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Amplitude Estimation of Sinusoidal Signals: Survey,
New Results, and an Application
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Abstract—This paper considers the problem of amplitude
estimation of sinusoidal signals from observations corrupted
by colored noise. A relatively large number of amplitude esti-
mators, which encompass least lquares (LS) and weighted least
squares (WLS) methods, are described. Additionally, filterbank
approaches, which are widely used for spectral analysis, are
extended to amplitude estimation. More exactly, we consider the
recently introduced matched-filterbank (MAFI) approach and
show that by appropriately designing the prefilters, the MAFI ap-
proach to amplitude estimation includes the WLS approach. The
amplitude estimation techniques discussed in this paper do not
model the observation noise, and yet, they are all asymptotically
statistically efficient. It is, however, their different finite-sample
properties that are of particular interest to this study. Numerical
examples are provided to illustrate the differences among the
various amplitude estimators. Although amplitude estimation
applications are numerous, we focus herein on the problem of
system identification using sinusoidal probing signals for which
we provide a computationally simple and statistically accurate
solution.

Index Terms—Amplitude estimation, spectral analysis, system
identification.

I. INTRODUCTION

CONSIDER the noise-corrupted observations ofcom-
plex-valued sinusoids

(1)

where
complex amplitude of the th sinusoid having fre-
quency ;
number of available data samples;
observation noise, which is complex valued and as-
sumed to be stationary (and possibly colored) with
mean zero and finite unknown power spectral density
(PSD) .
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We assume that are known, with , for .
The problem of interest is to estimate from the obser-
vations . In this paper, we describe a relatively large
number of methods for solving this problem.

Section II discusses least squares (LS) methods, which are
widely used for amplitude estimation because they are simple
and easy to implement. If we restrict ourselves to estimating
only one amplitude at a time, then the LS method reduces to the
discrete Fourier transform (DFT) of the data at the frequency of
the desired sinusoid, which is computationally more efficient
than the LS method that estimates amplitudes simultane-
ously. Moreover, estimating one amplitude at a time does not
necessarily require exact knowledge of either the number of si-
nusoids in the data or the frequency location of each sinusoid,
which is a desired property in some applications. The disadvan-
tage, however, is that using this one-at-a-time technique gives
rather poor amplitude estimates when some sinusoids (that are
of interest to us) are close to one another. Statistical analyses that
compare the merits of the two LS methods are also provided in
Section II.

Since the LS methods completely ignore the correlation of
the observation noise, they are, in general, suboptimal. By par-
titioning the data vector into a number of overlapping subvec-
tors, the covariance matrix of the noise-only part of the data
subvectors can be estimated, which makes it possible to use a
Markov-like estimator that is optimal in the class of weighted
least squares (WLS) techniques [1]. We describe in Section III
several ways to estimate the aforementioned covariance matrix
that lead to different WLS amplitude estimators. Additionally,
we show that if the restriction of estimating one amplitude at a
time is again imposed, we obtain two WLS amplitude estima-
tors that are equivalent to the Capon [2], [3] and amplitude and
phase estimation (APES) [4] methods extensively used for spec-
tral analysis.

The observation that some general spectral estimators, such
as Capon and APES, can be used to solve the problem posed in
(1) motivated us to seek other relatively sophisticated spectral
analysis techniques that could be used for amplitude estimation.
Both Capon and APES belong to the general class of filterbank
approaches to spectral estimation [5] that involve splitting the
data into possibly overlapping subvectors, passing them through
a set of narrowband filters (filterbank) whose center frequencies
correspond to those that are of interest to us, and, finally, esti-
mating the spectral density function at those frequencies from
the filtered and, hopefully, signal-enhanced data. As we may ex-
pect, the key issue of filterbank approaches is the design of the
filters. A recent study has suggested the choice of matched fil-
ters, which gave rise to the matched-filterbank (MAFI) approach
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to spectral estimation [6]. Even though neither Capon nor APES
was derived in the MAFI framework (see [2] and [4] for their
original derivations), it was found that both are members of the
MAFI approach [6]. In the light of the work of [6], we derive in
Section IV a generalized MAFI approach to amplitude estima-
tion. Interestingly enough, we show that under certain circum-
stances, MAFI amplitude estimators have equivalent forms to
the WLS methods. However, the MAFI approach is more gen-
eral than the WLS technique in that the latter is a special case
of the former. To show this, a new MAFI amplitude estimator
that does not fall into the WLS category is described in Section
IV. Other interesting MAFI amplitude estimators may exist, but
they have yet to be discovered.

A common feature of the amplitude estimators considered
in this paper is that none of them models the observation noise
exactly. Even so, all methods are asymptotically statistically
efficient, that is, they all achieve the Cramér-Rao bound (CRB)
in large samples. However, their finite-sample properties,
which are of primary interest to this work, are quite different.
Since the finite-sample analysis is intractable in most cases, we
use Monte-Carlo simulations in Section V to compare these
methods with one another.

