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Amplitude Estimation of Sinusoidal Signals: Survey,
New Results, and an Application
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Abstract—This paper considers the problem of amplitude We assume thaw, }_; are known, withw;, # wy, for k # 1.
estimation of sinusoidal signals from observations corrupted The problem of interest is to estima{tak}f’:l from the obser-

by colored noise. A relatively large number of amplitude esti- 4tign N=1 Inthi rw ri relativelv lar
mators, which encompass least Iquares (LS) and weighted least at Ob S{xgn)}’tﬁod' ft N pl)a_pe {h'e desbclz be arelatively large
squares (WLS) r_nethods, are described. Additionally, filte(bank num e_r 0 me_ 0das for solving this probiem. .
approaches, which are widely used for spectral analysis, are Section Il discusses least squares (LS) methods, which are

extended to amplitude estimation. More exactly, we consider the widely used for amplitude estimation because they are simple
recently introduced matched-filterbank (MAFI) approach and  and easy to implement. If we restrict ourselves to estimating
show that by appropriately designing the prefilters, the MAFIap- 41y one amplitude at a time, then the LS method reduces to the

proach to amplitude estimation includes the WLS approach. The . .
amplitude estimation techniques discussed in this paper do not discrete Fourier transform (DFT) of the data at the frequency of

model the observation noise, and yet, they are all asymptotically the desired sinusoid, which is computationally more efficient
statistically efficient. It is, however, their different finite-sample than the LS method that estimat&S amplitudes simultane-

properties that are of particular interest to this study. Numerical  ously. Moreover, estimating one amplitude at a time does not
examples are provided to illustrate the differences among the necegsarily require exact knowledge of either the number of si-

various amplitude estimators. Although amplitude estimation ids in the dat the f locati f hsi id
applications are numerous, we focus herein on the problem of nusoids In the data or the frequency location or each sinusoid,

system identification using sinusoidal probing signals for which Which is a desired property in some applications. The disadvan-
we provide a computationally simple and statistically accurate tage, however, is that using this one-at-a-time technique gives

solution. rather poor amplitude estimates when some sinusoids (that are
Index Terms—Amplitude estimation, spectral analysis, system of interestto us) are close to one another. Statistical analyses that
identification. compare the merits of the two LS methods are also provided in
Section II.

Since the LS methods completely ignore the correlation of
the observation noise, they are, in general, suboptimal. By par-
ONSIDER the noise-corrupted observationsifcom- titioning the data vector into a number of overlapping subvec-
plex-valued sinusoids tors, the covariance matrix of the noise-only part of the data

K subvectors can be estimated, which makes it possible to use a
z(n) = Z ap et + v(n), n=0,1,...N—1 (1) Markov-like estimator that is optimal in the class of weighted

b1 least squares (WLS) techniques [1]. We describe in Section 111
several ways to estimate the aforementioned covariance matrix
that lead to different WLS amplitude estimators. Additionally,
we show that if the restriction of estimating one amplitude at a
time is again imposed, we obtain two WLS amplitude estima-

v(n) observation noise, which is complex valued and agqrs that are eguivalent o the Capon [2], [3] gnd amplitude and
sumed to be stationary (and possibly colored) Wit[%hase estimation (APES) [4] methods extensively used for spec-

. Iral analysis.
mean zero and finite unknown power spectral densi . .
(PSD)¢(w) P P Y The observation that some general spectral estimators, such

as Capon and APES, can be used to solve the problem posed in
(1) motivated us to seek other relatively sophisticated spectral
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|I. INTRODUCTION

where
ar  complex amplitude of théith sinusoid having fre-
quencywy;
N number of available data samples;
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to spectral estimation [6]. Even though neither Capon nor APE® with obvious definitions
was derived in the MAFI framework (see [2] and [4] for their .
original derivations), it was found that both are members of the x=Aa+v ®3)
MAF.' approach [6]. 'T‘ the light of the work of [6], we der've.'nwhich is a linear regression equation. The LS estimate isf
Section IV a generalized MAFI approach to amplitude estima-
tion. Interestingly enough, we show that under certain circum- a=(ATA)1AHx (4)
stances, MAFI amplitude estimators have equivalent forms to
the WLS methods. However, the MAFI approach is more geihere(-)”’ denotes the conjugate transpose. Note that the noise
eral than the WLS technique in that the latter is a special cdgeot modeled, even though it may be correlated. Despite this
of the former. To show this, a new MAFI amplitude estimatoiact, LSE1, 0, K) is asymptotically efficient [9]. A relatively
that does not fall into the WLS category is described in Sectiginple manner to see this is as follows. First, note fipk} =
IV. Other interesting MAFI amplitude estimators may exist, bu¥. Where E{-} denotes the statistical expectation. The mean
they have yet to be discovered. squared error (MSE) ak is

A common feature of the amplitude estimators considered . N . . H
in this paper is that none of them models the observation noise MSE{a} = cofa} = E{(& - a)(a@—a)" }
exactly. Even so, all methods are asymptotically statistically = (ATA)TTAEWA(AHA)L (5)
efficient, that is, they all achieve the Cramér-Rao bound (CRB) A
in large samples. However, their finite-sample propertiewhereW = E{vv*}. Hence, since (see, e.g., [10])
which are of primary interest to this work, are quite different.

. 1 -y
Since the finite-sample analysis is intractable in most cases, we A}lIn N(AHA) =1In (6)
use Monte-Carlo simulations in Section V to compare these
methods with one another. wherely denotes theéV x N identity matrix, and
The amplitude estimation problem in (1) occurs in a variety $lwr) 0

of signal processing applications (see, e.g., [7], [8], and the ref- ) 1~ e = _
erences therein). In Section VI , we discuss its application to ;\ll_lféo N(A WA) = - (7)
system identification. We show that by using sinusoidal probing 0 H(wi)

signals and appropriate amplitude estimators, we can avoid the . o

iterative search required by standard system identification roEE-e asymptotic MSE is given by

tines, such as the (time-domain) output error method (OEM) [1] Pwr) 0
and yet achieve CRB-like performance by using a computation- lim NMSE{a} = . ) o)
ally efficient parameter estimator. N—oo '

In concluding this section, we introduce the following nota- 0 Plwr)

tion to distinguish among the various amplitude estimators. Fghder the mild assumption that») is circularly symmetric

instance, LSEL,0,1) denotes the LS estimator that does nataussian, the CRB fag is given by (see, e.g., [1])
split the data (and hence, it uses one data “snapshot”), uses no

prefiltering, and estimates one amplitude at a time. Likewise, CRB{a} = (AHWtA)™1 9)

MAFI (L, K, K) denotes the MAFI estimator that splits the dat

into L subvectors, utilizes a bank &f prefilters, and estimates

K amplitudes simultaneously. The remaining amplitude estima- [ ¢~ (w) 0
o . 1. N

tors are similarly designated. lim N(A”W_lA) _

6Sing the result (see [10] once again)

N—oo

—1
Il. LS AMPLITUDE ESTIMATORS L ¢ (wk) 10)
We consider two LS methods in this section, namelye obtain
LSE(1,0, K) and LSKE1,0,1). -

P(wi) 0
A. LSKE1,0,K) A}im NCRB{a} = (11)
This is perhaps the most direct approach. Let us write the | O Hwr)

available data sequence in the form which coincides with (8).

