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Abstract—We consider the problem of waveform design for
Multiple-Input Multiple-Output (MIMO) radar in the presence
of signal-dependent interference embedded in white Gaussian
disturbance. We present two sequential optimization procedures
to maximize the Signal to Interference plus Noise Ratio (SINR),
accounting for a constant modulus constraint as well as a simi-
larity constraint involving a known radar waveform with some
desired properties (e.g., in terms of pulse compression and ambi-
guity). The presented sequential optimization algorithms, based
on a relaxation method, yield solutions with good accuracy. Their
computational complexity is linear in the number of iterations
and trials in the randomized procedure and polynomial in the
receive filter length. Finally, we evaluate the proposed techniques,
by considering their SINR performance, beam pattern as well as
pulse compression property, via numerical simulations.

Index Terms—Constant modulus and similarity constraints,
MIMO radar, sequential optimization algorithms, waveform
design.

I. INTRODUCTION

M ULTIPLE-INPUT Multiple-Output (MIMO) radar, un-
like a standard phased-array radar emitting scaled ver-

sions of a single waveform, transmits multiple probing signals,
which provides extra degrees of freedom in the design of the
radar system as well as in developing more sophisticated signal
processing algorithms [1]. According to the configuration of the
antennas, the MIMO radar systems can be classified into two
types. The first one [2], [3] employs widely separated transmit
and receive antennas such that a target can be viewed from dif-
ferent spatial aspects, resulting in spatial diversity of the system.
The spatial diversity can improve the performance of detection
and angle estimation. The second one [4], [5] involves transmit
and receive antennas that are colocated (spaced close enough).
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By exploiting waveform diversity, MIMO radar with colocated
antennas can improve the interference rejection capability, pa-
rameter identifiability, and provide the flexibility for transmit
beam pattern design.
The problem of waveform design for MIMO radar has re-

ceived considerable attention recently. These works can be clas-
sified into two categories. The first category addresses the wave-
form design problem by considering only the radar transmitter.
Specific issues that have been considered in this category in-
clude the transmit beam pattern design and radar ambiguity
function design. The purpose of the transmit beam pattern de-
sign is to control the emitted power distribution in the spatial
domain through the covariance matrix of the waveforms. In [6],
the covariance matrix was devised to achieve or approximate a
desired spatial beam pattern; also introduced there was amethod
to synthesize constant modulus waveforms for a given covari-
ance matrix. In [7], the waveform covariance matrix was de-
signed to attain a desired beam pattern as well as to minimize
the cross-correlation between the probing signals at a number
of given target locations. In [8], the authors considered con-
stant modulus signal design to approximate a desired beam pat-
tern while minimizing the levels of both the autocorrelation and
cross-correlation sidelobes at given spatial angles. Meanwhile,
ambiguity function design was considered in [9], [10] to im-
prove the radar performance in the spatial, range, and Doppler
domains by optimizing the entire waveforms instead of their
covariances.
The second category approaches the waveform design

problem by jointly optimizing the radar transmitter and re-
ceiver. In the absence of signal-dependent interferences (e.g.,
clutter), in [11], the maximization of the detection probability
was studied to design the optimum code matrix; the mutual in-
formation between the received waveforms and the target radar
signatures was employed to design the transmit waveform for
extended target [12], [13]. Other information theoretic based
transmit waveform designs were considered in [14] for multiple
extended targets. In [15], transmit waveforms were optimized
for multiple targets in the presence of spatially colored inter-
ference and noise, based on several design criteria, including
minimizing the trace, determinant, and the largest eigenvalue
of the Cramér-Rao Bound (CRB) matrix. In the presence of
signal-dependent interferences, MIMO waveform design was
examined by maximizing the Signal to Interference plus Noise
Ratio (SINR) given knowledge of the target and interferences,
using a gradient based algorithm; in addition, suboptimal solu-
tions were provided when partial information of the target or
interferences is known [16]. The framework was employed for
adaptive waveform design based on training data [17]. Using
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the same SINR criterion, a different iterative algorithm, based
on a cyclic optimization of the waveform and the receive filter,
was proposed in [18], which guarantees nondecreasing SINR
performance with each additional iteration. In [19], MIMO
waveform was devised by minimizing the estimation error of
the Minimum Mean Squared Error (MMSE) estimators for
uncorrelated and correlated targets.
In practical applications, several design constraints, such as