The amplitude estimation problem in (1) occurs in a variety
of signal processing applications (see, e.g., [7], [8], and the ref-
erences therein). In Section VI , we discuss its application to
system identification. We show that by using sinusoidal probing
signals and appropriate amplitude estimators, we can avoid the
iterative search required by standard system identification rou-
tines, such as the (time-domain) output error method (OEM) [1]
and yet achieve CRB-like performance by using a computation-
ally efficient parameter estimator.

In concluding this section, we introduce the following nota-
tion to distinguish among the various amplitude estimators. For
instance, LSE denotes the LS estimator that does not
split the data (and hence, it uses one data “snapshot”), uses no
prefiltering, and estimates one amplitude at a time. Likewise,
MAFI denotes the MAFI estimator that splits the data
into subvectors, utilizes a bank of prefilters, and estimates

amplitudes simultaneously. The remaining amplitude estima-
tors are similarly designated.

II. LS AMPLITUDE ESTIMATORS

We consider two LS methods in this section, namely,
LSE and LSE .

A. LSE

This is perhaps the most direct approach. Let us write the
available data sequence in the form

...
...

...
...

...

...
(2)

or, with obvious definitions

(3)

which is a linear regression equation. The LS estimate ofis

(4)

where denotes the conjugate transpose. Note that the noise
is not modeled, even though it may be correlated. Despite this
fact, LSE is asymptotically efficient [9]. A relatively
simple manner to see this is as follows. First, note that

, where denotes the statistical expectation. The mean
squared error (MSE) of is

MSE cov

(5)

where . Hence, since (see, e.g., [10])

(6)

where denotes the identity matrix, and

... (7)

the asymptotic MSE is given by

MSE ... (8)

Under the mild assumption that is circularly symmetric
Gaussian, the CRB for is given by (see, e.g., [1])

CRB (9)

Using the result (see [10] once again)

...

(10)
we obtain

CRB ... (11)

which coincides with (8).
Remark 1: It can be readily checked from (5) and (9) that if

is white, i.e., , then LSE is statistically
efficient for all .

B. LSE

Since the observation noise is not modeled, an idea that
reduces the computational burden of the LS approach quite a bit
is to include sinusoids in the noise term and, hence, es-
timate only one amplitude at a time. In some signal processing



340 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 48, NO. 2, FEBRUARY 2000

applications, the frequencies may be unknown. A typ-
ical way to estimate both and would consist
of estimating just one amplitude for varying frequency and then
detecting the peaks in the so-obtained spectrum [5], [7], [8]. As
such, the assumption made in Section I that are known
a priori may be relaxed when using the one-at-a-time technique.

There is a somewhat subtle problem with the above tech-
nique; the sum of and sinusoids no longer has a
finite PSD, and hence, one of the previously made assumptions
fails. Nevertheless, the idea still works as long as no two sinu-
soids (that are of interest) are spaced too close to one another,
as shown below and later in Section V.

The LSE is easily derived as

(12)

which is recognized as the DFT of at . The two
estimates in (4) and (12) will be close to one another if

[5].
An analysis of LSE runs as follows. Without loss of

generality, let us consider (12) for . The LSE
estimate of can be written as

(13)

where , and where denotes
the transpose. Taking the expectation of (13) yields

(14)

where , and is defined through
. Hence, LSE is biased. However, it is asymptotically

unbiased (that is, its bias goes to zero as ). We next
calculate the MSE of as

MSE
(15)

Making use of (7) once again, along with the fact that
as , we have

MSE (16)

Hence, LSE is also asymptotically efficient. On the
other hand, in finite samples, (12) may be better or worse than
(4), depending on the characteristics of the scenario under
study.

The fact that (4) may be better than (12) comes as no sur-
prise. As an example, let us assume that the signal-to-noise ratio
(SNR) is high. Then, the bias of (12) dominates the variance
part. On the other hand, (4) has no bias, and its variance will be
smaller than the bias of (12) if the SNR is large enough. Conse-
quently, the MSE of (4) will be smaller than that of (12).

The fact that (12) may be better than (4) is, however, a surprise
[even though the biased estimator in (12) mayin principlehave
a smaller MSE than the CRB for unbiased estimates in (9)]. For

an example of such a case, assume SNR and .
Then, for (12)

MSE (17)

whereas for (4)

MSE (18)

which can be much larger than (17) (e.g., if
for some ). In (18), denotes the th element of the
matrix argument.

Note that for most cases of interest, LSE will give
more accurate amplitude estimates than LSE and that
the difference between these two estimators is small for large

. On the other hand, LSE is computationally more ef-
ficient than LSE since the matrix multiplication and
inversion in (4) are avoided. Hence, LSE may still be
worth considering.

