Technology Diffusion and Long Term Forecasting: Application to Growth of Wireless Mobile Services

AT&T Symposium
August 3-4 2006

M. Hosein Fallah, Ph.D.
Elias Aravantinos
Wesley J. Howe School of Technology Management
Stevens Institute of Technology
Hoboken, NJ 07030
Outline

- Forecasting
- Technology Diffusion
- Modeling growth of Wireless services
- Problems with Mobile Diffusion Forecasts
- Case Analysis for Greece
- Issues and observations
- Implications of the study
- Future Research
Forecasting

People do forecasts all the time
- Manufacturing
- Sales
- Financial performance
- Natural phenomena

- Short term forecast
 - Daily weather
- Long term
 - Global warming
What is Diffusion?

Diffuse means spread out, scatter, pour in different directions

Webster Dictionary

Diffusion of an innovation is the process by which innovation is communicated among and adopted by the members of a social system.
Technology Diffusion

- People naturally resist change
- The adoption behavior for a new technology tends to follow an “S curve”
- Common diffusion models: Bass, Gompertz, Fisher-Pry

The growth pattern of a new technology can be represented in general by a function of the form

\[f(e^{-g(t)}) \]
The Gompertz Model

- The Gompertz model is asymmetric, with the adoption rate slowing down as it progresses.
- The formula for the Gompertz model can be written as:

\[y(t) = e^{-e^{b(t-a)}} \]

- Where “a” is the year the growth reaches the inflection point on the curve. This point normally correspond to 37% of the saturation level.
- “b” measures the speed of diffusion.
Diffusion of Some Past Innovations

Figure 1.1
Adoption Rates of Various Communication Technologies

Percent of U.S. Households

Wireless Saturation Level

- Diffusion of most technologies in the past was bounded by the total population.
- Saturation levels were below 1.
- Wireless mobile has changed the paradigm
- Everyone above age 10 can carry a cell phone.
- Some people may have multiple phones or multiple SIM Cards.
- In some countries Wireless mobile penetration has already past 100%
- So, where is the ceiling?
Wireless Growth for Selected Countries (Actual)
Wireless Growth for Selected Countries (Forecast)
Forecasts with Traditional Models

- Short term forecasts could be very reliable
- Accuracy of long term forecasts varies with
 - Amount of the historical data
 - Where we are on the “S” curve
 - Potential external factors
 - Technological, social, economic factors
- Methods for improving long term forecasts
 - Delphi Method
 - Analogy* and interpolation from similar observations

Approach to Improving Longer Term Forecasts

Short Term

Historical Data → Forecasting Model → New Forecast

Longer Term

Historical Data → Forecasting Model → New Forecast

Other Information Relevant to the Future
Similarities between Greece and Italy

<table>
<thead>
<tr>
<th>Similarities</th>
<th>Greece</th>
<th>Italy</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDP/capita</td>
<td>$23,000</td>
<td>$28,000</td>
</tr>
<tr>
<td>APRU</td>
<td>$27</td>
<td>$30.2</td>
</tr>
<tr>
<td>UMTS services launch</td>
<td>2004</td>
<td>2004</td>
</tr>
<tr>
<td>Population group</td>
<td>15-64 years: 66.7%</td>
<td>15-64 years: 66.8%</td>
</tr>
<tr>
<td>Total median age</td>
<td>40.5</td>
<td>41.7</td>
</tr>
</tbody>
</table>
Wireless Mobile Growth- Italy vs. Greece

![Graph showing the growth of wireless mobile services in Italy and Greece from 1994 to 2005.](graph.png)
Actual vs. Forecasts for Greece—Application of Analogy

Year

Wireless Growth (Density)

Greece
Greece from Italy
Greece from Gompertz
Issues and Observations

- Wireless technology is evolving very rapidly
- Countries are also going through policy changes that affects growth of wireless services
- Existing diffusion models can not realistically predict growth more than a year or two, particularly for rapidly evolving technologies
- While the notion of “S” curve is fundamentally sound, the current models have significant limitations for longer term forecasting because they look only backward and not forward.
- The logistic models need to be augmented with other forward looking information from the lead markets using analogy to improve long term forecasting
Implications of the Study

- Improved models for diffusion of communications technologies will help service providers with better planning for
 - Infrastructure
 - Substitution of traditional services with advanced services
 - Resource management
 - Global expansions
Future Work

- Further assess application of analogy to long term forecasting
- Improve and generalize the approach as a modified Gompertz model
- Validate model application and forecast reliability
- Explore applications to broadband services