the constant modulus constraint [8], the similarity constraint
[20], [21], and the Peak-to-Average Ratio (PAR) constraint [22],
are often considered in waveform design. The constant modulus
or PAR constraint is needed because radar amplifiers usually
work in a saturation condition, which prohibits amplitude mod-
ulation in radar waveforms. Meanwhile, a similarity constraint
uses a known waveform as a benchmark, which allows the de-
signed waveform to share some of the good ambiguity proper-
ties of the known waveform. However, most of the prior studies
on waveform design only considered an energy constraint. Lim-
ited studies belonging to the aforementioned first category of
work (e.g., [8], [18]) incorporated the constant modulus design
constraint. For the second category of design in the presence
of signal-dependent interferences, MIMO radar waveform de-
sign accounting with the general constraints (i.e., constant mod-
ulus, PAR, and similarity constraints) appears not available in
the open literature.
In this paper, we investigate the MIMO radar waveform de-

sign in the presence of signal-dependent interference and white
Gaussian noise, by taking into account the constant modulus
constraint as well as a similarity constraint between the designed
signal and a known radar waveform. More specifically, we con-
sider a narrow band colocated MIMO radar involving point
like targets in the presence of signal-dependent interferences.
Using the SINR design criterion, we formulate the optimization
problem that consists of a non-convex objective function of the
transmit waveform and non-convex sets of the constraints [23].
We propose two constrained sequential optimization algorithms
to maximize the SINR by jointly optimizing the transmit signal
and receive filter. At each iteration of the first algorithm, the
receive filter is designed using the Minimum Variance Distor-
tionless Response (MVDR) method [24] to suppress the inter-
ferences, and then the transmit waveform is obtained by maxi-
mizing the SINR subject to a constant modulus and a similarity
constraints. As to the second algorithm, the transmit and receive
filters can jointly process interference suppression. Hence, in
some situations where the target and interference are close to
each other, the second algorithm may perform better than the
first one as shown in our simulation. Each iteration of both algo-
rithms involves an NP-hard optimization problem, we employ a
relaxation and randomization approach which is known to yield
approximate solutions with good accuracy [21], [25]–[27]. The
resulting computational complexity is linear in the number of it-
erations as well as the number of trials in the randomized proce-
dure, and polynomial in the receive filter length. The proposed
techniques are evaluated by computer simulation, in terms of
their SINR behaviors, beam pattern as well as pulse compres-
sion property.
The rest of the paper is organized as follows. In Section II,

we introduce the signal model involving both the transmitted
and received signals in a colocated MIMO radar. In Section III,

we discuss the waveform design criterion. In Section IV, we
present two constrained sequential optimization algorithms. In
Section V, we evaluate the proposed algorithms as well as un-
constrained waveform design algorithms by computer simula-
tions. Finally, in Section VI, we provide concluding remarks and
possible future research tracks.

II. MIMO SIGNAL MODEL

Consider a colocated narrow band MIMO radar system
with transmit antennas and receive antennas, where
each transmit element emits a different waveform ,

, , through omnidirectional
transmission, with being the number of samples of each
transmitted pulse. Let be an vector collecting the
th sample of the waveforms. Then, the signal seen at a
location with angle is given by

(1)

where denotes the transmit steering vector con-
taining complex-valued elements, and denotes the trans-
pose. As an example, for a uniform linear array (ULA)with half-
wavelength separation between two adjacent array elements, the
steering vector is given by [5]

(2)

Suppose there is a target located at angle along with
signal-dependent interference sources located at ,

. The baseband equivalent of the signals at the receive
array are given by [28]

(3)

where and denote respectively the complex amplitudes
of the target and the th interference source and is the

propagation vector due to the propagation delays from
a source to the receive elements. Similarly, for a ULA with half-
wavelength spaced element,

(4)

Finally, in (3) is an circular complex white
Gaussian noise vector with zero mean and covariance matrix
.
Let , ,

and . Then, (3) can be recast as

(5)

where is determined by the look angle , given by

(6)

while denotes the Kronecker product.
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III. MIMO RADAR WAVEFORM DESIGN CRITERION

This section is devoted to mathematical formulation the op-
timization waveform design criterion, namely, maximizing the
output SINR criterion subject to some additional constraints.