III. WLS A MPLITUDE ESTIMATORS

If we partition the data vector into (overlapping) subvec-
tors, then the covariance matrix of the noise part of the sub-
vectors may be estimated and can, hence, be used to derive an
“optimal” WLS estimator (i.e., a Markov-like estimator) [1]. In
this section, we describe a number of such WLS estimators that
split the data string into overlapping vectors of shorter length,
utilize no prefiltering, and estimate either one oramplitudes
at a time.

A. WLSE

We define the following data subvectors

(19)

where . The choice of or, equivalently, of
is discussed in Section V.1 We have

...
...

...
...

...
(20)

or, with obvious notation

(21)

Alternatively, we can rewrite (20) as

(22)

1M may be chosen smaller thanK , see, e.g., Fig. 4. Moreover, whenM = 1,
all WLSE(L; 0;K) reduce to LSE(1; 0;K).
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where

... (23)

We will use (21) mostly for analysis and (22) for estimation.
The WLS (Markov-like) estimate of in (22) is given by

(24)

where is an estimate of .
To estimate , we may proceed as follows. Let

(25)

We can verify that as , goes to

(26)

where

... (27)

Hence, one way to estimate is as

(28)

where is made from some initial estimates of ob-
tained for instance via one of the LS amplitude estimators. The
need for initial amplitude estimates is a drawback ofin (28).
In the following, we try to circumvent this need in two different
ways.

First, we show a way to simplify the WLSE that uses
(24) with (28). From (28), we have that

(29)

where

(30)

For sufficiently large and , is approximately diagonal
since is so (see, e.g., (10)). Consequently

(31)

Inserting (31) into (24) yields (observe that cancels out)

(32)

which, unlike using (24) with (28), does not require any initial
estimate of . The amplitude estimator in (32) can be
interpreted asan extension of the Capon algorithmin [2] and
[3] to multiple sinusoids.

A different estimate of can be obtained as described next.
Observe that

(33)

where

(34)

We can use the vectors introduced above to rewrite
(22) as

(35)

From (35), we can estimate one at a time via LS as

(36)

(Note that we could estimate all simultaneously via
LS, which is, however, more complicated and does not appear
to perform better than (36).) The use of (36) in (26) and (33)
leads to the following estimate of :

(37)

The estimate of in (37) is different from the one in (28), yet we
use the same symbol for both of them to simplify the notation.
The WLSE that uses (24) with (37) does not require
any initial estimate of . It is an extension of the APES
algorithm in [4] to multiple sinusoids with known frequencies.

Remark 2: We note that and in (22) are correlated
(for ), which implies that (24) is suboptimal (as it takes
into account only the correlation between the elements of
but ignores the correlation between and for ).
Yet, the WLS methods are likely to outperform the LS methods
because the latter completely ignore the correlation in .

B. WLSE

The particularization of WLSE to WLSE
is straightforward. Specifically, the WLSE that corre-
sponds to using (24) with (28) can be readily verified (by using
the matrix inversion lemma) to be

(38)

whereas the WLSE that corresponds to using (24) with
(37) is given by

(39)
Note that (38), like (32), does not depend on. However, unlike
(32), (38) isexactlyequivalent to using (24) with (28).Equa-
tions (38) and (39) have the same form as the Capon [2], [3]
and, respectively, the APES [4] spectral estimators. The latter
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two estimators were derived in [6] and [11] by a different ap-
proach, namely, the MAFI approach, which we will consider in
a generalized form in the next section.

It is interesting that the above two amplitude estimators, while
bothasymptotically efficient(and, hence, equivalent), have quite
different finite-sample properties. In particular, it was shown in
[6] and [11] that (38) is biased downward, whereas (39) is unbi-
ased (within a second-order approximation) and, in general, has
a better performance than the former.

IV. MAFI A MPLITUDE ESTIMATORS

In this section, we derive a generalized MAFI approach to
amplitude estimation. Let be a matrix, each row
of which is a finite impulse response (FIR) filter (for some

yet to be specified). The MAFI idea can be explained
as follows.

a) Design so that when applied to , it maximizes
the SNR at the filter outputs.

b) Estimate the amplitudes from the filtered data (whose
SNR should be higher than that in the raw data) by, e.g.,
the LS or WLS technique.

Mathematically, can be obtained as

"Generalized SNR"

(40)

where is constrained in a way that is specified later, and tr
denotes the trace of a matrix. Let

(41)

where denotes the Hermitian square root of the positive
definite matrix argument. Observe that is semiunitary, i.e.,

. The cost function in (40) can now be rewritten as

(42)

It follows from the Poincaré separation theorem (or the gener-
alized Rayleigh quotient theorem) [12] that

(43)

where denotes the eigenvalues of the matrix between
the parentheses, ordered such that ;
furthermore, the columns of the maximizingare equal to the
eigenvectors corresponding to .

