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W
e examine the modulation and signal
processing aspect of communications
assisted by cooperative relay nodes in
wireless ad hoc networks. Several distrib-
uted modulation, detection, and combin-

ing schemes, utilizing either nonregenerative or regenerative
relay nodes, are reviewed and their performances in fading
channels are discussed. These schemes offer cooperative
diversity against channel fading compared to their noncoop-
erative counterparts. They may or may not require knowl-
edge of the channel state information (CSI) at the receiving
nodes, thus suiting both slow and fast fading environments.
We bring out connections between such cooperative systems
and noncooperative multichannel communication systems,
and highlight unique challenges in the design and analysis of
the former. 

INTRODUCTION
A wireless ad hoc network consists of multiple wireless nodes
that can move around and communicate without a fixed network
infrastructure. The broadcasting nature of the wireless medium
allows neighboring nodes to cooperate in information transport,
creating multiple communication routes and offering coopera-
tive diversity for fading mitigation (e.g., [1]–[3]). Cooperative
diversity is considered particularly useful in wireless ad hoc and
sensor networks, where power/bandwidth/size restrictions of the
mobile nodes may prevent use of other diversity techniques (e.g.,
antenna diversity) to combat channel fading.

The purpose of this article is to provide an overview of dis-
tributed modulation for cooperative wireless systems. We con-
sider cases when the CSI can be conveniently and accurately
estimated as well as when it cannot. CSI estimation, typically
performed at the receiving nodes via training, is challenging
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and costly, especially in fast fading environments. The difficulty
is exacerbated in multinode wireless systems since the amount
of training grows with the number of links [4]. The modulation
techniques discussed in the sequel are distributed in nature
since the signal is modulated at the source and, subsequently, at
the relays for transmission to the destination. We examine both
distributed coherent and distributed differential modulation
schemes, which are the counterparts of the conventional non-
cooperative coherent and differential modulation techniques.
Within each category, we consider nonregenerative schemes
involving amplify-and-forward (AF) as well as regenerative
schemes involving decode-and-forward (DF) operation per-
formed at the relays. This gives four distributed modulation
schemes referred to as coherent amplify-and-forward (CAF),
coherent decode-and-forward (CDF, not to be confused with the
cumulative denisty function of a random variable), differential
amplify-and-forward (DAF), and differential decode-and-forward
(DDF), respectively. For each scheme, we discuss several issues
including the implementation, detection, combining, and bit
error rate (BER) analysis. 

A cooperative communication system utilizes multiple com-
munication routes created by relay nodes for information trans-
port. The distributed modulation and combining techniques
discussed in the sequel resemble, to a certain extent, conven-
tional single-hop noncooperative, multichannel communication
techniques (e.g., [5, Ch. 12]). But there are major distinctions.
Specifically, a cooperative system may involve both a single-hop
direct (i.e., source-destination) link and multihop relay (source-
relay-destination) links, whereas in noncooperative multichan-
nel systems all links are single hop and usually subject to the
same type of fading. The multihop relay link exhibits statistically
more complex behaviors that are yet fully understood; mean-
while, the single-hop link has been well studied under various
standard fading channel models. When regenerative DF relays
are utilized for cooperation, they are prone to fading-induced
decision errors (even with the powerful error detection/correc-
tion codes), and nonlinear combining has to be employed to off-
set the effect of such errors. All these factors present unique
challenges in the design and analysis of cooperative wireless
communication systems. We discuss the connections and dis-
tinctions between cooperative systems and noncooperative mul-
tichannel communication systems and highlight the challenges
in the analysis and design of the former imposed by several
unique characteristics of wireless relay channels. 

SYSTEM MODEL
We consider a wireless relay system depicted in Figure 1 that con-
sists of a source S, relay R, and destination D node. As simple as it
may seem, the system is known for several open theoretical prob-
lems that are important for cooperative communications (e.g.,
[6]) and is expandable to more complex relay networks with mul-
tiple relays and multihop transmission. We assume that S and R
use orthogonal channels for cooperative transmission; for the
sake of presentation, we assume a time-division multiple-access
(TDMA) based approach that involves two-phase transmission.