A. Output SINR

The detection probability of a target is usually a monotoni-
cally increasing function of the SINR for the case of Gaussian
interference. As a consequence, we examine waveform design
for MIMO radars by maximizing the output SINR. Specifically,
a linear Finite Impulse Response (FIR) receive filter , which
is a vector with complex-valued components, is used
for SINR maximization. The output of the filter can be written
as

(7)

where denotes the transpose conjugate. The output SINR
can be expressed as

(8)

where denotes the statistical expectation, is

(9)

and denotes the Signal-to-Noise Ratio
(SNR), and is the th Interference-to-
Noise Ratio (INR).
Some remarks are now in order. First, the clutter energy

functionally depends on the receive filter and
the transmit waveform through . Second, the objective
function requires knowledge of the angles of the interferences
for . In practice, the exact locations of the

interferences might be unknown. If the locations of the interfer-
ences can be modeled as random variables, we assume that the
mean of these random variables are known, in which case
represent the mean locations of the interferences. In Section V,
we consider cases when the exact locations and, respectively,
mean locations of the interferences are known, and numerically
examine the impact on the proposed techniques.
Our purpose is to design the transmit waveform and receive

filter by maximizing the output SINR (8). It should
be noted that the max-SINR approach was employed for wave-
form design in the presence of signal-dependent interferences
before, but only under an energy constraint of the waveform
(i.e., where denotes the Euclidean norm) in

[16], [18], which resulted in waveforms that are not constant
modulus. However, in practical applications, constant modulus
waveforms are often required due to the limit of nonlinear radar
amplifiers. Moreover, as noted in [16], [18], the resulting wave-
forms generally do not exhibit good pulse compression and am-
biguity function properties. Therefore, additional constraints are
necessary in the waveform design problem. Here, we focus on
the constant modulus and similarity constraints.

B. Constant Modulus and Similarity Constraints

Constant modulus constraint is to enforce the modulus of
each element of the waveform to be a constant. Specifically,
considering the normalized transmitted energy (i.e., ),
the element of can be expressed as

(10)

where denotes the phase of each element of the waveform ,
which is to be determined in the waveform design problem.
Enforcing a similarity constraint on the waveform allows

a tradeoff between optimizing the output SINR and controlling
other desired waveform properties (i.e., pulse compression and
ambiguity) [21]. This is equivalent to optimizing the detection
performance in a suitable neighborhood of a reference wave-
form which is known to have good properties. We assume that
is the reference waveform, and consider the following simi-

larity constraint:

(11)

where denotes the infinity norm
and is a real parameter ruling the extent of the similarity. The
constraint (11) is equivalent to

(12)

Finally, accounting for the constant modulus constraint, (12) can
be further recast as [21]

(13)

where and are respectively given by

(14)

(15)

with . Notice that for , the waveform is
identical to the reference waveform , whereas the similarity
constraint vanishes and only the constant modulus constraint is
in effect when .

IV. PROPOSED SEQUENTIAL OPTIMIZATION ALGORITHMS

Based on the aforementioned discussions, the waveform de-
sign can be formulated in terms of the following constrained
optimization problem

(16)

Generally speaking, there is no closed-form solution to the
problem (16). In the following, we provide two sequential
optimization algorithms to solve the problem.