2(0) r 1 .. 1 a1 Remark 1: It can be readily checked from (5) and (9) that if

z(1) edwn eIwK o v(n) is white, i.e.,W ~ I, then LSE1,0, K) is statistically

. = : . : . efficient forall vV > K.
a(N—1)d L0 e Lo ] Bl LsR1,0,1)
- v(0)

Since the observation noisén) is not modeled, an idea that

+ v(1) ) reduces the computational burden of the LS approach quite a bit
: is to includeK — 1 sinusoids in the noise term and, hence, es-

Lv(N —1) timate only one amplitude at a time. In some signal processing
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applications, the frequenci¢s;, } X, may be unknown. Atyp- an example of such a case, assume SKRL andW = Iy.
ical way to estimate botfioy, }< ;| and{w; }_, would consist Then, for (12)
of estimating just one amplitude for varying frequency and then
detecting the peaks in the so-obtained spectrum [5], [7], [8]. As MSE{a:} ~ (a"a)™* (17)
such, the assumption made in Section | that}* | are known
a priori may be relaxed when using the one-at-a-time technigqughereas for (4)

There is a somewhat subtle problem with the above tech- Lo
nique; the sum ofi(n) and K — 1 sinusoids no longer has a MSE{a.} = [(A"A)™]1, (18)
finite PSD, and hence, one of the previously made assumptions ,
fails. Nevertheless, the idea still works as long as no two sinffhich can be much larger than (17) (e.gJuf. —wi| ~ 2n/N
soids (that are of interest) are spaced too close to one anotffdrSOmek > 2). In (18),[]; ; denotes the;th element of the

as shown below and later in Section V. matrix argument. . o
The LSH1,0,1) is easily derived as Note that for most cases of interest, 3B, K) will give

more accurate amplitude estimates than USE, 1) and that
N1 the difference between these two estimators is small for large
Gp = 1 Z z(n)e 7" k=12 K (12) N.Ontheotherhand, LSE, 0, 1) is computationally more ef-
N~ ficient than LSEL, 0, K) since the matrix multiplication and
inversion in (4) are avoided. Hence, L8EO, 1) may still be
which is recognized as the DFT ¢f:(n)}) ~} atwy. The two worth considering.
estimates in (4) and (12) will be close to one anothéwjf —
wi| > 2n /N (VE, Ik # 1) [5]. lIl. WLS AMPLITUDE ESTIMATORS
An analysis of LSEL, 0,1) runs as follows. Without loss of
generality, let us consider (12) fér = 1. The LSKE1,0,1)
estimate ofy; can be written as

If we partition the data vectax into (overlapping) subvec-
tors, then the covariance matrix of the noise part of the sub-
vectors may be estimated and can, hence, be used to derive an
“optimal” WLS estimator (i.e., a Markov-like estimator) [1]. In
this section, we describe a number of such WLS estimators that
split the data string into overlapping vectors of shorter length,
utilize no prefiltering, and estimate either oneforamplitudes

a = (@"a)~tafx (13)

wherea = [1 ¢/« ... JV=U«1|T and wherg-)? denotes
the transpose. Taking the expectation of (13) yields

at a time.
. 1 . mx-
E{én} =y + NaHAa (14) A. WLSEL,0, K)
We define the following data subvectors
wherea = [a> -+ ax]”, andA is defined througtia A] 2 T
A. Hence, LSEL1,0,1) is biased. However, it is asymptotically y@O) =[z() z(+1) - z(+M-1)]
unbiased (that is, its bias goes to zeroMs— o). We next l=0,1,---,L—-1 (19)

calculate the MSE of; as
wherel, £ N — M + 1. The choice of\f or, equivalently, of.

MSE{a:} = (a”a)a" (Aaa” A" + W)a(a'a)~!. s discussed in Section VWe have
(15) 1 1 o ej‘“'ll

Making use of (7) once again, along with the fact that o s L eonl
Af3/\/N — 0asN — oo, we have yiy=| © ¢ a2¢

lim NMSE{a} = ¢(w1). (16) ML MV ] g edend

N—oo U(l)
Hence, LSE1,0,1) is also asymptotically efficient. On the N o(l+1) (20)
other hand, in finite samples, (12) may be better or worse than :
(4), depending on the characteristics of the scenario under v(l+ M — 1)

study.

The fact that (4) may be better than (12) comes as no sor; with obvious notation
prise. As an example, let us assume that the signal-to-noise ratio
(SNR) is high. Then, the bias of (12) dominates the variance y(l) = As(l) + (1). (21)
part. On the other hand, (4) has no bias, and its variance will be
smaller than the bias of (12) if the SNR is large enough. Congglternatively, we can rewrite (20) as
guently, the MSE of (4) will be smaller than that of (12).

