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In this paper, an integrated cubic phase function (ICPF)

is introduced for the estimation and detection of linear

frequency-modulated (LFM) signals. The ICPF extends
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LFM signals. The asymptotic mean squared error (MSE) of

an ICPF-based estimator as well as the output SNR of an

ICPF-based detector are derived in closed form and verified

by computer simulation. Comparison with several existing

approaches is also included, which shows that the ICPF serves

as a good candidate for LFM signal analysis.
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I. INTRODUCTION

Frequency-modulated (FM) signals have many
applications in radar, sonar, communications, and
seismic analysis [1—4]. One important class of such
signals are linear FM (LFM) signals frequently
encountered in modern radar systems [3, 4].
Due to target motion, radar return signals can be
modeled as LFM signals whose parameters, e.g.,
initial frequencies and chirp-rates, reveal useful
information about the target, i.e., its velocity and
acceleration.
Detection and parameter estimation of LFM

signals have received considerable attention in recent
years [5—17]. Early efforts were focused on the
analysis of the single-component LFM signal. The
maximum likelihood estimator (MLE), which is
also called the generalized chirp transform (GCT)
in [18], was examined in [5]. Although statistically
optimal, the MLE requires a two-dimensional
(2-D) joint maximization over the initial frequency
and chirp-rate parameters and is computationally
demanding. The MLE also requires accurate initial
parameter estimates to avoid local maxima, and
a numerical search is performed by utilizing a
Newton algorithm [5]. Suboptimal techniques are
therefore desired for practical implementation. In
[6], a phase unwrapping algorithm followed by
least-square fitting was proposed, which is suitable
for single-component LFM signal estimation at
high signal-to-noise ratio (SNR). The discrete
polynomial transform (DPT) was employed to
reduce the 2-D maximization problem in the
MLE to a one-dimensional (1-D) problem [7].
Time-frequency analysis was also studied for LFM
signal estimation. For example, the Wigner-Ville
distribution (WVD) can be used to track the
time-varying frequency of the LFM signal. In
general, these techniques can produce good results
for single-component LFM signal at moderate to
high SNR.
For multi-component LFM signals which arise

in many applications, a number of techniques
were proposed in [8—13, 16, 17]. The Cramér-Rao
bound (CRB) and MLE for multi-component
LFM signals were investigated in [10] and [17].
A combined radon-WVD transform (RWT) was
proposed to turn the task of tracking straight
lines in the time-frequency domain into one of
locating the maxima in a 2-D domain [8, 9], which
is still computationally complex due to the 2-D
optimization. To reduce the 2-D problem to a 1-D
problem, the radon-ambiguity transform (RAT)
was proposed by exploiting the property that states
that auto-terms in the ambiguity function pass
through the origin of the ambiguity domain (also
see Section III) [13]. It was shown that, compared
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with the RWT, the RAT provides comparable
performance with reduced computation, especially in
cases where the chirp-rate is the only parameter of
interest. Nevertheless, the computational complexity
remains high since the RAT requires an additional
Cartesian-to-polar coordinate transformation and
interpolations.
Recently, an instantaneous frequency rate

(IFR) estimator using the cubic phase function
(CPF) was proposed for FM signal estimation
[19]. The CPF-based approach is asymptotically
efficient for single-component LFM signals [20].
However, for multi-component LFM signals, the CPF
exhibits spurious peaks that cause an identifiability
problem. The more LFM components, the higher
the probability of spurious peaks [16]. Hence,
there is a need to develop robust techniques for the
estimation and detection of multi-component LFM
signals.
In this paper, an integrated cubic phase function

(ICPF) is proposed for LFM signal estimation
and detection. The ICPF exploits the property
that states that the auto-terms in the CPF are
distributed along straight lines parallel to the time
axis in the time-“frequency rate” domain, and
hence it integrates over these lines to enhance the
auto-terms (see Section II for an illustration of the
auto-terms and spurious peaks). It is shown that,
compared with the CPF, the ICPF can provide
considerably lower mean squared error (MSE)
at low SNR, lower SNR threshold, and better
rejection of spurious peaks or cross-terms for
multi-component LFM signals. Additionally,
the ICPF is computationally more efficient
than the RWT since the former involves a 1-D
optimization, as opposed to a 2-D optimization
used in the RWT. It is also more efficient than
the RAT since the ICPF does not require the
computationally expensive Cartesian-to-polar
coordinate transformation. The performance of the
ICPF is examined in terms of the asymptotic MSE and
output SNR.
The paper is organized as follows. The problem