A. Sequential Optimization Algorithm 1

An inspection of the problem (16) reveals that it does not have
any constraint on . Thus, we can first optimize with
respect to in terms of , then solve it with respect to , and so
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on and so forth in an iterative fashion. Specifically, with a given
, the optimization problem (16) with respect to is equivalent
to

(17)

It is easy to see that the problem (17) is equivalent to the well-
known MVDR problem [24]

(18)

The solution is given by

(19)

Substituting (19) into (16), and after some algebraic manipula-
tions, the problem reduces to

(20)

where is

(21)

Inspecting on (20), some remarks are in order. First, the upper
bound of the SINR is available when , i.e., there is
no interference. Thus, the following inequality holds

(22)

where denotes the
upper bound of SINR, and denotes the maximum
eigenvalue of the matrix.
If we ignore the dependence of on the waveforms, i.e.,

, where denotes a constant matrix, then (20) re-
duces to the problem in [21]. In other words, [21] considered
only phase code design with signal-independent interferences.
In the following, we briefly explain the Semi-Definite Relax-
ation (SDR) and randomization method [25], which were used
in [21] to solve their phase code design problem. These methods
will be extended and applied iteratively in our sequential algo-
rithm for MIMO waveform design with signal-dependent inter-
ferences.
Specifically, when , we first relax the problem (20)

to a Semi-Definite Programming (SDP) problem by dropping
the similarity constraint and rank-one constraint [21]:

(23)

where indicates that is a semi-definite matrix. The
above SDP problem can be effective solved (e.g., by using the
convex optimization toolbox CVX [23] in MATLAB). Then, we

can use a randomization method [21], [25] to obtain an approx-
imate solution of from an SDR solution of (23). To illustrate
the main idea, let be a random vector with zero mean and co-
variance , and we consider the following stochastic
optimization problem [25, eqn. (13)]:

(24)

One can see that the problem (24) is equivalent to the
problem(23). Hence, the stochastic interpretation(24) of
the SDR(23) allows us to obtain approximate rank-one solu-
tions. Next, we describe how the randomization method can be
integrated with the similarity constraint. Specifically, denote
by an optimal solution to (23), and generate indepen-
dent identically distributed Gaussian random vectors , i.e.,

for , where is the number of the
randomization trials. The covariance matrix is constructed
as

where denotes the Hadamard product, is given by

and is given in (14). Then, for the th randomization trial, we
assign

(25)

for , where

and is given in (15). Since , it is clear
that (25) ensures the similarity constraint (13) is met. Finally,
the best solution among the randomization is selected as the
one which maximizes the objective function.

The randomization method is known to yield to a good approx-
imation provided that a solution for sufficient number of ran-
domization trials is employed [21], [25].
However, with signal-dependent interference, matrix as

defined in (21) is a nonlinear function of the transmit waveform
. As a result, the method in [21] cannot be directly used to
our problem(20). In the following, we present a sequential op-
timization algorithm, which find the waveform in an iterative
fashion. Specifically, at the th iteration, we first compute the
matrix , where denotes the waveform obtained
from the th iteration. Next, we solve by using
the relaxation and randomizationmethod, and the solution
is used for the next-round iteration [21]; and then update . This
process is repeated until the improvement in the SINR
becomes insignificant. We summarize this algorithm as follows.



CUI et al.: MIMO RADAR WAVEFORM DESIGN 347

Sequential Optimization Algorithm 1:

Input: , , .
Output: A solution of (20).
1) For , initialize the transmit waveform .
2) Let , run the SDR and randomization
method steps as follows.
• Compute

The computational complexity involved in this
step is in the order of floating point
operations (flops) [29], where denotes the
Landau notation.

• SDP: Solve the SDP problem below and denote by
a solution

(26)

which has the computational complexity of
flops [26].

• Randomization: Generate a random vector
, , where is the

number of randomization trials, from a circular
complex Gaussian distribution with zero mean and
covariance [21]

For the randomization trial, let
, , where

Choose from , such that

The computational complexity of this step for
randomization is in the order of flops
[26].

• At the iteration, the modified object function
in (20) can be calculated as

If , where is a user selected
parameter to control convergence, output ;
otherwise, repeat step 2) until convergence.
The computational complexity is in the order of

flops [29].