The factthat (12) may be better than (4) is, however, a surprise y(l) = A + €(1) (22)
[even though the biased estimator in (12) nraprinciplehave 13/ may be chosen smaller than, see, e.g., Fig. 4. Moreover, whad = 1,
a smaller MSE than the CRB for unbiased estimates in (9)]. FarwLSE(L, 0, K') reduce to LSEL, 0, K).
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where A different estimate of) can be obtained as described next.
ol Observe that
el 0
AZ2A 2 AD,. (23) H X fi - i’
0 wnl APAY = [wma(wp)]laa(w)]” = 887 (33)
k=1 k=1

We will use (21) mostly for analysis and (22) for estimation. \yhere
The WLS (Markov-like) estimate ak in (22) is given by

- joo .. (M=1)e T
- — alw)=[1 e e I (34)
a= [Z Af{Q_lAl] Z AfIQ_IY(l)] (24) We can use the vectors3, }1<, introduced above to rewrite
1=0 1=0 (22) as
whereQ is an estimate of = E{e({)e" (1)}. K N
To estimateQ, we may proceed as follows. Let y() = B + ). (35)
k=1
L—1
L1 . . .
R— 7 Z y(l)yH(l). (25) From (35), we can estimaf®, one at a time via LS as
=0 =

ﬂk:zZy(l)e_j“’“lég(wk), k=1,2,...,K. (36)

We can verify that af. — oo, R goes to P

R=APA" +Q (26) (Note that we could estimate &3, }, simultaneously via
LS, which is, however, more complicated and does not appear
where to perform better than (36).) The use of (36) in (26) and (33)
o 2 0 leads to the following estimate @}:
P = . . . (27) N N K "
0 o |? QIR—;g(wk)g (wr)- (37)

Hence, one way to estima® is as The estimate o) in (37) is different from the one in (28), yet we

use the same symbol for both of them to simplify the notation.
The WLSEL, 0, K) that uses (24) with (37) does not require
whereP is made from some initial estimates ff;}X_, ob- any initial estimate of ax }j_, . Itis an extension of the APES
tained for instance via one of the LS amplitude estimators. TA§Orithmin [4] to multiple sinusoids with known frequencies

Q=R-APA" (28)

need for initial amplitude estimates is a drawbackpin (28). ~ Remark 2: We note that(k) ande(l) in (22) are correlated
In the following, we try to circumvent this need in two differen{for & # 1), which implies that (24) is suboptimal (as it takes
ways. into account only the correlation between the elementgof
First, we show a way to simplify the WLSE, 0, K) that uses but ignores the correlation betweefi) ande(k) for & # ).
(24) with (28). From (28), we have that Yet, the WLS methods are likely to outperform the LS methods
because the latter completely ignore the correlatios(ir).
RQ'A=APAPQ'A+A=AT (29)

B. WLSEL,0,1)

where The particularization of WLSE.,0, K) to WLSEL,0,1)
A B HA-L is straightforward. Specifically, the WLSE, 0, 1) that corre-
IF=PA"Q "A+lIx. (30) sponds to using (24) with (28) can be readily verified (by using

For sufficiently largeN and M, I' is approximately diagonal the matrix inversion lemma) to be

sinceA7 Q=1 A is so (see, e.g., (10)). Consequently . a” (wi)Rg(wr)

Q'A; =R'ATD,~R'ADT =R 'AT. (31) al(wp)R™1a(wg)
whereas the WLSE., 0, 1) that corresponds to using (24) with
(37) is given by

k=12,...,K (38)

Inserting (31) into (24) yields (observe tHaf' cancels out)

K.

(39)
which, unlike using (24) with (28), does not require any initiaNote that (38), like (32), does not dependiBrHowever, unlike
estimate of{as }< . The amplitude estimator in (32) can bg32), (38) isexactlyequivalent to using (24) with (28Equa-
interpreted asn extension of the Capon algorithim[2] and tions (38) and (39) have the same form as the Capon [2], [3]
[3] to multiple sinusoids and, respectively, the APES [4] spectral estimatdrise latter

= e L  a(wy)R—glwn)e™ ()] g (wr)
8 2] AIR Al AIR [ 32 ap = = 5 k= g Ly
E: ] E: Y )] B2 = R g o] a7
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two estimators were derived in [6] and [11] by a different apX has the same range space@rsl/QA, and hence, it is given
proach, namely, the MAFI approach, which we will consider iby
a generalized form in the next section. 12

Itis interesting that the above two amplitude estimators, while X=Q AT (45)
b?‘hasy”?p_“’“‘:a”y efficier(nnq, hence_, equivglent), have qyit%vhereT denotes some nonsingular matrix that maXKesemi-
different finite-sample propertiefn particular, it was shown in unitary. One suchl is
[6] and [11] that (38) is biased downward, whereas (39) is unbi-
ased (within a second-order approximation) and, in general, has T = (AHQflA)fl/? (46)
a better performance than the former.

Hence

IV. MAFI A MPLITUDE ESTIMATORS X — Qfl/QA(AHQflA)fl/Q' (47)

In this section, we derive a generalized MAFI approach to
amplitude estimation. Lé* ¢ CX*M pe a matrix, each row We next observe that
of which is a finite impulse response (FIR) filter (for some

i _ A-1/2
K < M yet to be specified). The MAFI idea can be explained H=Q X (48)
as follows. satisfies (41). Consequently, we have
a) DesignH" so that when applied toy ()}, it maximizes .~ WAl 1o
the SNR at the¥ filter outputs. H=Q 'AA"Q A/ (49)

b) Estimate the amplitudes from the filtered data (who
SNR should be higher than that in the raw data) by, e.
the LS or WLS technique.

Mathematically,H can be obtained as

Sfhe final step is to observe that postmultiplyik by a non-
%’lhgular matrix does not change the generalized SNR criterion.
Then, it follows immediately that

_H-1 HA-1 A1
H = arg max [ (HY QH) ' HY(APA")H]  (40) H=Q AA"QA) (50)

"Generaﬁzed SNR"

maximizes the generalized SNR and it also satisfies the con-

straint
whereH is constrained in a way that is specified later, arfg tr .
denotes the trace of a matrix. Let H"A =1g. (51)
xXH — (HHQH)fl/QHHQl/Q (41) The constraint (51) says that each (row) filtelHi#’ passes one

sinusoid undistorted and completely annihilates the others.
where(-)!/2 denotes the Hermitian square root of the positive From (22) and (23), the filtered data corresponding to (50) is
definite matrix argument. Observe thXtis semiunitary, i.e., given by
XH"X =1Ij. The cost function in (40) can now be rewritten as A A
z(1) = Hy(l) =Dja + H ¢(1) = Dya + v(0)
f=uXEQ Y2APATQ V2X]. (42) 1=0.1,.. . .L—1. (52)

It follows from the Poincaré separation theorem (or the genéfne covariance matrix af(1) can be estimated as
alized Rayleigh quotient theorem) [12] that

. HIQH = (APQ~tA)™ (53)
39

max f = A(QTVZAPATQTY?) (43) It follows that the WLS (Markov-like) estimate af in (52)

k=1 is given by (54), shown at the bottom of the next page, which

where {\(-)} denotes the eigenvalues of the matrix betweetnoWs that
the parentheses, ordered such that> As > --- > Auy; MAFI (L, K, K) = WLSE(L, 0, K) (55)
furthermore, the columns of the maximizidgare equal to the Y A
eigenvectors corresponding fo | . The MAFI interpretation of the WLS method, which is