Next, note that postmultiplying by any unitary matrix of
appropriate dimensions yields another valid solution for. One
such solution having a simple form can be obtained as follows.
Observe that

rank (44)

which implies that we cannot improve the generalized SNR by
choosing since . On the other
hand, the larger the , the higher the optimal SNR in (43)
and the more filtered data will be available for amplitude esti-
mation. Hence, we choose . In such a case, maximizing

has the same range space as , and hence, it is given
by

(45)

where denotes some nonsingular matrix that makessemi-
unitary. One such is

(46)

Hence

(47)

We next observe that

(48)

satisfies (41). Consequently, we have

(49)

The final step is to observe that postmultiplyingby a non-
singular matrix does not change the generalized SNR criterion.
Then, it follows immediately that

(50)

maximizes the generalized SNR and it also satisfies the con-
straint

(51)

The constraint (51) says that each (row) filter in passes one
sinusoid undistorted and completely annihilates the others.

From (22) and (23), the filtered data corresponding to (50) is
given by

(52)

The covariance matrix of can be estimated as

(53)

It follows that the WLS (Markov-like) estimate of in (52)
is given by (54), shown at the bottom of the next page, which
shows that

MAFI WLSE (55)

The MAFI interpretation of the WLS method, which is
afforded by the above analysis, is interesting. In particular, it
makes a clear connection between using the MAFI and the
WLS techniques for amplitude estimation. The MAFI approach
is, however, more general than the WLS technique. As an
example, we derive a new MAFI amplitude estimator that does
not belong to the WLS class. Let and denote the th
element of and, respectively, in (52). Then

(56)

The above equations are related to one anotheronlyvia the cor-
relation between and (for ). If we ignore
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that correlation, then we can apply LS to (56) to obtain the
MAFI estimate of given by

(57)

Unlike the Capon (38) and APES (39) estimators [which can
also be shown to be members of the MAFI class [6]],
the above MAFI estimatordoesrequire the knowledge
of the number and frequencies of the sinusoids, which makes it
behave more like a MAFI estimator. In particular, it
performs quite well for cases where some sinusoids are closely
spaced, as will be seen in Section V.

Other interesting MAFI amplitude estimators may be devised
by using some other choices of in lieu of the one given in
(50), as the solution to (40) is not unique. Specifically, we may
use a linear transformation on the in (50), or choose

, or replace the in (51) by another nonsingular matrix,
all of these modifications leading to solutions that are different
from (50). Furthermore, we could even change the criterion in
(40) to another reasonable definition of the “generalized SNR.”
However, such variations on the theme of MAFI are beyond the
scope of the present paper.

V. NUMERICAL EXAMPLES

In what follows, we investigate the performances of the var-
ious amplitude estimators described in the previous sections.
For notational simplicity, we will refer to these methods as fol-
lows:

• LSE1: LSE using (12);
• LSEK: LSE using (4);
• Capon1: WLSE using (38);
• APES1: WLSE using (39);
• CaponK: WLSE using (32);
• APESK: WLSE using (24) along with (37);
• MAFI1: MAFI using (57) along with (37).

We will compare these methods with one another as well as the
CRB given in (9). Since all these methods are asymptotically
efficient, we only consider the case whenis relatively small.
Specifically, we choose . The data consist of three com-
plex sinusoids corrupted by a complex Gaussian noise (to
be specified)

(58)

Fig. 1. PSD of the test data that consist of three sinusoids and an AR(1) noise
process.

where

(59)

The frequencies of the sinusoids are , , and
. In addition, , and

.
All examples are based on 200 Monte Carlo simulations. The

MSE figures shown in what follows are obtained as

MSE (60)

where is the estimate of derived in the th simulation
run.

A. Estimation Performance versus SNR

First, we consider the case where is colored. More ex-
actly, is described by the following autoregressive (AR)
equation

(61)

where is a complex white Gaussian noise with zero-mean
and variance . The PSD of the test data is shown in Fig. 1,

(54)
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(a)

(b)

Fig. 2. Empirical MSE’s and the CRB versus local SNR whenN = 32,
M = 8, and the observation noise is colored [an AR(1) process]. (a)� . (b)
� .

where . Thelocal SNR of the th sinusoid is defined
as [7]

SNR

(62)
Note the occurrence of in the above SNR formula. For those
methods that depend on , we choose , giving

(see Section V-B for a study of the effect of on the
performance).

Fig. 2(a) shows the MSE’s of the seven amplitude estimators
for along with the corresponding CRB as the SNR varies.
As we can see, APES1, APESK, and MAFI1 are very close to
the CRB, whereas LSEK, which ignores the noise correlation,
is evidently away from the CRB. CaponK also deviates from

the CRB for most SNR’s. The reason is that the approximation
made in (31) is valid only for large and , which is not the
case in this example. Fig. 2(a) also shows that both LSE1 and
Capon1 are inconsistent (in SNR). Their inconsistency is not
surprising because both are biased estimators. Recall that the
bias of LSE1, as given in (14), does not vanish unlessgoes
to infinity. Similarly, Capon1 is always biased (downward) for
finite [6], [11].