Based on the computational analysis at each step, the overall
computational complexity of Algorithm 1 for iterations is in

order of , which mainly comes
the SDP and randomization steps. Numerical simulations (see
Section V) show that Algorithm 1 requires about it-
erations and randomization trials to converge a
good solution. Nevertheless we cannot guarantee nondecreasing
SINRwith each iteration, since it is not the objective function of
(20) but a modified one, i.e., , that is optimized
in each iteration. Furthermore, the number of randomization
required in each iteration (for each ) of Algorithm 1 is rela-
tively large. Next, we present a different algorithm that ensures
non-decreasing SINR with each iteration.

B. Sequential Optimization Algorithm 2

In this subsection, we introduce another sequential optimiza-
tion procedure by iteratively optimizing the SINR with respect
to the transmit waveform and receive filter . Specifically, at
the th iteration, we first update the waveform to obtain by
maximizing the SINR with the receive filter fixed to the ,
which was obtained at the th iteration; we then obtain
an updated receive filter by maximizing the SINR with the
waveform fixed to . Repeat the procedure until the SINR con-
vergence. A similar procedure was employed in [18], [26].
The optimization of by maximizing the SINR for a given

has been obtained in (19). Now, we focus on the solution of by
maximizing the SINR for a given . To this end, the following
proposition provides an alternative expression of SINR.
Proposition 4.1: An equivalent expression of the SINR de-

fined in (8) is given by

(27)

where and are respectively

Proof: The expression (27) can be easily obtained by ex-
ploiting the following equalities in (8)

(28)

Alternatively, being different from Algorithm 1, can be ob-
tained by optimizing the following problem for a fixed

(29)
The problem (29) is non-convex optimization (the constraints
define a non-convex set), and therefore an optimal solution is
generally difficult to obtain. An approximate solution, based
on the relaxation and randomization method, can be adopted.
Specifically, we first relax the problem (29) to the following
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fractional SDR problem, by dropping the similarity constraint
and the rank-one constraint [26, eqn. 19]:

(30)

where . Let , the fractional
problem (30) is equivalent, via the Charnes-Cooper transforma-
tion, to an SDP problem [26, eqn. 20]:

(31)

Suppose that is a solution of (31). Then,
is a solution of (30). Similar to Algorithm 1, randomization can
be employed to restore the rank-one and similarity constraints
and find an approximate solution to (29). Finally, we summarize
the sequential optimization algorithm as follows.

Sequential Optimization Algorithm 2:

Input: , ,
Output: A solution of (16).
1) For , initialize , and compute as

where ,
and , . Then,
the initialization SINR can be calculated as

. The computational complexity
in this step is about flops [29].
• Let , run the SDR and randomization
steps as follows.

• Compute and as

where

The computational complexity is in the order of
flops.

• SDP: Solve the SDP problem below and denote by
a solution

(32)

which requires about flops [26].

• Randomization: Let , and generate
random vectors , ,
where is the number of randomization trials,
from a circular complex Gaussian distribution with
zero mean and covariance

For the randomization trial, let
, , where

Choose from , such that

The computational complexity in this step for
randomizations is flops [26].

• Compute as

where

which has the computational complexity of
flops [29].

• The SINR at the iteration can be calculated as

If , where is a user
selected parameter to control convergence, output

and ; otherwise, repeat step 2)
until convergence. The computational complexity
is in the order of flops [29].

To summarize, the overall computational complexity of Al-
gorithm 2 is in order of , again
mainly due to SDP and randomization. While this expression
is the same as that for Algorithm 1, numerical simulations (see
Section V) show that Algorithm 2 takes longer time to converge

but requires fewer randomization trials
than Algorithm 1.