Specifically, in phase I, S transmits a frame of information sym-
bols while R and D listen; in phase II, S shuts off while R amplifies
or decodes the signal received in phase I and retransmits it to D.
The CSI is assumed unavailable to the transmitting nodes (i.e., S
and R), but may or may not be obtained at the receiver, depending
on how fast the channel fades. We consider distributed coherent
and differential modulation schemes to handle both cases.

Let d(n) denote the sequence of information symbols to be
transmitted from S. The baseband signals received at R and D
during time slot n of phase I are

xr(n) = hs,rs(n) + wr(n) ,
xd(n) = hs,d s(n) + wd(n) , 

where s(n) denotes the signal transmitted from S, hs,r and hs,d

the fading coefficients, and wr(n) and wd(n) the channel noise.
For coherent modulation, we set s(n) = d(n), while for differen-
tial modulation s(n) = s(n − 1)d(n), with initial transmission set
to s(0) = 1. During phase II, R amplifies or decodes the received
signal xr(n), and generate a signal sr(n) with unit average power,
which is next transmitted to D. The signal received at D is given by

yd(n) = hr,d sr(n) + ud(n) ,

where hr,d and ud(n) denote the fading and channel noise,
respectively. (With a slight abuse of notation, n is used in both
phase I and II to denote the index of symbols in a frame.)

Although not required for implementation, Rayleigh fading is
assumed for the purpose of analysis. That is, hi, j ∼ CN (0, σ 2

i, j),
(i, j) ∈ {(s, r), (s, d), (r, d)}, where CN (µ, σ 2) denotes a com-
plex Gaussian probability density function (PDF) with mean µ
and variance σ 2. Some performance analysis for cooperative
relays in more general Nakagami fading channels can be found
in [7]–[9]. Meanwhile, we assume that the receiver noise wr(n),
wd(n), and ud(n) are CN (0, N0) random variables. Based on the
Rayleigh fading assumption, the instantaneous signal-to-noise
ratio (SNR) between nodes i and j, denoted by γi, j � |hi, j|2/N0,
is exponentially distributed with mean or average SNR
γ̄i, j � σ 2

i, j/N0. 

[FIG1] A cooperative wireless relay system.
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DISTRIBUTED MODULATION
In the following, we discuss four distributed modulation
schemes, namely CAF, CDF, DAF, and DDF, along with the cor-
responding relay strategies, combining methods, and per-
formance analysis. We assume binary phase-shift keying
(PSK) modulation for simplicity; however, some of our results
can be readily extended to the nonbinary modulation case, as
discussed in Section V.

CAF
The relay strategy for CAF is simple: R amplifies and forwards
xr(n) according to [2]:

sr(n) = GCAF xr(n), (1)

where GCAF is chosen to meet the unit average power constraint

GCAF � 1
(N0 + |hs,r|2)1/2 . (2)

At D, xd(n) and yd(n) can be optimally combined based on
the maximum likelihood (ML) principle. Note that xd(n) and
yd(n) are Gaussian (conditioned on the channels and transmit-
ted symbol), independent but not identically distributed (with
different mean and variance). It is straightforward to show that
the ML detection based on xd(n) and yd(n) reduces to maxi-
mum ratio combining (MRC) [10]

z(n) =
h∗

s,d xd(n)

N0
+

h∗
s,r,d yd(n)

σ 2
s,r,d

, (3)

followed by thresholding: d̂(n) = sign{�{z(n)}}. Here, hs,r,d

and σs,r,d are the equivalent channel gain and noise variance of
the S-R-D link:

hs,r,d � hs,rhr,d

(N0 + |hs,r|2)1/2 ,

σ 2
s,r,d � |hr,d|2N0

N0 + |hs,r|2
+ N0.

The above combining scheme (3) resembles the MRC combining
for standard multichannel communications with independent
but not identically distributed branches. Note that CAF requires
knowledge of the instantaneous CSI. Specifically, R needs to
know the magnitude of hs,r, while D requires the magnitude and
phase of all channel links including hs,r, hs,d, and hr,d. 