Next, note that postmultiplying by any unitary matrix of afforded by the above analysis, is interesting. In particular, it
appropriate dimensions yields another valid solutior’oOne makes a clear connection between using the MAFI and the
such solution having a simple form can be obtained as follows/LS techniques for amplitude estimation. The MAFI approach
Observe that is, however, more general than the WLS technique. As an
example, we derive a new MAFI amplitude estimator that does
not belong to the WLS class. Let (1) andw4 (1) denote théith
l%I,ement ofz(1) and, respectivelyy() in (52). Then

ranK Q™ Y2APAR QY = K (44)

which implies that we cannot improve the generalized SNR
choosingK’ > K sincelx i1 = --- = Ay = 0. On the other (D) = ane ! (D), k=12,...,K. (56)
hand, the larger th& < K, the higher the optimal SNR in (43)

and the more filtered data will be available for amplitude estFhe above equations are related to one anathbvia the cor-
mation. Hence, we chood€é = K. In such a case, maximizing relation between/ (1) andv,(I) (for & # p). If we ignore
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that correlation, then we can apply LS to (56) to obtain tt ! ! : § § ! :
MAFI(L, K, 1) estimate ofx, given by : ' : : : '

L—-1
Z Zk(l)e_jwkl' (57) 20
=0

S

by, =

Unlike the Capon (38) and APES (39) estimators [which ce
also be shown to be members of the MAE]) K, 1) class [6]],
the above MAF{(L, K, 1) estimatordoesrequire the knowledge
of the number and frequencies of the sinusoids, which make:g,
behave more like a MAKL, K, K) estimator. In particular, it
performs quite well for cases where some sinusoids are clos
spaced, as will be seen in Section V.

Other interesting MAFI amplitude estimators may be devise
by using some other choices Hf in lieu of the one given in : :
(50), as the solution to (40) is not unique. Specifically, we me B i w8 w2 oa oy 0102 03 04 05
use a linear transformation on ti& in (50), or chooseX < e
K, or replace thdy in (51) by another nonsingular matrix,Fig. 1. PSD of the test data that consist of three sinusoids and an AR(1) noise
all of these modifications leading to solutions that are differeAt°c€ss:
from (50). Furthermore, we could even change the criterion in
(40) to another reasonable definition of the “generalized SNRwahere
However, such variations on the theme of MAFI are beyond the

3
scope of the present paper. s(n) = Z ape 2 (59)
k=1

er Spectral Density — dB

-20

V. NUMERICAL EXAMPLES

. ) The frequencies of the sinusoids gke= 0.1, f> = 0.11, and
~ In what follows, we investigate the performances of the vale _ 0.3. In addition,a; = ¢/™/4, ap = ¢/*/3, andas =
ious amplitude estimators described in the previous sectiongr/4

For notational simplicity, we will refer to these methods as fol- 4, .examples are based on 200 Monte Carlo simulations. The

lows: MSE figures shown in what follows are obtained as
* LSE1: LSKE1,0,1) using (12);
* LSEK: LSK1, 0, K) using (4); ) ] 200 o
« Caponl: WLSEL, 0, 1) using (38); MSE{dr} = 555 > Jéw (i) — ol (60)
» APES1: WLSEL,0,1) using (39); i=1

» CaponK: WLSEL, 0, K') using (32);

» APESK: WLSHKE L, 0, K) using (24) along with (37);

* MAFI1: MAFI (L, K, 1) using (57) along with (37).
We will compare these methods with one another as well as tRe Estimation Performance versus SNR
CRB given in (9). Since all these methods are asymptotically
efficient, we only consider the case whahis relatively small.
Specifically, we choos& = 32. The data consist of three com-

whereéy (4) is the estimate ofy, derived in theith simulation
run.

First, we consider the case wharg:) is colored. More ex-
actly, v(n) is described by the following autoregressive (AR)

plex sinusoids corrupted by a complex Gaussian ngis¢ (to equation
be specified) v(n) =0.99%(n — 1) + e(n) (61)
z(n) =s(n) +v(n), n=01,...,N—-1 (58) wheree(n) is a complex white Gaussian noise with zero-mean

and variancer?. The PSD of the test data is shown in Fig. 1,

(54)

I
s
~I
‘O>
|
g
| I
N
| — |
M
L
s
~I
‘O>
|
<
=
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N=32,M=8,f3=0.3,co!ored noise

1o . . : . . the CRB for most SNR'’s. The reason is that the approximation
made in (31) is valid only for largé&V and A4, which is not the

__ LsE1 case in this example. Fig. 2(a) also shows that both LSE1 and
' T Geem| 1 Caponl are inconsistent (in SNR). Their inconsistency is not
B é:’EOSJK surprising because both are biased estimators. Recall that the
ok o APESK| | bias of LSE1, as given in (14), does not vanish unl¥sgoes
S CRB to infinity. Similarly, Caponl is always biased (downward) for
T finite V [6], [11].

2 g E Fig. 2(b) shows the counterpart curvesdar (The results for
<& o el _ ap are omitted because they resemble thosexfoy Note that

Mean—Squared Error
S

ol °§ “ouigee g ..a] J2— f1 =001, whichis smaller than/N = 0.03 (the Fourier
BRIt ¢ resolution limit). The performance degrades for all estimators
el under study, especially for LSE1, Caponl, and APES1, which
10 e " _{ estimate only one amplitude at a time. As shown in Fig. 2(b),

LSE1 and Capon1 essentially fail for all SNR’s considered due
. . . . .| totheir large MSE’s. APESL1 is no longer close to the CRB but,
20 2 % A 45 50 unlike the previous two estimators, it still appears to be con-
ocel SR~ sistent (in SNR). As in Fig. 2(a), CaponK again deviates away
(@) _ from the CRB at high SNR’s. It appears that the approximation
| NORMA, 0 colored nolse made in (31) introduces a bias (at smalland M/) that may
be negligible at low SNR'’s but dominates the variance at high
SNR’s. The bias does not disappear as the SNR increases, which
causes the divergence of CaponK from the CRB. APESK per-
forms quite well for high SNRs; however, it is not very stable
at low SNR’s (due to large variance). The best estimator in this
example is MAFI1. The knowledge of the number and locations
of the sinusoids, which the other one-at-a-time estimators do not
necessarily need but is required by MAFI1, appears to play an
important role in the current case.
As stated in Section Il, LSEK is statistically efficient, i.e., it
achieves the CRB for any/ > K when the observation noise
is white. To see how the other suboptimal (in finite samples)

