
1338 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 3, NO. 4, JULY 2004
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Abstract—In this paper, we present a novel code-timing es-
timator for uplink asynchronous direct-sequence code-division
multiple-access systems utilizing bandlimited chip waveforms.
The proposed estimator requires only the spreading code and
training of the desired user. We start from a maximum likelihood
(ML) approach that models the intersymbol interference and
multiple-access interference as a colored Gaussian process with
unknown covariance matrix in the frequency domain. The exact
ML estimator is highly nonlinear and requires iterative searches
over multi-dimensional parameter space that is impractical to
implement. To deal with this difficulty, we invoke asymptotic
(large-sample) approximations of the ML criterion and repa-
rameterization techniques, which lead to an asymptotic ML
estimator that yields code-timing and channel estimates via
efficient noniterative quadratic optimizations. To benchmark the
proposed estimator, we provide Cramér–Rao bound analysis for
the code-timing estimation problem. Numerical simulation results
are presented, which show that the proposed scheme is resistant to
interference, fading, and modeling errors (e.g., sampling position
errors), and compares favorably to several competing schemes in
multipath fading channels.

Index Terms—Bandlimited chip waveforms, code-division mul-
tiple-access (CDMA), code synchronization, Cramér-Rao bound
(CRB), maximum-likelihood (ML), parameter estimation.

I. INTRODUCTION

D IRECT-SEQUENCE (DS) code-division multiple-access
(CDMA) is a major air interface for wireless mobile com-

munications [1]. In DS-CDMA systems, all user transmissions
overlap in time and frequency. They are differentiated from one
another by using a unique spreading code for each user. In order
to successfully recover the information of each transmission, the
local spreading code generator has to be synchronized to the
code-timing of the desired transmission.

Multiuser code-timing estimation, which parallels the
well acknowledged research on multiuser detection ([2] and
references therein) for CDMA systems, has been receiving
increasing interest recently. A variety of code-timing esti-
mation techniques have been proposed so far, including both
training-assisted and blind schemes. Examples of the former
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category include the classical, single-user based correlator [3]
and the more recently introduced, multiuser-based minimum
mean squared error (MMSE) [4], large-sample maximum likeli-
hood (LSML) [5], [6], exact maximum likelihood (ML) [7], and
decoupled multiuser acquisition (DEMA) [8] synchronization
schemes. Some recent blind code synchronization algorithms
include MUSIC [9], [10] and the variants [11], [12], and
the minimum variance-based schemes [13]–[15]. Compared
with the single-user based correlator, these multiuser-based
code synchronization schemes achieve significantly improved
performance in near-far environments, and are able to support
more user transmissions without enforcing stringent power
control.

Most of these code-timing estimation schemes, however,
implicitly assume rectangular chip waveforms that are not
bandlimited. Meanwhile, practical CDMA systems utilize
bandlimited chip waveforms, such as the square-root raised-co-
sine pulse [16]. Although extensions of the aforementioned
techniques to deal with bandlimited chip waveforms appear
conceptually straightforward, implementations of such exten-
sions are often challenging due to the need to solve highly
nonlinear cost functions. One such extension was reported in
[17], which extends the MUSIC code-timing estimator of [9]
by incorporating knowledge of the bandlimited chip waveform
in the MUSIC cost function. While the original MUSIC
estimator can be efficiently and noniteratively implemented via
simple second-order polynomial rooting, the extended MUSIC
algorithm involves iterative nonlinear optimization that is
computationally intensive and subject to local convergence.

An alternative code-timing estimator that considers bandlim-
ited chip waveforms was recently presented in [18]. It exploits
various signal space invariances in the frequency domain to iso-
late the subspace of interest for the desired user, from which
an ESPRIT [19] like procedure is invoked to derive the code-
timing estimates. Unlike the extended MUSIC estimator in [17],
which is an iterative time-domain based scheme, the shift-invari-
ance-based algorithm in [18] utilizes computationally more ef-
ficient, noniterative frequency-domain processing. The shift-in-
variance-based method is also found statistically more accurate
since it is free of the local convergence problem suffered by the
former.