V. NUMERICAL RESULTS

We evaluate the proposed waveform design algorithms via
numerical simulations. We assume that both the transmitter and
receiver are ULAs of respectively and ele-
ments with half-wavelength inter-element separation. A target
is located at the spatial angle with power ;
and three fixed interferences are located at the spatial angles

, , and , respectively. The power
for each interference is , . The noise
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variance is . We consider the orthogonal linear fre-
quency modulation (LFM) as the reference waveform. Denote
by the space-time waveform matrix of the LFM waveform.
The th entry of is

(33)
where and . The vector
is obtained by stacking the columns of . Notice that LFM

waveforms have good properties in the pulse compression and
ambiguity, and they are good candidates for distinguishing point
targets and imaging [30]. However, it may not have good SINR
performance in a clutter environment.
In the sequel, we use SOA1-CMC and SOA2-CMC to

denote respectively the proposed Sequential Optimization
Algorithms 1 and 2 with Constant Modulus Constraint,
SOA1-CMSC and SOA2-CMSC to denote respectively the
proposed Sequential Optimization Algorithms 1 and 2 with
Constant Modulus and Similarity Constraints. Moreover, the
algorithms provided in [16] and [18] are respectively denoted
by SOA1-EC and SOA2-EC (Sequential Optimization Algo-
rithms 1 and 2 with Energy Constraint). In our simulations,
the number of randomization trials for SOA1 is ,
while for SOA2 it is . We found it is necessary to
use more trials for SOA1 to reach a good performance. The
initialization waveform for both algorithms is , when the
similarity constraint is or is not imposed.

A. Waveforms With Constant Modulus Constraint

In this subsection, we consider waveforms obtained from the
proposed algorithmswith only constantmodulus constraint (i.e.,
SOA1-CMC and SOA2-CMC), which is equivalent to setting
the similarity parameter . For comparison, the algorithms
subject to the energy constraint (i.e., SOA1-EC and SOA2-EC)
are also evaluated. In addition, we assess the interference sup-
pression capability of these waveforms through the beampattern

. Specifically, denote by and the optimal waveform
and receive filter. Then the beampattern can be computed
as

(34)

where is given in (6).
Figs. 1 and 2 depicts the SINR behaviors and beampatterns

for two different target location . Inspection on SINR behavior
for in Fig. 1 (left plot) reveals that the SINR values
of the SOA1-CMC and SOA1-EC increase with the iteration
number, and both are converge very fast (i.e., after 2–3 itera-
tions). As for the SOA2-EC and SOA2-CMC, the convergence
speed is slower (i.e., need about 30 iterations). It is interesting
to note that the optimal SINR values for the four algorithms are
nearly the same and, therefore, there is no significant loss of
SINR by imposing the constant modulus constraint. This clearly
motivates adding this constraint in MIMO waveform design,
since it is favored by efficient nonlinear power amplifiers. Com-
pared with the upper bound of the , which is at-
tained when the interferences are absent or fully suppressed, the
performance gap is less than 0.3 dB. This is because the target
and interferences are widely separated in current case, resulting

Fig. 1. The SINR (left plot) and beampattern (right plot) with constant
modulus constraint. Target location: . Other parameters: ,

, , , , , , ,
, , , and

.

Fig. 2. The SINR (left plot) and beampattern (right plot) with constant
modulus constraint. Target location: . Other parameters: same as in
Fig. 1.

in good interference suppression performance. The beampat-
terns in Fig. 1 (right plot) show the nulls are clearly placed at
the locations of interferences and the levels of the nulls are about

.
The SINR behaviors decreases as the target is close to some

interference source. In Fig. 2, the target is located at
which is close to interference . In this case, the gap
between the SINR of any of the 4 algorithms and the SINR up-
perbound is enlarged to about 7 dB (cf., it was about 0.3 dB in
Fig. 1). Moreover, the optimal SINR values of the SOA2-EC
and SOA2-CMC are slight better than that of the SOA1-EC and
SOA1-CMC. The beampatterns in Fig. 2 also show the null lo-
cated at is not as deep as the nulls at the other two interfer-
ence locations. Interestingly, like in Fig. 1, there is no loss of
imposing the constant modulus constraint for both the SOA1
and SOA2 algorithms.