Analysis of the above combiner (3) follows similar steps
used for standard multichannel systems but with some distinc-
tions. In particular, the instantaneous SNR of the MRC com-
biner output is the sum of the instantaneous SNRs of the
direct link and the relay link

γCAF = γs,d + γs,r,d,

where 

γs,r,d � γs,rγr,d

γs,r + γr,d + 1

denotes the equivalent instantaneous SNR of the relay link. By
using the moment generating function (MGF) approach, the
average BER of the two-branch MRC is given by (e.g., [11])

P̄e = 1
π

∫ π/2

0
Mγs,d

(

− 1

sin2 θ

)

Mγs,r,d

(

− 1

sin2 θ

)

dθ, (4)

where Mγ (·) denotes the MGF of random variable γ . The MFG
of the exponential variable γs,d is well known (e.g., [11]):

Mγs,r, (s) = 1
1 + sγ̄s,d

.

Unlike a standard multichannel system, the major difficulty here
is that the exact form of Mγs,r,d(s) is very involved. An approxi-
mate expression of Mγs,r,d(s) is derived in [12, eq. (15)] by
approximating γs,r,d using the harmonic mean of γs,r and γr,d,
which is still quite complicated and valid only for high SNR cases.
Using the results of [12] in (4), we can obtain an approximate
expression of the average BER for CAF. The integral in (3) can be
computed using standard numerical integration techniques.

CDF
CDF uses a regenerative relaying strategy. Specifically, R first
reproduces a copy of the information symbol d(n) by coherently
demodulating the signal received in phase I

sr(n) = sign{�{h∗
s,rxr(n)}}. (5)

Then, sr(n) is retransmitted to D in phase II. 
Similar to CAF, optimum ML combing can be performed at

D. However, due to possible decision errors occurring in (5), the
conditional PDF of yd(n) [conditioned on the channels and
d(n)] is a Gaussian mixture density, with two components cor-
responding to the correct and, respectively, incorrect decision
made by R. Meanwhile, xd(n) is still conditionally Gaussian and
independent of yd(n). Maximizing the joint density of xd(n) and
yd(n) and after some manipulations, the ML combiner for CDF
is given by [13]

f(t1) + t0
1
>
<
−1

0, (6)

where

f(t1) � ln
(1 − ε)et1 + ε

εet1 + 1 − ε
, (7)

t1 � [h∗
r,d yd(n) + hr,d y∗

d(n)]/N0, (8)

t0 � [h∗
s,d xd(n) + hs,d x∗

d(n)]/N0, (9)

and ε denotes the average probability of error caused by R,
which can be computed in closed form for Rayleigh fading chan-
nels (see [5, eq. (14.3-7)]). We see that due to decision errors at
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R, the ML combiner for CDF is nonlinear, in contrast to stan-
dard multichannel communication with coherent demodulation
which involves linear combining [5, Chapter 12].

The nonlinearity of the above ML combiner creates difficul-
ties for both implementation and analysis. The problem can be
partially solved by observing that the nonlinear function f(t1)
can be approximated by a piecewise-linear (PL) function [13]

f(t1) ≈ fPL(t1) �






−T1, t1 < −T1

t1, −T1 ≤ t1 ≤ T1,

T1, t1 > T1

(10)

where T1 � ln[(1 − ε)/ε] assuming ε < 0.5. The resultant
detector obtained by using the above approximation in (6) is
henceforth called the PL demodulator. 

The ML nonlinear demodulator is difficult to analyze. On the
other hand, analysis of the PL detector is tractable, which is out-
lined as follows. The conditional BER (conditioned on the fading
channels) of the PL demodulator can be obtained by considering
the three exclusive events specified in (10) (supposing d(n) = 1): 

Pe(γs,d, γr,d) =Pr{t0 − T1 < 0} Pr{t1 < −T1}
+ Pr{t0 + T1 < 0} Pr{t1 > T1}
+ Pr{t0 + t1 < 0,−T1 ≤ t1 ≤ T1}, (11)

where Pr{·} denotes the probability of an event and we used the
fact that t0 and t1 are independent. Based on earlier discussions
on the distribution of xd(n) and yd(n),it is easy to see from (8)
and (9) that t0 is a Gaussian variable whereas t1 a Gaussian mix-
ture variable. Therefore, each probability in (11) can be expressed
using the Gaussian Q-function. Once we have Pe(γs,d, γr,d), the
average BER can be obtained by averaging out the fading chan-
nels, using either a PDF- or MGF-based approach [10]. 