While the extended MUSIC [17] and the shift-invariance
based [18] estimators are both blind schemes that require no
training, we present in this paper a new code-timing estima-
tion scheme for CDMA with bandlimited chip waveforms
by exploiting training that exists in most wireless standards
anyway. As we shall see, the proposed estimator benefits from
training with significantly improved performance over the
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blind techniques. Like the shift-invariance based method, our
proposed estimator is a frequency-domain-based scheme. We
first convert the received signal to the frequency domain by
fast Fourier transform (FFT). The proposed estimator is then
derived by an ML approach that models the overall interference
as a colored Gaussian random process with an unknown covari-
ance matrix. The exact ML cost function is in general highly
nonlinear and difficult to solve. To circumvent this difficulty,
we invoke an asymptotic result that renders the ML criterion
asymptotically (for large data samples) equivalent to a simpler
cost function involving a (nonlinear) weighted least-squares
(WLS) fitting. Still, the WLS cost function requires -dimen-
sional searches over the parameter space, where denotes
the number of distinct paths for the desired user. To further
reduce the complexity, we next reparameterize the WLS cost
function by coefficients of an th-order polynomial, by which
the code-timing estimates for the desired user are obtained via
simple quadratic minimizations.

The rest of the paper is organized as follows. In Section II,
we introduce the data model for CDMA with bandlimited
chip waveforms, and formulate the problem of interest. In
Section III, we present the proposed code-timing estimator,
with technical details included in the Appendices. In Section IV,
we derive the Cramér–Rao bound (CRB), a lower bound on
the variance of any unbiased estimator, for the code-timing
estimation problem. Numerical results comparing the proposed
and other code-timing estimators for bandlimited CDMA are
presented in Section V. Finally, we provide concluding remarks
in Section VI.

Note: Vectors (matrices) are denoted by boldface lower
(upper) case letters; all vectors are column vectors; superscripts

, and denote the transpose, conjugate, and
conjugate transpose, respectively; denotes the
identity matrix; denotes a matrix/vector with all zero el-
ements; denotes a diagonal matrix; denotes
the statistical expectation; denotes the linear convolution;

denotes the matrix/vector Frobenius norm; and finally,
denotes the matrix/vector Kronecker product [20].

II. PROBLEM FORMULATION

The system under investigation is an asynchronous (up-
link) -user DS-CDMA system with spreading codes of
length (processing gain) . The code waveform for user is

, where denotes
the spreading code for user the chip waveform assumed
to be bandlimited and identical for all users, and the chip
duration. The transmitted signal for user is formed
by multiplying by the th transmitted data symbol

, where
denotes the number of symbols used for code acquisition, and

denotes the symbol duration.
Consider a general scenario that the base station is equipped

with an array of receive antennas. It is noted that our scheme
works with . For mathematical tractability, the derivation
of the proposed estimator assumes that the multipath channel
remains static during code acquisition. Later, in Section V, we
will test the proposed estimator in realistic time-varying multi-

path channels, using the standard Jakes’ model [21]. With that
in mind, the received signal from the th receive antenna at the
base station can be expressed by

(1)

where , and denote the number of propagation
paths, the th path’s (complex-valued) attenuation and delay ob-
served at the th receive antenna for user , respectively, and

is the additive noise. We assume that the relative delay
among different receive antennas is negligible; note that the rel-
ative delay manifests itself as a phase shift that makes
distinct for different . The receiver front-end is a chip-matched
filter that outputs1

(2)

where denotes the impulse response of the overall
channel for user at receive antenna , which includes the
transmitter/receiver filters and the physical wireless channel

(3)

with and .
We assume that the maximum path delay is less than ,

which may be achieved through a side signaling channel for call
set-up [4], [22]. It is customary to truncate such that it spans
only several chips [17], [23]; such a truncation leads to negli-
gible spectral leakage compared to the effect of noise and inter-
ference in the system (also see Section III). Under these condi-
tions, we note that has a finite support: , for

.
Without loss of generality, let user be the desired user. The

problem of interest is to estimate the code-timing from
, assuming that the training symbols

and spreading waveform for user are known at the base
station.