Mean-Squared Error

S
‘f@@*ﬂﬁ:

APESK . .
MAFI1 1 methods perform in such a case, we consider an example that

CRB

is similar to the previous one, except thdk) is replaced by
o . . . . . a zero-mean complex white Gaussian noise. The SNR is de-
1 20 B el 35 4 fined in the same manner as in (62). Fig. 3(a) and (b) show the
®) MSE'’s of the amplitude estimates of and, respectivelyg;
and the corresponding CRB as the SNR increases. As we can
Fig. 2. Empirical MSE'’s and the CRB versus local SNR whén= 32, see, the APES1, APESK, and MAFI1 estimatesgfire again
M = 8, and the observation noise is colored [an AR(1) processlx{a)b) very close to the CRB, whereas for, all suboptimal methods
o suffer from some performance loss, as compared with the op-
timal LSEK, and yet the differences between LSEK and MAFI1
wheres? = 0.01. Thelocal SNR of thekth sinusoid is defined for all SNR’s considered here are fairly small.

as [7] A brief summary based on the previous study is as follows.
a2 Nl AI?ESl is recomm(_ended_ in applications where it is known a
SNR;, = 10logyg ——7 2; ~ 101og;, kL priori thgt no two smu§0|ds are closely spacgste, e.g., the
Futl/(2N) P(fr) application discussed in the next section) or when the closely
Foe1/@2N) ! spaced sinusoids are of no interest. The reason to prefer APES1

(62) to APESK or MAFI1 in such cases is that the former is more

Note the occurrence dY¥ in the above SNR formula. For thoseflexible than the latter two since APES1 does not necessarily
methods that depend dvf, we chooseVf = N/4 = 8, giving require knowledge of the sinusoidal frequencies. In terms of
L = 25 (see Section V-B for a study of the effect bf on the computational cost, APES1 and MAFI1 are similar to one an-
performance). other, and both are simpler than APESK. When it is dedioed

Fig. 2(a) shows the MSE’s of the seven amplitude estimatastimate the amplitudes of closely spaced sinusoids in colored
for a3 along with the corresponding CRB as the SNR varieaoise, however, MAFI1 may be preferrén general, we do not
As we can see, APES1, APESK, and MAFI1 are very close tecommend the use of Capon1 since it has a computational com-
the CRB, whereas LSEK, which ignores the noise correlatigplexity similar to that of APES1, but it is biased. Although we
is evidently away from the CRB. CaponK also deviates fromiid notice that CaponK gives close-to-CRB performance at very



STOICAet al: AMPLITUDE ESTIMATION OF SINUSOIDAL SIGNALS 345

' N=32,M=8,1=0.3,white noise N=32,6°=107%,1,=0.3,colored noise
T : ' ' i 100 . . . . . : ,
-—- LSE1
o - LSEK 10° £ o Capont| |
10° | @ Capon1 E S APES1
X - APES1 e CaponkK
RN CaponK 10' kb O APESK ]
...... . e MAFH
o APESK
1L e MAFI1 i CRB
5 CRB .
s 510 E
u i
ke
5 £ . °
3 - B
= 310 F - 4
% g .8
& <
g g 8 :
= g 1072L : R i
g’ -
3| . 8- 1
N ’5. e, N ® e o § .........
107 & =
10—5 ! 1 1 1 5 ! ! ) ! 1 il L
10
20 % B AlSNR- B 40 45 0 2 4 6 8 10 12 14 16
ocal - Subvector Length M
@ (@
N=32,M=8,f,=0.1,white noise s
| N=32,6°=10"2, =0.1,colored noise
10 T T . T 5 1 )
10 T T T T T T T
g Capont
................. o
100 S ___ 5 , ~x- APES1 :
LTI SLTIIIT ST TSI e 3 102 | o CaponK E
: R ‘o APESK :
e Ry CRB
5 10' | T E
i &
-5’) w
3
= S0’ L 0 -
‘g ;!')_10 ®.... oo o B G Q- 4
< i a-
[} c
= § - v
= + x.
107 e - E
+ : o i
o. RN
~2 : o. .
CRB 00 0 o+ + F
10-5 L 1 1 L
20 25 30 a5 40 45 16° L . . . . . .
Local SNR — dB 0 2 4 6 10 12 14 16

8
Subvector Length M
(b)

Fig. 4. Empirical MSE’s and the CRB versdd when N = 32 and the
observation noise is colored [an AR(1) process with= 0.01]. (a) a5. (b)
o1,

low SNR'’s, in most cases of interest, other methods like APES1

or MAFI1 may be preferred.SEK is statistically efficient and general, decreases [5]. Hence, there is a tradeoff to be kept in
may be preferred when the observation noise is whiteases ying when choosingZ. Note thath should also be smaller
where the white noise assumption is invalid, it is preferable R, n7/2: otherwise, the estimated covariance matrix will be
use APES1 or MAFIL. LSE1 gives comparatively rather poQL . geficient. The following example examines the effect of
estimation accuracy but is computationally quite simple. Ther o the performances of these estimators. LSE1 and LSEK do

performance differences stated so far occur only wNeB rel- o qepend or/ and are thus not considered in this example.
atively small. AsN increases, the performance of all methods the scenario is similar to the first example (AR noise), ex-

tends to the CRB, independently of the noise correlation. Hen%%pt that we fixo> = 10~2, which corresponds to a local SNR
whenA is sufficiently large, LSE1 should be preferieecause ¢ 30 g 4B for the first sinusoid (af. = 0.1) and 39.2 dB for

(b)

Fig. 3. Empirical MSE'’s and the CRB versus local SNR whén= 32,
M = 8, and the observation noise is white. (a). (b) «;.

of its computational simplicity. the third sinusoid (af; = 0.3). M is varied from 1 to 16 for
all estimators, except for MAFI1, which requires thdt > K
B. The Effect of\f [see (37) and (50)]. The MSE's of the amplitude estimates;of