DAF
As indicated earlier, CAF cannot be used without knowing the
instantaneous CSI, which may be difficult to estimate due to, e.g.,
mobility-induced fast channel fading. In that case, an alternative
approach, namely DAF that facilitates differential demodulation,
can be utilized. Specifically, like CAF, R also produces a scaled sig-
nal sr(n) as in (1), but with the gain GCAF changed to[14]

GDAF � 1
(var{xr(n)})1/2 = 1

(N0 + σ 2
s,r)

1/2
, (12)

where the variance var{xr(n)} can be estimated by time-averag-
ing over a frame of received signals. The so-obtained sr(n) again
meets the unit average power constraint. 

To find combining methods for DAF, we first note that the con-
ditional PDFs of the received signals in phase I and phase II are
xd(n) ∼ CN (hs,d s(n), N0) and yd(n) ∼ CN (hs,r,d s(n), σ 2

s,r,d) ,
where like CAF (with some abuse of notation), we use the same
symbols, hs,r,d and σ 2

s,r,d, to denote the effective channel gain
and noise variance, respectively, for the relay link, which in the
current case are

hs,r,d � hs,rhr,d

(N0 + σ 2
s,r)

1/2
,

σ 2
s,r,d � |hr,d|2N0

N0 + σ 2
s,r

+ N0.

A standard combining method for multichannel systems with
differential modulation is the equal-gain combiner (EGC) [5],
whose decision variable is 

x∗
d(n − 1)xd(n) + y∗

d(n − 1)yd(n). (13)

EGC is suitable for balanced diversity systems where all diversity
branches have identical noise power [5]. This is not the case for
DAF, where the direct and relay links has different noise power.
A better approach is to mimic MRC by normalizing xd(n) and
yd(n) by their own variance before combining. Doing so and
after some straightforward manipulations, we arrive at the fol-
lowing decision variable:

x∗
d(n − 1)xd(n) + (1 + γ̄s,r)y∗

d(n − 1)yd(n)

1 + γ̄s,r + γr,d
. (14)

Unfortunately, the above combiner is incompatible with differ-
ential demodulation since it requires knowledge of the instanta-
neous SNR γr,d. The dependence on γr,d is because yd(n) has a
conditional variance that is a function of the instantaneous CSI
|hr,d|. A differential demodulator is proposed in [15], which
replaces γr,d by its mean. Doing so we have 

z(n) = x∗
d(n − 1)xd(n) + (1 + γ̄s,r)y∗

d(n − 1)yd(n)

1 + γ̄s,r + γ̄r,d
. (15)

Following combining, thresholding is performed for demodula-
tion d̂(n) = sign{�{z(n)}}. 

Exact performance analysis of the differential detector (15) is
involved. In particular, since the signals received through the
direct and relay links are unbalanced (with different variance), the
well-known tool developed in [5, Appendix B] for the balanced
case is inapplicable. On the other hand, noticing that z(n) in (15)
is a quadratic form in Gaussian variables, we may use, e.g., a
series expansion approach [16] to find the distribution of z(n),
and use it for BER analysis. Series expansion is used to analyze
DDF in [17]. Here, we follow a different approach. It is observed
by computer simulation that the two detectors (14) and (15) have
very close BER performance. The analysis of (14) can be pursued
using Proakis’ tool, since normalization by the noise power effec-
tively converts an unbalanced case to a balanced one. Specifically,
the conditional BER is the same as the one for standard multi-
channel communications using differential binary PSK and two
independent channels, which is given by [5, eq. (14.4-26)]:

Pe(γDAF) = 1
8
(4 + γDAF)e−γDAF ,

where γDAF � γs,r,d + γs,d , and γs,r,d denotes the equivalent
instantaneous SNR of the relay link:



γs,r,d = γs,rγr,d

γ̄s,r + 1 + γr,d
.

The average BER can be obtained by averaging Pe(γDAF) with
respect to the PDF of γs,d and γs,r,d. For Rayleigh fading, γs,d is
a standard exponential variable. However, γs,r,d has a nontrivial
PDF, which is obtained in [15, eq. (9)]. Using the PDF for γs,r,d

and carrying out statistical averaging yields a closed-form
expression of the average BER for (14) expressed in the
Whittaker function, as shown in [15, eq. (14)]. 