III. PROPOSED CODE-TIMING ESTIMATION SCHEME

For digital signal processing (DSP), the outputs of the chip-
matched filter are sampled with a sampling interval

. That is,
, where the integer denotes the oversam-

pling factor. Typically, is sufficient. Note that because
of delay spread, the observation interval that covers symbols
is . We form overlapping data blocks of
samples, each block consisting of data samples within two adja-
cent symbol intervals:

. Due to asyn-
chronous transmissions, is contributed by three consec-

1Throughout this paper, we use notation �( � ) to denote a time-domain quantity
if its frequency-domain counterpart is also used for estimation.
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utive symbols. Let . The sig-
nature vectors, which take into account the spreading, trans-
mitter/receiver filters, and physical channel, corresponding to
the three adjacent symbols , and ,
have the following forms:

(4)

(5)

(6)

where the subscript signifies the depen-
dence of these vectors on the path delays [e.g., (3)]. With these
definitions, can be expressed as [cf. (2)–(3)]

(7)

where denotes the vectors formed from the
noise/interference samples of . Given that user is of in-
terest, we rewrite (7) as

(8)

where lumps the channel noise and overall interference,
including the multiple access interference (MAI), intersymbol
interference (ISI), and additive noise.

To convert the received data to the frequency domain, we take
the Fourier transform, or the FFT in particular, of . It
should be noted that the spectrum of in (3) usually ta-
pers off at the end frequencies (i.e., frequencies close to ,

where denotes the sampling frequency, e.g., [23]). In
the presence of channel noise, the end frequencies have a lower
signal-to-noise ratio (SNR) than elsewhere. Hence, we may dis-
card the end frequencies to avoid noise amplification caused by
frequency deconvolution [23]. To do so, let denote the
FFT frequency selection parameter. Typically, one can choose

when the oversampling factor [18]. Define

...
...

...
...

where and , where denotes
the smallest integer no less than the argument. One can see that
the matrix is formed by rows of the
full FFT matrix that correspond to the selected FFT frequencies.
Hence, discarding the FFT end frequencies is equivalent to mul-
tiplying both sides of (8) by

(9)

where . To facilitate our derivation, we
rewrite as [cf. (3)]: , where

. Using
the time-shifting property of Fourier transform [24], we have

(10)

where

...
...

...
(11)

(12)

(13)

(14)

Equation (10) holds only approximately because of the aliasing
caused by the truncation of (see Section II). The trunca-
tion widens slightly the spectrum of , and sampling at a
rate introduces some small aliasing due to spectral folding,
which will eventually lead to a small bias in the code-timing es-
timate. The aliasing, however, can be neglected compared to the
noise/interference induced estimation error [23].

Substituting (10) into (9) yields

(15)

Effectively, can be thought of a sum of complex si-
nusoids with frequencies

(16)

that are weighted by the diagonal matrix and corrupted by
the interference/noise .

In the sequel, we approximate as complex
Gaussian random vectors with zero-mean and an arbi-
trary unknown covariance matrix

, where denotes the Kronecker
delta. While this approximation may not be observed exactly in
practice, it leads to an estimator that works quite well in realistic
multiuser environments, as verified in Section V. Briefly stated,
the proposed estimator follows an ML approach, starting from
the likelihood function of conditioned on the unknown
parameters, i.e., the multipath code-timing , channel fading
coefficients , and the interference/noise covariance
matrix . As shown in Appendix A, the exact ML cost func-
tion is highly nonlinear and difficult to optimize. To circumvent
this difficulty, we invoke an asymptotic result that renders the
ML criterion asymptotically (for large data samples) equivalent
to a simpler cost function involving a (nonlinear) weighted
least-squares (WLS) fitting. Still, the WLS cost function
requires -dimensional searches over the parameter space. To
further reduce the complexity, we next reparameterize the WLS
cost function by coefficients of an th-order polynomial,
by which the code-timing estimates for the desired user are
obtained via simple quadratic minimizations. Details of the
derivation of the proposed code-timing estimator can be found
in Appendix A. In the following, we summarize the proposed
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estimator along with its computational complexity in terms of
flops of operation.2

Step 1) Compute the ML estimate of the interference/noise
covariance matrix

flops

(17)

where and denote, respectively,

flops

(18)

flops (19)

Compute the weighting matrix used for WLS fitting
(note that is diagonal)

flops (20)

and form the Hankel matrix

...
...

...
...

(21)

where

flops

(22)

Step 2) Due to a reparameterization procedure (see Ap-
pendix A), the code-timing estimation problem
is equivalent to the estimation of the coefficients
of an th-order polynomial. Compute an ini-
tial estimate, of the polynomial coefficients

, by minimizing the fol-
lowing quadratic cost function: 3

flops (23)

Step 3) Form a Toeplitz matrix from the
initial estimate as follows:

. . .
. . .

. . . (24)

2In our complexity analysis, the FFT frequency selection factor is set to a
standard value of � = 0:5 [18], [23], which gives 2N = NQ.