B. Waveforms for Both Constant Modulus and Similarity
Constraints

In this subsection, we consider waveforms designed by the
proposed algorithms with both constant modulus and similarity
constraints. Specifically, we evaluate the performances of the
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Fig. 3. The SINR (left plot) and beampattern (right plot) with constant
modulus and similarity constraints. Similarity parameter: and 2. Other
parameters: same as in Fig. 1.

Fig. 4. The SINR (left plot) and beampattern (right plot) with constant
modulus and similarity constraint. Similarity: and 2. Other parameters:
same as in Fig. 1.

SOA1-CMSC and SOA2-CMSC with two different levels of
similarity, namely and , where we recall

defined in (11) controls the level of similarity, with
corresponding to the case of no similarity constraint and
to the case of full similarity (i.e., the designed waveform is

identical to the reference waveform). The results are shown in
Fig. 3 for and Fig. 4 for . In both figures, we also
include the results with for comparison. It is clearly seen
that the similarity constraint incurs an SINR loss. For example,
with , the loss for SOA1-CMSC and SOA2-CMSC is 1.3
dB and, respectively, 2.4 dB. In general, the smaller the value of
, the higher the SINR loss. We also observed that (not shown
here) the SINR loss tends to a fixed value as approaches 0,
in which case the designed waveform becomes identical to the
reference LFM chirp waveform and the SINR loss is essentially
that of the LFM. The beampatterns show that as the similarity
constraint becomes stronger, the interference null also becomes
higher. For example, we see the nulls are respectively ,

, and for , , and
; and they become about , , and for

.
Unlike the previous numerical simulations which assumes

exact knowledge of the interferer angles, we consider here a
mismatched case when the locations are random variables and
only their mean is given. Specifically, the locations of the 3 in-
terferers are modeled as Gaussian random variables with statis-
tical mean given by , , and , re-

Fig. 5. The SINR with knowledge of the exact locations (matched) and mean
locations (mismatched) of the interferences. Similarity: and 0.5.

Fig. 6. The amplitude of designed waveforms with and without the constant
modulus constraint.

spectively, and the variance . Fig. 5 shows the SINR ob-
tained by the SOA1 and SOA2with different levels of similarity
as considered in Figs. 3 and 4. Both the matched case (i.e., the
exact interference locations are known) and mismatched case
(only the mean locations are known) are considered. The curves
demonstrate that both SOA1 and SOA2 exhibit a SINR loss for
the mismatched case for all compared with matched case. For
example, the SINR losses of the SOA1 between matched and
mismatched angles are respectively about 0.5 dB for , 1.4
dB for , and 0.9 dB for . For the SOA2, they are
about 0.55 dB, 0.9 dB, and 0.9 dB, respectively.

C. Waveform Properties and Pulse Compression

Waveform Properties in terms of the amplitude, phase and
pulse compression are examined in this subsection. Fig. 6 de-
picts the magnitude of the waveform vector ob-
tained respectively by the SOA1-EC, SOA1-CMC, SOA2-EC,
and SOA2-CMC with (no similarity constraint), where
the other parameters are similar to those in Fig. 1. The results
show that for the SOA1-EC and SOA2-EC, the amplitude fluc-
tuates are fluctuating both in the temporal and spatial domains.
The fluctuations range from 0.055 to 0.17 for the SOA1-EC, and
from 0.01 to 0.27 for the SOA2-EC. By considering the constant
modulus constraint in the optimization procedure, the ampli-
tude of the waveform obtained by SOA1-CMC or SOA2-CMC
is constant.
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Fig. 7. The phase of the waveforms obtained by (a) the SOA1-CMSC and (b)
the SOA2-CMSC with the constant modulus constraint and several levels
of the similarity constraint.