Fig. 2(b) shows the counterpart curves for. (The results for
are omitted because they resemble those for.) Note that

, which is smaller than (the Fourier
resolution limit). The performance degrades for all estimators
under study, especially for LSE1, Capon1, and APES1, which
estimate only one amplitude at a time. As shown in Fig. 2(b),
LSE1 and Capon1 essentially fail for all SNR’s considered due
to their large MSE’s. APES1 is no longer close to the CRB but,
unlike the previous two estimators, it still appears to be con-
sistent (in SNR). As in Fig. 2(a), CaponK again deviates away
from the CRB at high SNR’s. It appears that the approximation
made in (31) introduces a bias (at smalland ) that may
be negligible at low SNR’s but dominates the variance at high
SNR’s. The bias does not disappear as the SNR increases, which
causes the divergence of CaponK from the CRB. APESK per-
forms quite well for high SNRs; however, it is not very stable
at low SNR’s (due to large variance). The best estimator in this
example is MAFI1. The knowledge of the number and locations
of the sinusoids, which the other one-at-a-time estimators do not
necessarily need but is required by MAFI1, appears to play an
important role in the current case.

As stated in Section II, LSEK is statistically efficient, i.e., it
achieves the CRB for any when the observation noise
is white. To see how the other suboptimal (in finite samples)
methods perform in such a case, we consider an example that
is similar to the previous one, except that is replaced by
a zero-mean complex white Gaussian noise. The SNR is de-
fined in the same manner as in (62). Fig. 3(a) and (b) show the
MSE’s of the amplitude estimates of and, respectively,
and the corresponding CRB as the SNR increases. As we can
see, the APES1, APESK, and MAFI1 estimates ofare again
very close to the CRB, whereas for, all suboptimal methods
suffer from some performance loss, as compared with the op-
timal LSEK, and yet the differences between LSEK and MAFI1
for all SNR’s considered here are fairly small.

A brief summary based on the previous study is as follows.
APES1 is recommended in applications where it is known a
priori that no two sinusoids are closely spaced(see, e.g., the
application discussed in the next section) or when the closely
spaced sinusoids are of no interest. The reason to prefer APES1
to APESK or MAFI1 in such cases is that the former is more
flexible than the latter two since APES1 does not necessarily
require knowledge of the sinusoidal frequencies. In terms of
computational cost, APES1 and MAFI1 are similar to one an-
other, and both are simpler than APESK. When it is desiredto
estimate the amplitudes of closely spaced sinusoids in colored
noise, however, MAFI1 may be preferred. In general, we do not
recommend the use of Capon1 since it has a computational com-
plexity similar to that of APES1, but it is biased. Although we
did notice that CaponK gives close-to-CRB performance at very



STOICA et al.: AMPLITUDE ESTIMATION OF SINUSOIDAL SIGNALS 345

(a)

(b)

Fig. 3. Empirical MSE’s and the CRB versus local SNR whenN = 32,
M = 8, and the observation noise is white. (a)� . (b)� .

low SNR’s, in most cases of interest, other methods like APES1
or MAFI1 may be preferred.LSEK is statistically efficient and
may be preferred when the observation noise is white; in cases
where the white noise assumption is invalid, it is preferable to
use APES1 or MAFI1. LSE1 gives comparatively rather poor
estimation accuracy but is computationally quite simple. The
performance differences stated so far occur only whenis rel-
atively small. As increases, the performance of all methods
tends to the CRB, independently of the noise correlation. Hence,
when is sufficiently large, LSE1 should be preferredbecause
of its computational simplicity.

B. The Effect of

All WLS and MAFI amplitude estimators studied in this
paper depend on the choice of: the subvector length. It is
known that as increases, all of them can better deal with the
case of closely spaced sinusoids, but their statistical stability, in

(a)

(b)

Fig. 4. Empirical MSE’s and the CRB versusM whenN = 32 and the
observation noise is colored [an AR(1) process with� = 0:01]. (a) � . (b)
� .

general, decreases [5]. Hence, there is a tradeoff to be kept in
mind when choosing . Note that should also be smaller
than ; otherwise, the estimated covariance matrix will be
rank deficient. The following example examines the effect of

on the performances of these estimators. LSE1 and LSEK do
not depend on and are thus not considered in this example.

The scenario is similar to the first example (AR noise), ex-
cept that we fix , which corresponds to a local SNR
of 30.8 dB for the first sinusoid (at ) and 39.2 dB for
the third sinusoid (at ). is varied from 1 to 16 for
all estimators, except for MAFI1, which requires that
[see (37) and (50)]. The MSE’s of the amplitude estimates of
and, respectively, , and the corresponding CRB’s are shown
in Fig. 4(a) and (b). As can be seen from the figure, all estima-
tors are sensitive to the choice of to a smaller or larger extent.
When no sinusoids are close to the one being estimated, such as
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TABLE I
CHOICE OF M FOR THE WLS AND MAFI

AMPLITUDE ESTIMATORS

the third sinusoid in this example, APES1, APESK, and MAFI1
perform quite well for a wide range of . For the more diffi-
cult case shown in Fig. 4(b), the choice of becomes critical.
Based on our empirical observations, some rules of thumb for
the choice of are given in Table I.