3The flop count ofO(L ) in (23) and (25) comes from a matrix eigendecom-
position involved in the quadratic minimization that is detailed in Appendix B.

Refine the initial estimate of the polynomial coeffi-
cients and compute a new estimate of by mini-
mizing the following quadratic cost function:

flops

(25)

Step 4) Compute the roots of the th-order polynomial
with coefficients . Calculate the phase angles of the

roots and denote them by . Compute the
code-timing estimates as follows [see (16)]:

(26)

Remark 1: The minimization of the quadratic functions (23)
and (25) follows a similar approach, which is discussed in de-
tails in Appendix B.

Remark 2: The overall complexity of the proposed scheme,
in terms of flop count, is the sum of the number of flops
incurred in each step as summarized in the above, plus

flops that are incurred in the cal-
culation of and ,
through FFTs of length . For most applications,
we typically have (the number of receive antennas) quite
small, and , for which we see that the major
complexity comes from the calculation of the data covariance
matrices and the matrix inverse .

Remark 3: Once we have , an estimate of the channel
coefficients can be obtained as

(27)

IV. CRAMÉR–RAO BOUND

Cramér–Rao bound (CRB) provides a lower bound on the
variance of the parameter estimates obtained by any unbiased
estimators, and it can be used to assess the accuracy of various
code-timing estimation schemes. In this section, we present the
CRB for the parameter estimation problem based on the data
model in (15), which is repeated below for easy reference:

(28)

Let
, which collects all unknown parameters of

interest. By using the Slepian–Bangs formula [25], we show in
the Appendix I that the CRB matrix is given by

(29)
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where

(30)

(31)

(32)

In (30) and (31), we have

, for , where for
, with denoting the th column of .

V. NUMERICAL RESULTS

We consider a -user asynchronous CDMA system in the
uplink using a unit-energy binary phase shift keying (BPSK)
constellation and bandlimited chip waveforms. Each user is as-
signed a randomly generated spreading code of length .
We consider an environment with no strict power control. In
particular, the transmitted power for all interfering users is as-
sumed dB higher than that of the desired user. Henceforth,

is referred to as the near-far ratio (NFR). The bandlimited
chip waveform is a square-root raised-cosine pulse with roll-off
factor 0.8, truncated to a duration of . The oversampling
factor is chosen as , and the FFT frequency selection
parameter is (see Section III).

While the proposed estimator was derived assuming that the
channel remains static during code acquisition, we assess its per-
formance in both time-invariant and time-varying fading chan-
nels. We consider two performance measures. One is the proba-
bility of correct acquisition, which is defined as the probability
of the event that the code-timing estimate is within a half chip
to the correct code-timing. The other is the root mean-squared
error (RMSE) normalized by , given correct acquisition. In
the multipath case, we evaluate the probability of acquisition
for each path regardless the acquisition of the other paths. How-
ever, the results reported in the sequel are the averaged prob-
ability of acquisition for all paths. This implies that if correct
acquisition is achieved with only a single path, the overall per-
formance would still be very poor (due to averaging with paths
with incorrect acquisition). The RMSE results are reported in a
similar fashion.

We compare herein the proposed estimator with the blind
shift-invariance based (SIB) scheme [18] and the matched filter
(MF) estimator ([3, Sec. 5-5]). The MF estimator is a training
based method that uses identical training symbols for the de-
sired user [3], [5]. It treats the overall interference as white
Gaussian noise. In particular, the MF estimator is implemented
by taking the Fourier transform of [see (13) and (19)],
which effectively performs matched filtering/correlation in the
frequency domain, follwed by finding the peak of the magnitude
spectrum. For multipath code acquisition, the MF estimator es-
timates the first dominant path by finding the largest correlation
peak; then, the dominant path is subtracted from the received
signal, and the second dominant path is found by correlating

Fig. 1. Performance versusM , the number of symbols used for code acquisi-
tion, in flat-fading channels when J = 1; K = 10;N = 16; SNR = 15 dB,
and NFR = 5 dB. (a) Probability of correct acquisition. (b) RMSE.

the resulting residual signal with the spreading waveform of the
desired user; and so on. The results presented next are averaged
over 1000 independent trials, for which the delays, attenuations,
information symbols, and channel noise are changed indepen-
dently from one trial to another.