Next, we consider the phase properties of the waveforms ob-
tained with the similarity constraint. Figs. 7(a) and 7(b) show
the phase of the waveforms obtained by the SOA1-CMSC and
SOA2-CMSC, respectively, where several levels of similarity
is considered. The simulation parameters are similar to those in
Fig. 3. For comparison, the phase of the reference LFM wave-
form is also included to check the similarity of the designed
waveforms. The amplitude of all waveforms is constant and,
therefore, not shown here. It is seen from the figures that as
decreases, the waveforms obtained by both algorithms become
more and more similar to the LFM. This behavior agrees with
the fact that the smaller the value of , the stronger the phase
constraint on the designed waveforms.
Finally, we consider the pulse compression property of the de-

signed waveforms. To this end, we reshape the vector
obtained by either the SOA1-CMSC or SOA2-CMSC to a

new matrix , so that each row of contains the
samples of the waveform emitted from one transmit element.
Let denote the th row of matrix , . In the
following, we use , while the results are similar with other

Fig. 8. Pulse compression profile of the waveform obtained by (a) the SOA1-
CMSC and (b) the SOA2-CMSC with the constant modulus constraint and sev-
eral levels of the similarity constraint.

rows of . We use the matched filter implemented in the fre-
quency domain to obtain the range profile [30]. Specifically, we
use the following procedure:
1) First, compute the Fast Fourier Transform (FFT) of :

;
2) Second, multiply by its conjugate , along with a ham-
ming widow with length to suppress the sidelobe
levels, i.e., ;

3) Finally, transform to the time domain by the inverse
Fast Fourier Transform (IFFT), i.e., ,
where is the IFFT points.

Figs. 8(a) and 8(b) show the range profile obtained by the
SOA1-CMSC and SOA2-CMSC, respectively, where similarity
parameter are considered and the other simulation parameters
are similar to those in Fig. 3. For comparison, the range profile
obtained by using the reference LFMwaveform is also included.
The results show that as increases, the side lobe level becomes
higher and higher. Specifically, for , the side lobe level is
nearly the same as the main lobe level; and they are respectively
about and for and . It is important
to recall from previous simulation results a larger generally
yields a higher output SINR. Hence, in practice, the choice of
the similarity level should be made by an appropriate tradeoff
between the range solution and output SINR of the resulting
waveform.
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VI. CONCLUSIONS

In this paper, we have addressed the problem of MIMO radar
waveform design in an environment with signal-dependent in-
terference plus noise. We consider a narrow band colocated
MIMO radar involving a point like target and several interfer-
ence sources separated in the spatial space. Summarizing:
• We have proposed two sequential optimization algorithms
SOA1 and SOA2 bymaximizing the receiver output SINR,
accounting for the constant modulus constraint as well as
a similarity constraint between the transmitted signal and a
reference waveform. Since each iteration of the proposed
algorithms requires solving a non-convex problem whose
exact solution cannot be found, we have resorted to the
SDR and randomization technique to obtain approximate
solutions with good accuracy. The computational com-
plexity is only linear in the numbers of iterations and the
number of randomization trials, and polynomial in the re-
ceive filter length.

• We have assessed the performance of the proposed opti-
mization algorithms throughnumerical simulations.The re-
sults indicate that the constant envelope constraint leads to
waveforms with little SINR loss compared with those ob-
tained without the constraint. This clearlymotivates the use
of our constantmoduluswaveformswhich can be usedwith
efficient nonlinear power amplifiers. We also observed that
the larger the similarity parameter (i.e., the weaker the
similarity constraint), the larger the output SINR, but the
poorer the pulse compression performance. This suggests
a suitable tradeoff between the target detection probability
and the range resolution should be considered in practice.
Moreover, the SINR behaviors of the two algorithms indi-
cate that the optimal SINR values of the SOA1 and SOA2
are nearly the same for widely separated target and inter-
ferences, but it is better for the SOA2 when target is close
to the interference sources. Finally, when only the approxi-
mate locations of the interferences are known, the proposed
algorithms exhibit some SINR loss.

A possible future work might concern the study of the mul-
tiple target situation [14] as well as adaptive waveform design
[17] subject to necessary constraints (i.e., constant modulus,
peak-average-ratio (PAR), and similarity). Finally, it might be
of interest to extend the framework to MIMO ambiguity func-
tion shaping [31].
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