formulation is described in Section II. Section III
introduces the definition of the ICPF. An ICPF-based
parameter estimation for the LFM signal is proposed
in Section IV. The asymptotic MSE of the ICPF-based
estimates is also included in this section. Section V
proposes an ICPF-based detector, and its performance
is characterized in terms of the output SNR and the
SNR threshold. Numerical examples are provided
in Section VI. Finally, conclusions are drawn in
Section VII.

II. PROBLEM FORMULATION

Consider noise-contaminated observations
of a K-component LFM signal:

x(n) =
KX
k=1

sk(n) + v(n)

=
KX
k=1

Ak expfj(ak,0 + ak,1n+ ak,2n2)g+ v(n)

n 2 Z ¢
=fn0,n0 +1, : : : ,n0 +N ¡ 1g (1)

where Ak, ak,0, ak,1, and ak,2 denote the unknown
amplitude, phase parameter, frequency parameter,
and chirp-rate parameter for the kth component,
respectively, which are to be estimated, n0 is the initial
time index, N is the number of temporal samples,
and the noise v(n) is assumed to be a complex white
Gaussian noise with zero-mean and variance ¾2.
Historically, two cases have been considered for the
initial time index n0, i.e., n0 = 0 and n0 =¡(N ¡ 1)=2
(assume N is odd), respectively. Note that the two
choices lead to different LFM signals since the
instantaneous frequencies are different. Here, we do
not fix the value of n0 so that we can address both
cases. To avoid ambiguities arising from the cyclic
nature of spectral transforms of sampled signals, it is
assumed that [21, 22]

ja1j · ¼
ja2j · ¼=N:

(2)

The CPF, which was introduced to extract the IFR
[19], is defined as

CPF(n,−) =
X
m

x(n+m)x(n¡m)e¡j−m2

m 2 L ¢
=f¸ : n+¸ 2 Z,n¡¸ 2 Zg (3)

where − represents the IFR index for the spectrum
of the CPF. It is noted that the CPF concentrates
the LFM signal energy along straight lines − =
2ak,2 in the (n¡−) (time-frequency rate) domain.
For comparison, Fig. 1(a)—(c) plots the WVD,
ambiguity function (AF), and CPF, respectively, of a
2-component LFM signal with parameters A1 = A2 =
1, a1,0 = a2,0 = 0, a2,1 =¡a1,1 = 0:1¼, a1,2 =¡a2,2 =
0:4¼=N, and N = 257.
The CPF is asymptotically efficient for parameter

estimate of a single-component LFM signal estimation
[20]. However, an identifiability problem occurs due
to cross-terms and spurious peaks when dealing with
multi-component LFM signals [16]. For example,
consider a 2-component LFM signal

x(n) = A1 expfj(a1,0 + a1,1n+ a1,2n2| {z }
Á1(n)

)g

+A2 expfj(a2,0 + a2,1n+ a2,2n2| {z }
Á2(n)

)g (4)
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Fig. 1. WVD, AF, and CPF of 2-component LFM signal.

where the observation noise is ignored for simplicity.
The bilinear transform in the CPF results in

x(t+m)x(t¡m)
= A21e

j2Á1(n)ej2a1,2m
2
+A22e

j2Á2(n)ej2a2,2m
2| {z }

auto-terms

+A1A2e
j(Á1(n)+Á2(n))ej[(a1,2+a2,2)m

2+½(n)m]| {z }
cross-term 1

+A1A2e
j(Á1(n)+Á2(n))ej[(a1,2+a2,2)m

2¡½(n)m]| {z }
cross-term 2

(5)

where

½(n) = (a1,1¡ a2,1) +2(a1,2¡ a2,2)n: (6)

The auto-terms in (5) exhibit a quadratic phase in m,
whereas the cross-terms have both linear and quadratic

phases in m with coefficients related to the time
index n. By applying the quadratic phase filtering,
i.e.,