DDF
In this case, R first differentially decodes the signal received in
phase I

d̄(n) = sign{�{x∗
r(n − 1)xr(n)}}. (16)

Then, the decoded bits are re-encoded via a differential encoder

sr(n) = sr(n − 1)d̃(n),

which is transmitted to D during phase II. 
The differential ML demodulator is developed in [17], which

takes the same form as (6), but with the t1 and t0 replaced by 

t1 = [y∗
d(n − 1)yd(n) + yd(n − 1)y∗

d(n)]/N0,

t0 = [x∗
d(n − 1)xd(n) + xd(n − 1)x∗

d(n)]/N0.

In addition, the ε in f1(t1) is the error probability
associated with (16), which can also be computed in
closed form for Rayleigh fading channels (see [5, eq.
(14.3–10)]). Like CDF, the differential ML demodula-
tor is nonlinear. We can again use the PL approxima-
tion (10), which leads to a differential PL demodulator
that is easier to implement and analyze. 

Similar to CDF, the analysis of the nonlinear ML
detector for DDF is intractable. The PL detector can
be analyzed in a similar fashion as in the previous
case, using conditional probabilities as in (11).
Finding these conditional probabilities for DDF,
however, is considerably more involved. The reason
is that while for CDF t0 and t1 and Gaussian and
Gaussian mixture variables, respectively, for DDF
they are quadratic forms of Gaussian and Gaussian
mixture variables, respectively. In general, their
PDFs are involved except for a few special cases [16].
An exact average BER expression for the PL detector
is obtained in [4] and [17] using series expansion.
Convergence of such results is usually slow. At high
SNRs, we can ignore the cross noise terms in
x∗

d (n − 1)xd (n) and y ∗
d (n − 1)yd (n) (as in [5, p.

273]). This leads to an approximate average BER
expression obtained in [4]. 

NUMERICAL RESULTS
We present some numerical results to compare the
performance of the various distributed modulation
schemes and verify the analysis. We consider the
cooperative system depicted in Figure 1 with Rayleigh
fading. For fair comparison between the cooperative
schemes, which involve two transmissions from S and
R to D, and the noncooperative schemes that involve a
single transmission from S to D, we scale the trans-
mission power of S and R for the cooperative schemes
so that the total transmitted power is the same as that
of the noncooperative schemes.

We first consider a symmetric scenario where the
average SNRs of all hops are identical: 

[FIG2] Cooperative distributed coherent modulation versus
noncooperative coherent modulation.
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[FIG3] Cooperative distributed differential modulation versus
noncooperative differential modulation.
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γ̄s,d = γ̄s,r = γ̄r,d = Eb/N0,

where Eb /N0 denotes the average SNR of the noncooperative
schemes. Figure 2 shows the average BER of the cooperative CAF
and CDF as well as the noncooperative scheme using binary PSK.
For the cooperative schemes, both results obtained by simulation
and analysis are included, which are seen to agree with each
other. For CDF, both the PL and ML detectors are shown, yield-
ing very similar performance except at relatively high SNRs. We
see that CAF and CDF achieve a diversity gain over the noncoop-
erative scheme. 

Figure 3 depicts the counterpart results for the case with
differential modulation, where DAF-I refers to the detector
using (14) while DAF-II refers to that of (15). Additional com-
parisons that include DAF with EGC detection can be found in
[4], where it is shown that EGC is in general inferior to DAF-I
and DAF-II. We note that DAF-I and DAF-II indeed
have very similar performance. Like the coherent
case, the cooperative DAF and DDF also outperform
the noncooperative differential scheme. 

Figure 4 compares the cooperative schemes dis-
cussed earlier as well as another cooperative non-
coherent modulation using DF and binary
frequency shift keying (labeled as NDF) considered
in [18]. The results suggest that CAF has an advan-
tage over CDF, and DDF does better than DAF;
meanwhile, the differential DAF and DDF outper-
form the noncoherent NDF. However, it should be
noted that the performance of all cooperative
schemes depends on the relative locations of the
cooperating nodes. Indeed, there are relay nodes at
some locations that are more preferable for cooper-
ation than others. Hence, in ad hoc networks with
dense node distribution, the problem of selecting
good cooperating nodes is of practical interest.