We first examine the performance of the three schemes versus
the code acquisition time in flat fading channels. Fig. 1 depicts
the performances of the three code acquisition algorithms as a
function of , the number of information symbols when

(one receive antenna), users, SNR dB, and
NFR dB. It is seen that the proposed scheme incurs a faster
(i.e., smaller ) acquisition time.

It is of interest to consider the performance of the proposed
scheme in the presence of modeling errors, e.g., sampling po-
sition errors. To this end, we generate the received signal by
perturbing the sampling instances with a Gaussian random vari-
able with zero mean and standard deviation (that is, a
10% sampling position error). The result is also shown in Fig. 1
(dash-star line). It is seen that relative small sampling errors lead
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Fig. 2. Performance versus K , the number of users, in flat-fading channels
when J = 1;M = 150; N = 16; SNR = 15 dB, and NFR = 5 dB.
(a) Probability of correct acquisition. (b) RMSE.

to negligible performance loss for the proposed scheme, which
indicates that our scheme is quite robust to modeling errors. We
have also noted that small sampling errors lead to negligible
performance loss to the other methods as well; the details are
skipped for brevity.

We next examine the user capacity, i.e., the number of users
that can be supported by these schemes. The simulation pa-
rameters are similar to the previous example except that we fix

and vary from 1 to 16. The results are depicted in
Fig. 2. One can see that the proposed scheme achieves a larger
user capacity.

All methods considered herein have implicitly assumed
knowledge of , the number of paths for the desired user.
To illustrate the performance of the proposed scheme with
inaccurate knowledge of , we have included in Fig. 2 the
result when the number of paths is over estimated (by assuming

). It is seen that over-estimation leads to negligible
degradation in terms of RMSE, at least for the desired path. We
have also tried the case when the path number is under esti-
mated. In that case, significant performance loss does happen.

Fig. 3. Performance versus K , the number of users, in multipath fading
channels when J = 1;M = 300;N = 16; L = 2 8k; SNR = 15 dB, and
NFR = 10 dB. (a) Probability of correct acquisition. (b) RMSE.

Hence, we would recommend over-estimating the path number
for the proposed scheme if exact knowledge is not available.

Next, consider the user capacity in frequency-selective (
for all users) fading channels with NFR dB. The results

are shown in Fig. 3. It is seen that the proposed scheme outper-
forms the others, but there is a performance degradation relative
to the flat-fading results in Fig. 2.

We now examine the performance of the schemes versus
SNR in multipath fading channels. Fig. 4 depicts the results
when for all and
NFR dB. Also shown in Fig. 4(b) is the CRB derived
in Section IV. Since the CRB is a function of the propagation
delays and attenuations for the desired user, these quantities are
fixed from trial to trial in this example. In calculating the CRB,
the interference/noise covariance matrix [cf. (30)–(32)] is
replaced by an empirical estimate obtained with 1000 indepen-
dent realizations. It is seen from Fig. 4(a) that the proposed
scheme has a lower SNR threshold. Meanwhile, Fig. 4(b) in-
dicates that the proposed scheme is close to the CRB over a
wide range of SNR.
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Fig. 4. Performance versus the SNR in multipath fading channels when J =

1;K = 5; L = 2 8k;N = 16;M = 150;NFR = 5 dB. (a) Probability of
correct acquisition. (b) RMSE.

From now on, we consider time- and frequency-selective
channels. The time-varying fading channels are varied sample

by sample (i.e., every s, where is the sampling
interval) according to the Jakes’ model [21], which is pa-
rameterized by the normalized Doppler rate , where
denotes the maximum Doppler frequency and the symbol
duration. Fig. 5 depicts the performance as a function of

when for all and
SNR dB. Also shown in the figure are the results for
the proposed scheme with and receive antennas,
and the MF estimator with ; we do not have the cor-
responding results for SIB since the estimator is discussed in
[18] only for the case of , and the extension to is
nontrivial. Comparing Figs. 1 and 5 for , we note that
the proposed scheme is degraded by time-selective channel
fading. However, the resistance of the proposed scheme to
time-selective channel fading is greatly improved by using
multiple receive antennas, as can be seen in Figs. 5(a) and (b)
for the case of and .

Fig. 5. Performance versus M in time-varying multipath fading channels
when K = 5; L = 2 8k; N = 16;SNR = 15 dB and f T = 0:0067.
(a) Probability of correct acquisition. (b) RMSE.