P
m(¢)e¡j−m

2
, the auto-terms are localized along

two straight lines independent of the time index, i.e.,
− = 2a1,2 and − = 2a2,2, while the cross-terms are
distributed along trajectories varying with time (see
Fig. 1).
However, when ½(n) = 0 (see (6)), the two hybrid

phase terms in m reduce to quadratic phase terms in
m, and (5) reduces to

x(n+m)x(n¡m)

= A21e
j2Á1(n)ej2a1,2m

2
+A22e

j2Á2(n)ej2a2,2m
2| {z }

auto-terms

+2A1A2e
j(Á1(n)+Á2(n))ej(a1,2+a2,2)m

2| {z }
spurious peak

: (7)
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Fig. 2. Integral path for RWT, RAT, and ICPF over different 2-D domains, where μ and r denote rotation angle and integral radius,
respectively.

After the quadratic phase filtering, the two cross-terms
converge into a single peak at the time index ns such
that ½(ns) = 0. For the 2-component LFM signal in
Fig. 1, ns ¼ 32. Fig. 1 shows a slice of the CPF at
ns = 32. It is observed that the highest peak is the
spurious peak at − = a1,2 + a2,2. The situation becomes
worse in dense LFM signal environments. Specifically,
for a K-component LFM signal, there are (K2¡K)
cross-terms which may lead to up to (K2¡K)=2
spurious peaks [16].

III. INTEGRATED CUBIC PHASE FUNCTION

To address the above identifiability problem of the
CPF, it is desirable to separate the auto-terms from
the cross-terms and spurious peaks. By reviewing (5)
and (7), we observe that the auto-terms of the CPF
are distributed over straight lines parallel to the time
axis, whereas the locations of the cross-terms vary
with time, and the spurious peaks occur at discrete
locations that are subject to the constraint (6). This
property motivates us to integrate along straight
lines parallel to the time to enhance the energy of
the auto-terms. Once the integral path matches the
location of an auto-term, the integral adds up the
energy of the auto-terms, thus forming a peak that can
be exploited to simplify the detection and estimation
of LFM signals.
Specifically, the integral path for the CPF is

shown in Fig. 2(c). For comparison, Fig. 2 includes
the integral path for the RWT [8] and RAT [13],
respectively, where the dashed line shows the integral
path that is uniquely determined by the rotation
angle μ, the integral radius r, or both. In particular,
the RWT needs to integrate all straight lines in the
time-frequency domain by varying the values of both
μ and r, while the RAT just integrates straight lines
passing through the origin of the ambiguity domain
(delay-“Doppler frequency” domain, equivalently) by
fixing r = 0 and varying μ.
In this paper, the ICPF is defined as follows

ICPF(−) =
X
n

jCPF(n,−)j2

=
X
n

X
m

X
l

x(n+m)x(n¡m)

£ x¤(n+ l)x¤(n¡ l)e¡j−(m2¡l2) (8)

where m and l are drawn from the set L defined in
(3). By direct substitution of an LFM signal into
the above equation, the ICPF exhibits a peak at
− = 2a2. This implies that the detection and parameter
estimation of a noisy LFM signal can be performed
through a 1-D search of the IFR spectrum. For
multi-component LFM signals, the ICPF presents
multiple peaks for the auto-terms and suppresses the
cross-terms and spurious peaks. The ICPF for the
2-component LFM signal of Fig. 1 is shown in Fig. 1
by a dotted line. It is observed that two distinct peaks
corresponding to the auto-terms are shown, and the
spurious peak is suppressed.

IV. ICPF-BASED PARAMETER ESTIMATION

As shown in Fig. 1, the locations of the spectrum
peaks are proportional to the chirp-rate parameters.
Therefore, an ICPF-based estimator for the LFM
parameters is introduced in the following.

A. Estimation Algorithm

By searching for peaks in the IFR spectrum,
the chirp-rate parameters for the LFM signal can
be estimated. For multi-component LFM signals,
we can estimate one chirp-rate parameter at a time.
Once an estimate of ak,2 is obtained, a dechirping
technique is used to convert the observations x(n) to a
sinusoidal signal, and the remaining parameters for the
estimated LFM signal are obtained using the following
procedure:

1) Dechirp: xd(n) = x(n)e
¡jâk,2n2 ;

2) Estimate ak,1 by discrete Fourier transform
(DFT):

âk,1 = argmax!
Xd(!) (9)

where Xd(!) = j
P

n xd(n)e
¡j!nj2.