It is not difficult to see that the above relay
selection problem is equivalent to the following
power allocation problem: supposing that the
internode distances are identical but the total
transmission power from the source and relay(s) is
fixed, how to split the power among the source and
relay nodes to optimize the BER performance? To
show the impact of power allocation, let 0 < α < 1
be the power allocation factor that controls power
allocation as follows: γ̄s ,r = γ̄s ,d = αEb /N0 and
γ̄r,d = (1 − α)Eb /N0 .  In effect,  α > 0.5 means
more power allocated to S than to R, and vice
versa. Equivalently, α > 0.5 also corresponds to
the case when R is closer to S than to D as in the
relay selection problem. Using the analytical
results in [4] and [15], we show in Figure 5 the
average BER of DAF and DDF as a function of α
when Eb /N0 = 35 dB. It is seen that DAF favors
approximately equal power allocation (α = 0.5),
which agrees with the prior result for CAF [3],

[19], while DDF yields the lowest BER when α ≈ 0.75, viz.,
when the power allocated to S is approximately three times
that allocated to R. The performance of DDF is intuitive,
since the less power that is allocated to S, the more likely R
is expected to make incorrect decoding, and the less gain
that can be produced by cooperation. Similar observation
has been made for CDF as well.

CONCLUSIONS AND FURTHER DISCUSSIONS
We have provided an overview of distributed modulation for
cooperative wireless communications and, in particular,
described four such schemes that can be categorized as being
nonregenerative (i.e., AF) or regenerative (i.e., DF) and coherent
or differential. For each scheme, we have discussed issues such
as relay strategies, combining methods, and BER analysis. A
major motivation of this article is to explore the relations

[FIG4] Cooperative distributed coherent, differential, and noncoherent
modulation.
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[FIG5] Power allocation.
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[SP]

between cooperative communications and noncooperative mul-
tichannel communications. The latter have been widely studied
with numerous results and tools that may benefit the analysis
and design of cooperative wireless systems. We have shown that
while there are many connections between the two, there are
also major distinctions, such as the statistical complexity of the
cooperative wireless relay channel and error proneness of regen-
erative relays that cannot be neglected in a wireless environ-
ment. Because of such, the preliminary results presented here
and in the references for cooperative wireless communications
are usually complicated and sometimes inconvenient to use
(due to, e.g., multiple folds of integrations and/or summations).
This points to the need for alternative statistical/mathematical
tools and perhaps even more fundamentally, a better under-
standing of the underlying wireless relay channel, which may
lead to simpler and more insightful results and performacne
bounds for the optimization of cooperative wireless systems.

We briefly comment on extensions of the results reported here
to the case of M-ary modulation, say M-ary PSK. For CAF and DAF,
the extension is straightforward. As we has shown, the key to the
analysis of such nonregenerative schemes is to find the statistics
(PDF, MGF, etc.) of the decision variable. Since the decision variable
before thresholding is the same for both binary and M-ary PSK, the
symbol error rate (SER) for M-ary PSK can easily be obtained by
using our results (i.e., the statistics of the decision variable) and
modifying the integration region of the decision variable (based on
an appropriate M-ary PSK demodulation rule). A similar extension
for the regenerative CDF and DDF is conceptually simple, since
yd(n), the signal received at D in phase II, also has a Gaussian mix-
ture PDF and hence, the analytical approach developed for the bina-
ry case is still applicable; on the other hand, such an extension is
also practically tedious, since the mixture PDF now has M instead
of two components. As such, implementations of the ML or PL
detector as well as their SER analysis are considerably more
involved. One simplifying strategy is to consider only nearest neigh-
bor errors, i.e., confusing d(n) to its nearest neighbors on the con-
stellation, instead of all possible errors made by D. This reduces the
number of components in the mixture density. Finally, we remark
that it is also possible to extend our results to cases with multiple
relays and/or multihop transmission. The extension for the regen-
erative relays is again more involved, since the number of error
events increases with the number of relays and/or hops. 
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