C. Imprecise Knowledge of the Frequencies

The emphasis in this paper has been on amplitude estimation.
The estimation of the frequencies was briefly mentioned but is
not in the main focus of the paper. However, in applications,
the frequencies are rarely “exactly” known. Consequently, it is
an interesting question as to whether the conclusions about and
the assessment of the performance of various amplitude estima-
tion methods remain essentially the same when the frequencies
are imprecisely known. To answer this question, we repeated
the experiment in Section V-B under the conditions described
there, with one exception; in each realization, the frequencies
used by the amplitude estimators were generated by adding to
the true values a set of independent and identically distributed
Gaussian random variables with zero mean and standard devia-
tion denoted by .

Figs. 5 and 6 show the results obtained for and
, respectively. The CRB plots in the figures are the

same as those in Fig. 4 corresponding to the case when the fre-
quencies were exactly known . Comparing the results
in Figs. 4 and 5, we can see that they do not differ much from
one another. To gain an appreciation of this observation, we note
that high-quality oscillators have frequency errors of an order
typically smaller than . For the case of the larger fre-
quency errors considered corresponding to , all am-
plitude estimators under discussion suffer a substantial perfor-
mance degradation (compare Figs. 4 and 6), especially APESK,
whose performance is apparently affected by outliers and is,
hence, relatively unstable (even in the case of ; see Fig.
4). However, the ranking of the estimators and the way their per-
formance varies with in the case of are similar
to those observed in the case of .

VI. A PPLICATION TO SYSTEM IDENTIFICATION

Consider the linear discrete-time system described by [1]

(63)

(a)

(b)

Fig. 5. Empirical MSE’s and the CRB versusM whenN = 32,� = 10 ,
and the observation noise is colored [an AR(1) process with� = 0:01]. (a)
� . (b) � .

where the input is a sinusoidal (probing) signal

(64)

and the transfer function is rational

(65)

We assume that

(66)

Even if and were unknown, could still be chosen suffi-
ciently large to satisfy (66). The problem of interest in this sec-
tion is to estimate and from .
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(a)

(b)

Fig. 6. Empirical MSE’s and the CRB versusM whenN = 32,� = 10 ,
and the observation noise is colored [an AR(1) process with� = 0:01]. (a)
� . (b) � .

A. System Identification Using Amplitude Estimation

The system identification problem associated with (63) is
commonly solved by using the output error method (OEM),
which does not model , and obtains estimates of
and by minimizing the criterion

(67)

where , and . OEM is a
natural choice of a method whose performance should be com-
pared with that of the new method proposed in this paper.

To describe the latter method, let

(68)

For sufficiently large (so that the transient response in the
output can be neglected), the system description in (63) and (64)
is approximately equivalent to

(69)

The method that we propose for estimatingand is based on
(68) and (69) and consists of two steps.

Step 1) Estimate from (69) in an unstructured/non-
parametric form.

Step 2) Fit in (68) to the amplitude estimates
obtained in the previous step by taking into account
the statistical variance of the latter.

The motivation of this two-step method is as follows. The
part of the negative log-likelihood function of the data in (69)
that depends on the parameters of interestand is (under the
Gaussian hypothesis) given by

(70)

where and are as defined in Section II-A. A simple
calculation shows that we can rewrite (70) in the equivalent form

constant (71)

Here, is the maximum-likelihood estimate of the (unstruc-
tured) amplitude vector when the noise covariance matrix
is given

(72)

Next, we note that any of the amplitude estimators previously
described provides a feasible large-sample realization of
above, which does not require the knowledge of. Let
denote an estimate obtained by such an estimator. Since the
estimation errors in vanish, as increases, at a higher
rate than the errors in , we can replace in (71) with
without affecting the asymptotic properties of the estimates of

and obtained by minimizing (71). For sufficiently large,
we can also replace the weighting matrix in (71)
by a consistent estimate of its large-sample limit in (10), once
again without affecting the asymptotics. By doing so, we obtain
the following large-sample approximation of the criterion in
(71):

(73)

where is a consistent estimate of . To derive esti-
mates of and as outlined above, we first need to compute

[Step 1) of the two-step method] and next minimize the fit-
ting criterion in (73) with respect to and [Step 2)]. The
so-obtained estimates of the parameters of interest inand
areasymptotically statistically efficient, as implied by the above
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(a) (b)

(c)

Fig. 7. Averaged RMSE’s and the number of flops versusN for the first system when the observation noise is white(� = 0:01) andM = 20 for APES1 and
MAFI1. (a) RMSE ofa parameters. (b) RMSE ofb parameters. (c) Number of flops.

sketched derivation of (73). This fact also follows, in more exact
terms, from the extended invariance principle (EXIP) [13].