3) Estimate ak,0 and Ak by least-square: let yd(n) =
xd(n)e

¡jâk,1n,

âk,0 =angle

"
1
N

X
n

yd(n)

#
==

(
log

"
1
N

X
n

yd(n)

#)
(10)
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Âk =
1
N

X
n

yd(n)e
¡jâk,0 = exp

"
<
(
log

"
1
N

X
n

yd(n)

#)#
(11)

where =f¢g and <f¢g denote the imaginary and real
parts of f¢g, respectively. The second equality in (10)
and (11) shown in [7] will be used in Appendix I for
performance analysis.
4) Cancel out the estimated LFM signal using

x(n) = x(n)¡ Âkej(âk,0+âk,1n+âk,2n
2), set k = k+1, and

repeat steps 1—4 until k =K.

To further improve the estimates, a refining step
is helpful to reduce the estimation error caused by
interference among different components of the LFM
signal. An approach suggested in [11] is adopted
here. Specifically, when all parameter estimates are
obtained using the above procedure, we reestimate
the parameters of each LFM component by canceling
out all LFM components other than the one to be
estimated and repeating (8) and steps 1—3.

B. Accuracy of the Estimation

In this section, the ICPF-based estimator is
examined in terms of its asymptotic bias and MSE. In
addition to the chirp-rate parameter estimate, we also
study the accuracy of the other parameter estimates,
i.e., phase parameter a0, frequency parameter a1, and
amplitude A, which are affected by the a2 estimate
error when the dechirping technique is used.
An exact analysis of the proposed ICPF-based

LFM signal estimator for the multi-component case
is difficult due to the interference among different
LFM components caused by the nonlinear operation
of the ICPF. Note that by estimating one component
at a time and interference cancelation (as described
in Section III), our estimator effectively converts the
problem into a series of single-component LFM signal
estimations. In the sequel, we present an analysis
for the single-component case, which provides a
lower bound on the achievable performance of
our estimator, subject to residual interference and
imperfect cancelation. A computer simulation shows
that the analysis is accurate even for relatively small
values of N.
We employ a first-order perturbation analysis

similar to the one in [7] for LFM signal estimation.
This method is valid for high SNR and for a large
number of samples. An SNR threshold effect usually
occurs when the high SNR assumption is not met, and
the Monte-Carlo simulation can be utilized to verify
the theoretical analysis. For the ICPF estimate of
the chirp-rate parameter, the first-order perturbation
analysis is presented in Appendix IA. The results
show that the a2 estimate is asymptotically unbiased,
i.e., Ef±a2g= 0, where ±a2 denotes the estimation

TABLE I
Asymptotic MSE and CRB

The Estimates Asymptotic MSE CRB

â2
90

N5SNR

³
1:008+

7:433
NSNR

´
90

N5SNR

â1
6

N3SNR

³
1+

4
NSNR

´
6

N3SNR

â0
1:125
NSNR

³
1:004+

4:133
NSNR

´
1:125
NSNR

Â ¾2

2N
¾2

2N

error, and the corresponding asymptotic MSE is

Ef(±a2)2g=
90
N5

μ
1:008
SNR

+
7:433

SNR2N

¶
: (12)

Once we have obtained the estimate of the
chirp-rate parameter, according to the estimation
procedure in Section III, the dechirping technique is
applied, and the remaining parameters are estimated
using (9), (10), and (11). During this procedure, the
error in the a2 estimate may propagate to the other
estimates, i.e., â1, â0, and Â. The error propagation
effect is considered here. The derivation of the
asymptotic bias and MSE of these estimates is
presented in detail in Appendix IB and I-C. It is
shown that all estimates are asymptotically unbiased.
Table I summarizes the asymptotic MSE of these
estimates and the corresponding CRBs, which shows
that the ICPF-based estimation is asymptotically
efficient for the a1 and A estimates, and approximately
efficient for the a2 and a0 estimates at high SNR.
We note that similar observations, i.e., some

parameters associated with the LFM signal are
asymptotically efficient while the others are not, have
been made in other nonlinear LFM signal estimators
(see, e.g., [7, 23, 24]). We also note that the MSE
of different parameters decreases with N in different
orders. For example, the MSE of â2 decreases as
1=N5 while the MSE of â1 decreases as 1=N

3. Only
the highest order of N is counted in each case for the
asymptotic analysis.

V. ICPF-BASED DETECTION

LFM signal detection in the presence of noise
using the proposed ICPF is considered in this section.
Performance analysis of the ICPF-based detector
is examined in terms of output SNR as well as the
computational complexity.