In the last example, we consider the performance versus the
fading rate in time- and frequency-selective channels. The sce-
nario is similar to the previous example except that is fixed
to 40 and the normalized Doppler rate is varying from 0.004 to
0.02. Fig. 6 only shows the results with the proposed scheme
and MF for . It is seen that both schemes are affected as
the fading rate increases.

Finally, we briefly discuss the relative computational com-
plexity by counting (using Matlab) and comparing the number
of flops of each method. We note that the comparison is only to
serve the purpose of getting a rough feeling about the relative
complexity, since we did not make a special effort to optimize
the codes of each method and, furthermore, the comparison
may change for different parameters. Consider, for example,
the case with and , we found that
the proposed scheme requires around 10 times more flops than
the MF method, while SIB requires about 100 times more. In
most scenarios, we found that the SIB is more involved than the
proposed scheme.



WANG et al.: CODE-TIMING ESTIMATION FOR CDMA SYSTEMS WITH BANDLIMITED CHIP WAVEFORMS 1345

Fig. 6. Performance versus normalized Doppler rate f T in time-varying
multipath fading channels when N = 16;M = 40;K = 5; L =

2 8k; SNR = 15 dB, and NFR = 5 dB. (a) Probability of correct acquisition.
(b) RMSE.

VI. CONCLUSION

We have presented a new code-timing estimator for DS-
CDMA systems that employ bandlimited chip waveforms. The
proposed scheme requires only the training and spreading wave-
form of the desired user, and can be efficiently implemented by
simple noniterative quadratic optimizations. Our scheme can be
classified as an asymptotic ML estimator that models the overall
interference in the frequency domain as a colored Gaussian
process with unknown correlation. If we drop the Gaussian
assumption, we may also classify the proposed scheme as a
deterministic WLS ( estimator that utilizes a weighting matrix
for nonlinear least squares fitting in the frequency domain.
Irrespective of how it is interpreted, we have shown that the
proposed estimator is resistant to MAI and ISI, and can deal with
both time- and frequency-selective channel fading, especially
when multiple antennas are employed at the base station.

Since the base station has information of all spreading codes,
one possible extension of the proposed scheme is to exploit
knowledge of codes of all users by following a similar ML

derivation in the frequency domain. The resulting scheme, how-
ever, will need simultaneous training for all users. Furthermore,
the improvement might be limited since we will have to estimate
more unknown parameters (for all users) in this case.

The proposed scheme relies on the assumption that the in-
terference in the frequency domain is stationary from symbol to
symbol. This is possible only with short spreading codes. Hence,
the proposed scheme cannot be directly applied to long-code
systems. Efficient code acquisition for long-code CDMA with
bandlimited chip waveforms still remains a challenging research
problem that needs further attention.

APPENDIX A
DERIVATION OF THE PROPOSED CODE-TIMING ESTIMATOR

With the assumption that are complex
Gaussian random vectors with zero-mean and an arbi-
trary unknown covariance matrix

, the log-likelihood function
conditioned on and is proportional to (in
the following, we sometimes use to denote for
notational brevity)

(33)

Using standard matrix calculus results (e.g., [20]), we take the
partial derivative of the likelihood function with respect to
and setting it zero

(34)

from which we obtain

(35)

Substituting (35) into (33) and discarding quantities irrelevant
to the parameters of interest, one can see that maximizing the
ML criterion reduces to minimizing

(36)
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Next, we rewrite (35) as follows:

(37)

where and are defined in (18)–(19). One can quickly
see that the minimum of is given by as shown
in (17), whereby it is minimized in the sense that

is always nonnegative [26]. Once is mini-
mized, so is (36), [27], which is a nondecreasing function of .
Hence, in (17) is the ML estimate of the interference/noise
covariance matrix.

We rearrange the ML criterion (36) as follows:

(38)

Dropping the first term that is independent of the unknown pa-
rameters, the ML estimates of the coding-timing and channel
coefficients are given by the minimizer of

(39)

The cost function is highly nonlinear. Exact minimization re-
quires searches over a -dimensional (real) parameter
space (note that are complex-valued), which is computa-
tionally impractical.

To deal with this difficulty, we invoke a result in [28], which
shows that minimizing a cost function of the form (39) is asymp-
totically (for large data samples) equivalent to minimizing the
following WLS cost function:

(40)

where the weighting matrix is defined in (20). This leads im-
mediately to the conditional channel estimate , conditioned

on any coding-timing estimates, shown in (27). Substituting the
conditional estimate back in (40), one can see that minimizing
the WLS criterion reduces to minimizing the following function:

(41)

where
denotes the projection matrix that projects onto the orthogonal
complement of the range of .