As mentioned above, the estimates ofand derived from
(73)asymptoticallyachieve the CRB performance regardless of
which of the amplitude estimators in Sections III and IV is used
to obtain . However, enhancedfinite-sampleperformance
will result if the amplitude estimator is carefully selected, for
instance, by using the guidelines provided in the previous sec-
tions.

In what follows, we detail the two steps of the proposed
method.

Step 1) Use an appropriate amplitude estimator to obtain
estimates of from the measure-
ments . APES1 may be recommended in
this case because we have control over the probing
signal, and usually, we have no reason to choose
any of the sinusoids too close to one another. The

large-sample variance of the estimated amplitudes
is proportional to (see Section

II). To obtain the estimates of needed in
(73), we can first calculate

(74)

and then utilize either a parametric or a non-
parametric PSD estimator [5], [7], [8] to obtain

. In the examples given in Section
VI-B, we use the Capon PSD estimator [2], [3], [5],
which determines as

(75)
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where is defined in (34), and is the
sample covariance matrix of the estimated noise vec-
tors

(76)

that is

(77)

Step 2) Obtain estimates of by minimizing the crite-
rion in (73). To do so, we can use a host of methods,
provided that we have good initial estimates ofand

.
To obtain initial estimates and then minimize (73), we assume

that and are known. (Standard techniques for system order
determination can be found in, e.g., [1] and [14].) We pick up
the largest and define a criterion made from the
corresponding terms of (73)

(78)

where we have assumed, for notational simplicity, that
are the chosen amplitudes. [Given that was esti-
mated, an alternative would be to choose those that have
the largest ratio ; however, for the sake of computa-
tional simplicity, we may want to skip the estimation of ;
then, this alternative cannot be used. See below.] Now, the min-
imization of (78) is simple. Indeed, we can chooseand to
satisfy

(79)

or, equivalently

(80)

which can be rewritten as a linear system of equations
with unknowns . That system will generally have
a unique solution that is also the minimizer of (78) [it makes (78)
equal to zero], and which gives our initial estimates of .
As shown in the following numerical examples,the initial es-
timates are usually quite good. Hence, we can skip the step of
minimizing(73) to save computations.

We reiterate that according to the aforementioned EXIP of
[13], the estimates of obtained by minimizing(73)
achieve the CRB asymptotically, and hence, they have a better
asymptotic accuracy than the OEM estimates whenever
is colored. It also follows from this observation that in the
case of , the simple estimates obtained from (80)
are asymptotically efficient. This latter result (of a somewhat
limited interest due to the requirement that ) was
first proved in [15] in a relatively complicated way.

B. Numerical Examples

The following examples assume thatand are known to fa-
cilitate performance comparison. It is reasonable to do so since
both OEM and the proposed method use similar techniques to

Fig. 8. PSD estimate of the output of the first system corrupted by white noise
with � = 0:01 andN = 200.

determine the model orders. In addition, we adopt the strategy
to choose the largest to obtain the initial estimates
of and needed in Step 2) of the proposed method.

Example 6.2.1:The system considered in this example is
given by (65) with

(81)

and

(82)

The probing signal is given by

(83)

We consider using a real-valued probing signal because this is
the usual case in practice. (A subtle question then arises as the
amplitude estimation techniques discussed in the previous sec-
tions all assume that the sinusoids are complex valued. We might
impose certain conjugate symmetry constraints and derive sim-
ilar techniques that are specifically tailored to real-valued sinu-
soidal amplitude estimation so that if, for example ,
then the estimators will give . Yet, our experience
shows that the gain would most often be minor, and hence,
the effort is not worthwhile. See [16], for example.) Note that

for the signal in (83). The noise is a real-valued
whiteGaussian noise with zero-mean and variance .
We estimate the system parameters using the proposed tech-
nique andthe (time-domain) OEM that obtains parameter es-
timates by minimizing (67). (The computer routine used for
OEM is the one provided in the system identification toolbox of
MATLAB). For the proposed technique, we compute boththe
initial estimates given by solving(80) andthe minimizer of(73).
The minimizer of (73) is found by using the solution of (80),
based on APES1, as the initial condition and then employing a
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(a) (b)

(c)

Fig. 9. Averaged RMSE’s and the number of flops versusN for the second system when the observation noise is colored [an AR(1) process with� = 0:01]
andM = 20 for APES1 and MAFI1. (a) RMSE ofa parameters. (b) RMSE ofb parameters. (c) Number of flops.

standard gradient-type nonlinear optimization routine provided
by MATLAB. To reduce the number of graphs, we only show
the averaged root mean squared error (RMSE) for theparam-
eters