A. ICPF-Based Detector

Consider the following binary hypothesis testing
problem:

H0 : x(n) = v(n)

H1 : x(n) = s(n) + v(n) = Aej(a0+a1n+a2n
2) + v(n)

(13)
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where the LFM signal under H1 has unknown
parameters A, a0, a1, and a2, and v(n) is again white
Gaussian noise with mean zero and known variance
¾2. A well-known detector for this problem is the
generalized likelihood ratio test (GLRT) which
substitutes the MLE of the unknown parameters under
the alternative hypothesis into the likelihood ratio
test [7]

TGLR =

¯̄̄̄
¯ 1NX

n

x(n)e¡jâ1, MLn¡jâ2, MLn
2

¯̄̄̄
¯H1?H0 °GLR (14)

where â1, ML and â2, ML denote the MLE of the a1 and
a2, respectively, and °GLR is the detection threshold
which is subject to a specified probability of false
alarm. As stated in Section I, the MLE of the a1 and
a2 requires a 2-D grid search and is also subject to a
local convergence problem. In [25], it is shown that
the GLRT is equivalent to the RWT-based detection,
which computes 2-D polar line integrals of the WVD

TRWT = maxf!0,½g

X
n

W(n,!0 + ½n)
H1
?
H0

°RWT (15)

where W(n,!) denotes the WVD of x(n), and °RWT is
the RWT-based test threshold.
In practice, it is often the case that the chirp-rate

is the only parameter of interest, e.g., detection of a
small fast-moving missile launched from a relatively
slow moving aircraft [13]. In these cases, the 2-D
approach still needs to perform a 2-D search. To
simplify the 2-D detection approach, the RAT-based
test realizes that the AF of x(n) is distributed along a
line going through the origin of the ambiguity plan
and, therefore, computes only a 1-D polar line integral

TRAT =maxf½g

X
¿

jQ(¿ ,½¿)j2
H1
?
H0

°RAT (16)

where Q(n,!) denotes the ambiguity function of x(n)
and °RAT is the RAT-based test threshold. Although
the RAT-based test is a 1-D approach, the computation
of the RAT still remains high due to the inherent
Cartesian-to-polar coordinate transformation and the
2-D interpolation.
In the following, an LFM signal detector, which

is computationally more efficient than the above
detectors, is introduced by using the proposed ICPF.
By recalling that the ICPF concentrates the LFM
signal to a peak in the IFR spectrum, we can decide
the presence of the LFM signal by searching for peaks
in the IFR spectrum exceeding a certain threshold.
An ICPF-based detector is thus introduced by simply
computing the ICPF and comparing the highest peak
with a threshold:

TICPF = maxf−g

X
n

jCPF(n,−)j2
H1
?
H0

°ICPF (17)

where °ICPF is the corresponding detection threshold.
From (17), the ICPF-based test is a 1-D approach as

opposed to the 2-D nature of the GLRT/RWT-based
test and involves only a 1-D Cartesian line integral,
which does not require the Cartesian-to-polar
coordinate transformation and the 2-D interpolation
of the RAT-based test. As a result, the ICPF-based
test appears to be the most computationally efficient
approach to detect an LFM signal (see Section VC for
more details).

