 0.8579 2.1765 1.2375 2.4746

BENV 0.8358 1.4826 1.2231 1.5764

mT – rubbery

FEA 1.0228 2.1436 1.7342 2.3002

Table A2.  Log 10 values of the effective composite properties for an elastic
analysis.

(=  - geometry given as fiber volume fraction, interphase volume fraction,
interphase material)

The elastic analysis verifies some of the conclusions that were based on the
viscoelastic behavior of the composite.  First, the micromechanical solutions are closer to the
FEA when the matrix is the softest material.  Secondly, although the Benveniste method
does not model the viscoelastic behavior of the composite as well as the MT method does, it
may be more useful from a design perspective since for all configurations it underestimates
the overall effective composite moduli.