The WLS estimate of the code-timing, which also coincides
asymptotically with the ML estimate, is the minimizer of the
WLS criterion (41). Exact minimization requires searches over
an -dimensional parameter space. Although the WLS esti-
mator is significantly simpler than the exact ML estimator, it is
still quite involved and may suffer from local convergence due
to the nonlinearity of the cost function (41).

To further reduce the complexity, we consider reparameteri-
zation of the WLS criterion (41). Our reparameterization is in
principle iterative quadratic maximum likelihood (IQML) like
(e.g., [29]) in that it solves the parameter estimation problem
by polynomial rooting. There are also notable differences. In
particular, the original IQML [29] assumes that interference is
white with identity covariance matrix. In our scheme, however,
the interference is colored and we have to invoke whitening at
the various stages, which we shall see next.

Let be coefficients of the following
th-order polynomial:

(42)

where . Let be a
Toeplitz matrix formed from , similar to (24). Equation (42)
implies that and, accordingly

(43)

This, along with the fact that
, suggests that spans the orthogonal com-

plement of the range of , viz.

(44)

Therefore, the WLS criterion (41) is equivalent to minimizing
the following reparameterized cost function:

(45)
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where is defined in (22). Note that is effectively a con-
volutional matrix, and computes the linear convolution
between and . Since convolution is commutative, we can
write

(46)

where is a Hankel matrix formed from as shown in (21).
Hence, (45) is equivalent to

(47)

It is straightforward to show that is a consistent esti-
mate of , i.e., . Since

, we have . Hence,
within a second-order approximation [i.e., by ignoring terms
smaller than ], the in (47) can
be replaced by a consistent estimate without affecting the
asymptotic statistical properties of the minimizer of (47) (see,
e.g., [30]). A consistent estimate of can be
formed by using an initial consistent estimate of . One such
estimate was described in Step 2 of the proposed estimator
in Section III. In particular, that estimate is obtained by a
least-squares (LS) fitting to , which is consistent due to the
consistency of . Once we have as in Step 2, we use it to
form , which is a consistent estimate of

, and recompute according to Step 3. Clearly,
the so-obtained estimate of approaches asymptotically to the
ML estimate, and so are the code-timing estimates.

APPENDIX B
MINIMIZATION OF QUADRATIC FUNCTIONS (23) and (25)

Both cost functions in (23) and (25) can be written as a
common form

(48)

where for (23) and for (25).
Since, theoretically, the polynomial in (42) has all its roots
on the unit circle, a necessary condition on is that should
satisfy the conjugate symmetry property (cf. [30])

(49)

We would also like to enforce this constraint in our estima-
tion of . To this end, let

, where denotes the
integer part of . Then, we have

(50)

(51)

where denotes a exchange matrix with
ones on its cross-diagonal and zeros elsewhere. Using (50) or
(51) in (48), we have

(52)

To avoid the trivial solution , we also impose the con-
straint . The solution to (52) is the eigenvector of

associated with the smallest eigen-
value (e.g., [26]).

APPENDIX C
DERIVATION OF THE CRB

Let . Then, (28) is written
as

(53)

where is assumed to be a zero-mean colored
Gaussian random process with unknown covariance ma-
trix .
Next, we collect all the received vectors and form

.

Moreover, let

and
. Then, (53) can be rewritten compactly as

(54)

We observe the following structure of

(55)

where and
. The covariance matrix of

is given by

(56)

By using the Slepian–Bangs formula [25], the th element
of the Fisher information matrix is given by

(57)

Let and
. Then, we can write (57)

collectively as

(58)

By direct calculation, we have

(59)

(60)

where and
, for



1348 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 3, NO. 4, JULY 2004

. The partial derivatives with respect to and
are

(61)

(62)

where
.

Following (58) and (59), the th element of the matrix
is given by

(63)

where in the second equality, we used the fact that
for arbitrary , and with compat-

ible dimensions [20]. Equation (63) is recognized as the th
element of the right-hand side (RHS) of (30).

Next, we evaluate the th element of the matrix . Let
, for and . We have

(64)

where we recall is the th column of . One can see
that (64) is the th element of the RHS of (31).

Similarly, for , let , where
and ; , where
and . Then

(65)

which is seen to coincide with the th element of the RHS
of (32).
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