All WLS and MAFI amplitude estimators studied in thisand, respectivelyy;, and the corresponding CRB’s are shown
paper depend on the choice &f: the subvector length. It is in Fig. 4(a) and (b). As can be seen from the figure, all estima-
known that asV/ increases, all of them can better deal with thtors are sensitive to the choiceldf to a smaller or larger extent.
case of closely spaced sinusoids, but their statistical stability When no sinusoids are close to the one being estimated, such as
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TABLE | N=32,0%1072,1,=0.3,6,=10~",colored noise
CHOICE OF M FOR THE WLS AND MAFI 1° T T J T T T T
AMPLITUDE ESTIMATORS P -
_ g G A -
Estimator M : :2:” ,:\\”IZI'E:IS1K
APES1 N/4< M < NJ2 o' chB ;
APESK N/4a<M<N/3 gw"- o E
MAFT1 N/8 < M <2N/5 o o \ -
Caponl or CaponK || N/8< M < N/4 2 s
2 107 s 1
®; . L . R
the third sinusoid in this example, APES1, APESK, and MAFI w°} o " @ T
perform quite well for a wide range df/. For the more diffi- B oo NP SRS SSEUS
cult case shown in Fig. 4(b), the choice/df becomes critical. 107 E
Based on our empirical observations, some rules of thumb !
the choice ofM are given in Table I. 10°; 2 7 6 s 10 12 m 16
Subvector Length M
C. Imprecise Knowledge of the Frequencies (@)
N=32,02=1 0‘2,1 f =0.1 ,of=1 0‘4,colored noise
The emphasis in this paper has been on amplitude estimati ¢’ , - ' ' ' - '
The estimation of the frequencies was briefly mentioned but @ Caponi
not in the main focus of the paper. However, in application .| ° o SEEfJK
the frequencies are rarely “exactly” known. Consequently, it T e
an interesting question as to whether the conclusions about i CRB ;
the assessment of the performance of various amplitude estit o' | ‘ g
tion methods remain essentially the same when the frequencg ’ : g
are imprecisely known. To answer this question, we repeat? | _ v
the experiment in Section V-B under the conditions describq%10 PoTom B, e @ e :
there, with one exception; in each realization, the frequenc@ . e
used by the amplitude estimators were generated by addin¢ 1| T .
the true values a set of independent and identically distribut T o :'Oi'.' '+
Gaussian random variables with zero mean and standard de L% e e
tion denoted by . i o SOl g e 1
Figs. 5 and 6 show the results obtained égr= 10~* and
oy = 1073, respectively. The CRB plots in the figures are th 4= . . ; s s s .
same as those in Fig. 4 corresponding to the case when the ° ¢ ! ® Subvector Lengin b ® 14 *
guencies were exactly knowm ; = 0). Comparing the results (b)

in Figs. 4 and 5, W,e can see that, they dc,’ not differ ,mUCh frof-]i] . 5. Empirical MSE's and the CRB versiis whenN' = 32,0, = 1074,

one another. To gain an appreciation of this observation, we ng#f the observation noise is colored [an AR(1) process mith= 0.01]. (a)

that high-quality oscillators have frequency errors of an ordes. (b) o:.

typically smaller tharr ; = 10~*. For the case of the larger fre-

quency errors considered corresponding fo= 102, allam-  where the inputi(n) is a sinusoidal (probing) signal

plitude estimators under discussion suffer a substantial perfor-

mance degradation (compare Figs. 4 and 6), especially APESK, K .

whose performance is apparently affected by outliers and is, u(n) = ", n=01,...,N-1 (64)

hence, relatively unstable (even in the case pft= 0; see Fig. k=1

4). However, the ranking of the estimators and the way their pgfind the transfer function is rational

formance varies witd/ in the case o, = 102 are similar . .

to those observed in the casexgf = 0. H(1) = B(z1) _ bz t4etbr (65)
A(z7)  14azt+---Fapz?

We assume that
VI. APPLICATION TO SYSTEM IDENTIFICATION

Consider the linear discrete-time system described by [1] Kzpta (66)
Even if p and ¢ were unknown K could still be chosen suffi-
ciently large to satisfy (66). The problem of interest in this sec-

z(n) = H(z u(n) +v(n), n=0,1,...,N—1 (63) tonistoestimatga;}’_, and{b;}?_, from {z(n)} =

In=0 "
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» N=32,6%10°21,=0.36=107" colored ncise For sufficiently largeN (so that the transient response in the
' ' output can be neglected), the system description in (63) and (64)
L | e capont .. ] is approximately equivalent to
~-x-- APES1 o
O CaponK
; <@+ APESK K
10 -+ MAFI 3 .
cRB z(n) = an(a, ) 4 v(n). (69)
510° 3 k=1
E _______ g A
S40f BG {1 The method that we propose for estimatingndb is based on
‘g O o S gl "1 (68) and (69) and consists of two steps.
S0 B gt @ g @ @ g Step l) ES“matéOék}i(:l from (69) in an unstructured/non-
parametric form.
0E 3 Step 2) Fit{ay(a, b)}E_, in (68) to the amplitude estimates
. obtained in the previous step by taking into account
0¥ 3 the statistical variance of the latter.
- , , , ) ) , ) The motivation of this two-step method is as follows. The
0 2 4 ® subvector Length M 1 “ '* part of the negative log-likelihood function of the data in (69)
@ that depends on the parameters of intesemhdb is (under the
N=32,0%=1072,=0.1,6,+10~% colored noise Gaussian hypOtheSIS) given by
10° o T T T : T T
! Capon1 [X - Aa(a, b)]HW_l[X - Aa(a, b)] (70)
: . X APES1
107 b : O.v. E <> CaponK + ’ 4 .
' ' I3 e o wherex, A, «, andW are as defined in Section II-A. A simple
crB ' calculation shows that we can rewrite (70) in the equivalent form
10 F E
B o0 B B
3 [@ — a(a, D) (AFW™A)[a — a(a,b)] + constant (71)
FOE e e
5 : . e 5 Here, & is the maximum-likelihood estimate of the (unstruc-
w0k "'_'"'v"j;,’i;:::v-**“" 1 tured) amplitude vector when the noise covariance malix
o0 o g ""f?jff + is given
0% 3 &= (ATWTA)L(ATW1x). (72)
e . . . . . . s Next, we note that any of the amplitude estimators previously
° 2 ¢ ® uvector Lengih M ? * '® described provides a feasible large-sample realizatiom of
(b) above, which does not require the knowledgeWrt. Let &

. . , B denote an estimate obtained by such an estimator. Since the

Fig. 6. Empirical MSE’s and the CRB versi§ whenN = 32,0, = 1073, . . . . . .
and the observation noise is colored [an AR(1) process avith= 0.01]. (a) estimation errors ”a__ a vanish, asv mcrea;es, at a.h|gher
ag. (b) ay. rate than the errors it — «, we can replacé in (71) with &
without affecting the asymptotic properties of the estimates of
a andb obtained by minimizing (71). For sufficiently largg,
. o . . we can also replace the weighting mat&X’ W= A in (71)