RMSE RMSE (84)

and similarly for the parameters. All results are based on 200
Monte Carlo simulations. Fig. 7(a) and (b) show the averaged
RMSE’s of the parameters and, respectively, theparame-
ters obtained by using OEM and the proposed technique, as
increases. Fig. 7(c) shows the required number of flops as
increases. (APES1 and MAFI1 use in this and the fol-
lowing example, which does not fall in the range given in Table
I. The reason is that APES1 or MAFI1 with is quite
acceptable for the probing signal in (83) that contains well-sep-

arated sinusoids, and hence, choosing a largerwould only re-
sult in additional computations.) Finding the minimizer of (73)
or the OEM estimates involve iterative searches that give vari-
able flop counts from trial to trial. The number of flops needed
by each of these two methods, as shown in Fig. 7(c), is the av-
erage over 200 trials. As we can see, the initial estimates of

given by using (80) with APES1 or MAFI1 have similar
RMSE’s to those obtained by OEM. The estimates obtained by
minimizing (73) are slightly better than the initial estimates ob-
tained using APES1 or MAFI1 but at a significantly increased
computational cost. Due to this observation,we do not recom-
mend using this approach, i.e., minimizing(73), for refined es-
timation accuracy. Fig. 7(c) also shows that as compared with
OEM, there is little computational advantage associated with
using the initial estimates obtained by APES1 and MAFI1. The
reason may be that the system in this example is quite simple (it
has white output errors, etc.), and apparently, OEM reaches con-
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vergence in a relatively small number of iterations. For a more
complex system, such as the one used in the next example, OEM
may need more iterations to converge. It should also be men-
tioned that we did not program our method very carefully, and
hence, our code is unlikely to be as efficient as the OEM code
in MATLAB. Regarding the estimation accuracy, we will stress
that in the current case where the noise is white, OEM co-
incides with the optimal maximum likelihood method (MLM)
[1], [14]. When is colored, OEM is no longer MLM. In that
case, the initial system parameter estimates obtained by APES1
or MAFI1 may outperform OEM, as shown in the next example.

Recall that LSEK is statistically efficient when the obser-
vation noise is white. Then, we might wonder why the initial
estimates given by LSEK may be notably worse in such a case
than those given by APES1 or MAFI1, as happened in the
previous example (especially when is small). The reason is
that the transient response of this system cannot be neglected
for small . To show this, the PSD of is estimated by
using the Capon PSD estimator, with and ,
and is plotted in Fig. 8. It shows two extra peaks (which behave
like two sinusoids) at . The extra peaks are attributed to
the response of the system (which has poles at )
to the initial conditions. Since it is essential for the LSEK to
haveaccurateknowledge of the number and frequencies of the
sinusoids to give reliable amplitude estimates, there is no sur-
prise (with the above explanation in mind) that its performance
in the previous example is considerably deteriorated. On the
other hand, the above knowledge is not necessarily needed
by APES1, and hence, its performance is not affected. Unlike
APES1, MAFI1 does require this knowledge. Yet, the system
response to the initial condition is substantially weakened by
the frequency selective filtering employed by MAFI1, and
hence, it has little, if any, effect on the amplitude estimates and
the system parameter estimates. Asincreases, the transient
effect becomes less severe, and consequently, the initial system
parameter estimates obtained by using LSEK approach those
obtained by APES1 or MAFI1.

Example 6.2.2:We now consider a second system with

(85)

and

(86)

The noise is anAR(1) signalas in (61), except that
is now replaced by a real-valued white Gaussian noise with
zero-mean and variance . The probing signal is the
same as in the previous example. Fig. 9(a)–(c) show the aver-
aged RMSE’s of the parameters and theparameters, as well
as the number of flops, as increases. As we can see, the ini-
tial system parameter estimates given by APES1 or MAFI1 are
nearly statistically efficient and significantly better than those
given by OEM, and yet, the former two are computationally
more efficient than the latter.Our conclusion is that the method

that derives estimates ofand by solving the linear system
in (80), where are obtained by either APES1 or MAFI1,
should be the method of choice for the system identification
problem under discussion.

VII. CONCLUSION

In this paper, we investigated the problem of amplitude
estimation of sinusoidal signals in colored noise. Three gen-
eral classes of estimators, namely the LS, WLS, and MAFI
approaches to amplitude estimation, have been discussed.
We have shown that under certain circumstances, the MAFI
approach to amplitude estimation is equivalent to the WLS
approach, and yet, the former is more general and includes
the latter as a special case. The amplitude estimators under
discussion can be further categorized, depending on whether
they estimate one amplitude at a time or all amplitudes simul-
taneously. MAFI or WLS methods, such as APES1, APESK,
and MAFI1, in general give more accurate amplitude estimates
for sinusoids in colored noise. Methods that estimate only
one amplitude at a time, such as APES1, do not necessarily
require the exact knowledge of the number and locations of the
sinusoids and, hence, are more robust than those that estimate
all amplitudes simultaneously.

We have also studied a system identification application using
sinusoidal probing signals. We have presented a simple tech-
nique for system identification that can avoid iterative search
such as the one required by OEM. We have shown that by using
this simple technique with appropriate amplitude estimators,
such as APES1 or MAFI1, we can obtain results that are gener-
ally better than those corresponding to the widely used iterative
OEM, yet usually at a reduced computational cost.
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