The system identification problem associated with (63) Isy a consistent estimate of its large-sample limit in (10), once
commonly solved by using the output error method (OEM}gain without affecting the asymptotics. By doing so, we obtain
which does not modet(n), and obtains estimates §&;}!_; the following large-sample approximation of the criterion in

A. System ldentification Using Amplitude Estimation

and{bj}zz1 by minimizing the criterion (72):
N-1 K
Copm(a,b) = Y |a(n) — H(z"Yu(n)|*  (67) Ci(a,b) =Y —— |dx — ar(a, b)[? (73)
=0 k=1 (/)(wk)
wherea = [a; --- a,]7, andb = [b; --- b,]". OEMis a whereg(wy) is a consistent estimate ¢fwy,). To derive esti-

natural choice of a method whose performance should be commates ofa andb as outlined above, we first need to compute
pared with that of the new method proposed in this paper. & [Step 1) of the two-step method] and next minimize the fit-
To describe the latter method, let ting criterion in (73) with respect ta and b [Step 2)]. The
so-obtained estimates of the parameters of intereatandb
ar(a,b) =y H(e 7). (68) areasymptotically statistically efficienas implied by the above
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Fig. 7. Averaged RMSE's and the number of flops ver3ufor the first system when the observation noise is whité = 0.01) andM = 20 for APES1 and

MAFI1. (a) RMSE ofa parameters. (b) RMSE @fparameters. (¢c) Number of flops.

sketched derivation of (73). This fact also follows, in more exact
terms, from the extended invariance principle (EXIP) [13].

As mentioned above, the estimatesacdindb derived from
(73) asymptoticallyachieve the CRB performance regardless of
which of the amplitude estimators in Sections Ill and IV is used
to obtain{&;, }. However, enhancefihite-sampleperformance
will result if the amplitude estimator is carefully selected, for
instance, by using the guidelines provided in the previous sec-
tions.

In what follows, we detail the two steps of the proposed
method.

Step 1) Use an appropriate amplitude estimator to obtain
estimates{ay }< | of {a;}_, from the measure-
ments{z(n)}"_}. APES1 may be recommended in
this case because we have control over the probing
signal, and usually, we have no reason to choose
any of the sinusoids too close to one another. The

large-sample variance of the estimated amplitudes
{ay }E_, is proportional to{p(wy )} (see Section

I). To obtain the estimates ¢f(w;,) }2< | needed in
(73), we can first calculate

K
#(n) =z(n) = Y _ apel "
k=1

n=0,1,... N—1 (74)
and then utilize either a parametric or a non-
parametric PSD estimator [5], [7], [8] to obtain
{$(wi)}E . In the examples given in Section
VI-B, we use the Capon PSD estimator [2], [3], [5],
which determineg¢(wi)} X, as

=

) Wy ) = =
) = R daln)
k=1,2.. . K

(75)
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where a(wy) is defined in (34), andR¢¢ is the — T T T T
sample covariance matrix of the estimated noise ve : ' : : : : : : :
tors

vy =) sl+1) - o(l+M-1D]" o
1=0,1,...,L—1 (76)
that is

R 1 L—1
Roy = 7 ; v(OVHE(D). (77)

Step 2) Obtain estimates §f;, b; by minimizing the crite-
rion in (73). To do so, we can use a host of method
provided that we have good initial estimates@ind [
b.

To obtain initial estimates and then minimize (73), we assun ® : : 5 g 5 : : : :

thatp andq are known. (Standard techniques for system ord -z’ —— i i :
determination can be found in, e.g., [1] and [14].) We pick u, Frequency

the largest{&;} and define a criterion made from the
P4 . 9 { k} Fig. 8. PSD estimate of the output of the first system corrupted by white noise
corresponding terms of (73) with o2 = 0.01 andN = 200.

p+q 1

_ AL 2
Cx(a,b) = kz_l Hlwr) [éx = a2, b)| (78) determine the model orders. In addition, we adopt the strategy

to choose the + ¢ largest{é; } to obtain the initial estimates
of a andb needed in Step 2) of the proposed method.

Example 6.2.1:The system considered in this example is
given by (65) with

Power Spectral Density ~ dB

where we have assumed, for notational simplicity, fdat}y+?
are thep + ¢ chosen amplitudes. [Given thé(wk) was esti-
mated, an alternative would be to choose thp3g} that have
the largest ratidiz |2 /¢(ws,); however, for the sake of computa-
tional simplicity, we may want to skip the estimationdifvy, ); A(z7Y) =1 —1.601927 +0.9801~22 (81)
then, this alternative cannot be used. See below.] Now, the min-
imization of (78) is simple. Indeed, we can choesandb to and
satisfy
Bz = 271 4+ 0.2472277 4 0.16002 3. (82)
ar =ar(a,b), k=12,...,p+q (79)
) The probing signal is given by

or, equivalently

w(n) =2 cos(270.05n) + 2 cos(270.15n) + 2 cos(2m0.25n)
Ale™*)=B(e™™*), k=12,....p+q (80) + 2cos(270.35n) 4 2 cos(270.45n)

n=0,1,...,N—1. (83)

dy,
Tk

which can be rewritten as a linear systempof ¢ equations

with p 4 ¢ unknowns{a;, b; }. That system will generally have we consider using a real-valued probing signal because this is
aunique solution thatis also the minimizer of (78) [it makes (78he usual case in practice. (A subtle question then arises as the
equal to zero], and which gives our initial estimateg@f, b;}.  amplitude estimation techniques discussed in the previous sec-
As shown in the following numerical examplebeg initial es-  tions all assume that the sinusoids are complex valued. We might
timates are usually quite good. Hence, we can skip the stepi@bose certain conjugate symmetry constraints and derive sim-
minimizing(73)to save computations ilar techniques that are specifically tailored to real-valued sinu-

We reiterate that according to the aforementioned EXIP gfjdal amplitude estimation so that if, for example= —ws,
[13], the estimates ofa;,b;} obtained by minimizing73) then the estimators will givé; = @3. Yet, our experience
achieve the CRB asymptotically, and hence, they have a begbws that the gain would most often be minor, and hence,
asymptotic accuracy than the OEM estimates whenete) the effort is not worthwhile. See [16], for example.) Note that
is colored It also follows from this observation that in thex — 10 for the signal in (83). The noise(r) is a real-valued
case ofK' = p + g, the simple estimates obtained from (80yhite Gaussian noise with zero-mean and variamte= 0.01.
are asymptotically efficient. This latter result (Of a somewhawe estimate the System parameters using the proposed tech-
limited interest due to the requirement thdt = p + q) was njque andthe (time-domai OEM that obtains parameter es-
first proved in [15] in a relatively complicated way. timates by minimizing (67). (The computer routine used for
OEM is the one provided in the system identification toolbox of
MATLAB). For the proposed technique, we compute btita

The following examples assume theandq are known to fa- initial estimates given by solvin@0) andthe minimizer of73).
cilitate performance comparison. It is reasonable to do so sintlee minimizer of (73) is found by using the solution of (80),
both OEM and the proposed method use similar techniquesb@sed on APES1, as the initial condition and then employing a

B. Numerical Examples
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Fig. 9. Averaged RMSE’s and the number of flops ver3usor the second system when the observation noise is colored [an AR(1) proces< wittt).01]
andM = 20 for APES1 and MAFI1. (a) RMSE af parameters. (b) RMSE oéfparameters. (c) Number of flops.

standard gradient-type nonlinear optimization routine providedated sinusoids, and hence, choosing a la¥§evould only re-
by MATLAB. To reduce the number of graphs, we only showult in additional computations.) Finding the minimizer of (73)
the averaged root mean squared error (RMSE) fontharam- or the OEM estimates involve iterative searches that give vari-
eters able flop counts from trial to trial. The number of flops needed
» by each of these two methods, as shown in Fig. 7(c), is the av-
RMSE[a} = EZ RMSE{a; } (84) erage over 200 trlgls. As we can see, the initial estimates of
{a;, b;} given by using (80) with APES1 or MAFI1 have similar
RMSE's to those obtained by OEM. The estimates obtained by
and similarly for theb parameters. All results are based on 20finimizing (73) are slightly better than the initial estimates ob-
Monte Carlo simulations. Fig. 7(a) and (b) show the averag&ained using APES1 or MAFI1 but at a significantly increased
RMSE'’s of thea parameters and, respectively, thh@arame- computational cost. Due to this observatiare do not recom-
ters obtained by using OEM and the proposed techniqu&, asmend using this approach, i.e., minimizi(¢g), for refined es-
increases. Fig. 7(c) shows the required number of flopd/astimation accuracyFig. 7(c) also shows that as compared with
increases. (APES1 and MAFI1 usé = 20 in this and the fol- OEM, there is little computational advantage associated with
lowing example, which does not fall in the range given in Tablasing the initial estimates obtained by APES1 and MAFI1. The
I. The reason is that APES1 or MAFI1 withf = 20 is quite reason may be that the system in this example is quite simple (it
acceptable for the probing signal in (83) that contains well-sepas white output errors, etc.), and apparently, OEM reaches con-

i=1
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vergence in a relatively small number of iterations. For a motkat derives estimates aefand b by solving the linear system
complex system, such as the one used in the next example, OBM80), where{é;, } are obtained by either APES1 or MAFI1,
may need more iterations to converge. It should also be mesftould be the method of choice for the system identification
tioned that we did not program our method very carefully, agtoblem under discussion

hence, our code is unlikely to be as efficient as the OEM code

in MATLAB. Regarding the estimation accuracy, we will stress VIl. CONCLUSION

that in the current case where the naige) is white, OEM co-
incides with the optimal maximum likelihood method (MLM)
[1], [14]. Whenu(n) is colored, OEM is no longer MLM. In that

In this paper, we investigated the problem of amplitude
estimation of sinusoidal signals in colored noise. Three gen-

case, the initial system parameter estimates obtained by AP%ier|aS;eS ?f esr::rr:ﬁlt%rs, na}[ir;elili t:e kl;sv V\l/JLS,nagid MAF| d
or MAFI1 may outperform OEM, as shown in the nextexamplg\?p oaches 1o amplitude estimation, have bee scussed.
. - - e have shown that under certain circumstances, the MAFI
Recall that LSEK is statistically efficient when the obser-

vation noise is white. Then, we might wonder why the initia‘rf‘pproalCh to amplitude estimation is equivalent to the WLS

estimates given by LSEK may be notably worse in such a c roach, and yet, the former is more general and includes
than those aiven by APEST or MAEIL. as haopened in tHA€ latter as a special case. The amplitude estimators under
previous engmple (gspecially whéviis sr;wall) Thpepreason is iscussion can be further categorized, depending on whether
that the transient response of this system cannot be negle%tg?ﬁ(}é :jgi;nan;:(;?%?mguriz;tozsn;i:r: 2! in;ggidfpsérgil_

for small V. To show this, the PSD of(n) is estimated by and MAFI1, in general give more accurate amplitude estimates

using the Capon PSD estimator, with = 200 and M = 20, for sinusoids in colored noise. Methods that estimate onl
and is plotted in Fig. 8. It shows two extra peaks (which behayg SNusolds | IS€. ! y

like two sinusoids) at-0.1. The extra peaks are attributed tne amplitude at a time, such as APES1, do not necessarily

the response of the system (which has poleg 2ac=i270-1) require the exact knowledge of the number and locations of the
to the initial conditions. Since it is essential for the LSEK tgmusmds and, hence, are more robust than those that estimate

haveaccurateknowledge of the number and frequencies of th%II amplitudes simultaneously.

sinusoids to give reliable amplitude estimates, there is no sur—We have also studied a system identification application using

prise (with the above explanation in mind) that its performanCQ‘ nusoidal probing signals. We have presented a simple tech-

in the previous example is considerably deteriorated. On {figue for system identification that can avoid iterative search

other hand. the above knowledae i : u&h as the one required by OEM. We have shown that by using
, ge is not necessarily nee ; i . . . i

by APES1, and hence, its performance is not affected. UnIi(Ereé'S simple technique with approprlatg amplitude estimators,

APES1, MAFI1 does require this knowledge. Yet, the syste cT)as APESlr(])r MAFIL, we C?jr.] obtalrr: resycjltsl that Zr? gener-

response to the initial condition is substantially weakened ?é/Mettert anltl ose cor(;espgn Ingtot € WII ely used iterative

the frequency selective filtering employed by MAFI1, an » yetusually at a reduced computational cost.

hence, it has little, if any, effect on the amplitude estimates and

the system parameter estimates. Xsncreases, the transient REFERENCES
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