B. Performance Metrics For Detection

In general, the distribution of the test statistic TICPF
cannot be obtained in closed form due to the nonlinear
operation involved. For practical applications, the
histogram of TICPF needs to be estimated from
either experimental or simulated data to set the
test threshold °ICPF. Similarly, the probability of
detection cannot be analytically expressed due to
the nonlinear transformation. Alternatively, the
performance in terms of the probability of detection
for a given probability of false alarm is determined by
Monte-Carlo simulations, and the results are shown in
Section VI.
Another quantity used to characterize the

performance of a detector is the output SNR, which
is the ratio of the output signal power to the output
noise power. In the absence of noise, i.e., x(n) = s(n),
the test statistic of the ICPF-based detector at the
maximum point −0 = 2a2 is denoted by ICPFs(−0).
In the presence of noise, x(n) = s(n)+ v(n), the test
statistic at −0 is a random variable and is denoted as
ICPFx(−0). As a result, the SNR output is defined
as [9]

SNRout =
jICPFs(−0)j2
varfICPFx(−0)g

(18)

where varf¢g denotes the variance of its argument.
Here, the input SNR is defined as SNRin = A

2=¾2. The
output SNR for the ICPF-based detector is derived in
Appendix II:

SNRout

=
SNR3inN

3

8:1SNR2inN2 +70:5NSNRin +192+36SNR
¡1
in

:

(19)
At high input SNR, the above output SNR can
be approximated by SNRout = SNRinN=8:1. For
comparison, the output SNR of the squared form of
the RWT-based and RAT-based detectors were shown
in [13, eq. (47)].

C. Computational Complexity

The computational complexity of the RWT-based,
RAT-based, and ICPF-based detectors is examined
here. Let N be the number of temporal samples
and M the number of samples in the transformation
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TABLE II
Comparison of Computational Complexity

Operation RWT1 RWT2 RAT ICPF

Multiplications C1 C2 C2 C2
Additions C1 C2 C2 C2

Coordinate Trans. C1 0 C1 0
Interpolation Yes No Yes No
Maximization 2-D 2-D 1-D 1-D

C1 :O(MN
2).

C2 :O(MN log2N).
The computational complexity of the CPF is O(N log2N) [19].

domain where M is generally chosen larger than N
to help locate the peak [8, 13]. The computational
cost of the three detectors is listed in Table II, where
RWT1 denotes the RWT with direct implementation
and RWT2 the one using a dechirping-based
implementation [8]. From Table II, the ICPF is seen
to be more efficient than the RWT1 and the RAT
since the ICPF avoids the nonlinear Cartesian-to-polar
coordinate transformation and the 2-D interpolation
which is required in the RWT1 and RAT. The RWT2
and ICPF require a similar number of multiplications
and additions. However, the ICPF requires only a 1-D
maximization compared with the 2-D maximization
used by the RWT2. Note that even if the chirp-rate
parameter is the only parameter of interest, the RWT2
still needs to search a 2-D (chirp-rate and frequency
parameters) domain to find the peaks, while the ICPF
implements only a 1-D search over the chirp-rate
parameter.

D. Threshold Analysis

Based on the output SNR, we can determine the
input SNR threshold for the ICPF-based approach.
In general, nonlinear estimators often exhibit a
threshold effect [26]. That is, at an SNR below a
certain threshold, the first-order perturbation analysis,
which is based on the assumption of high SNR, is
no longer accurate. There are a number of ways to
define the SNR threshold (see [7, 23, 24]). From a
detection point of view, we define the SNR threshold
as the input SNR which results in an output SNR
exceeding a preset threshold (e.g., about 13—14 dB
for high-resolution radars [1]). With the availability of
the output SNR, the SNR threshold of the ICPF-based
approach is given by (assuming a preset threshold of
14 dB)

SNRICPFt = 10log10

μ
45
N

¶
: (20)

For a given input SNR, the SNR threshold for the
ICPF-based approach decreases as the number of
samples increases. The theoretical output SNR
in (20) is examined in a number of examples in
Section VI.

Fig. 3. MSE for CPF and ICPF versus SNR, when N = 256.

VI. NUMERICAL EXAMPLES

In this section, numerical examples are provided to
illutrate the performance of the proposed methods and
verify the theoretical results.

A. Single-Component LFM Signal Estimation

For a single-component LFM signal embedded
in white Gaussian noise, the ICPF-based estimates
have a lower SNR threshold and smaller MSE than
those of the CPF-based estimates. To show this,
a single-component LFM signal with parameters
A1 = 1, (a1,0,a1,1,a1,2) = (0,0:2¼,0:22¼=N), n0 =
¡(N ¡ 1)=2, and N = 256 is considered. Fig. 3 shows
the Monte-Carlo simulation results for the a2 estimate
using the CPF-based estimator, ICPF-based estimator,
and the MLE. In simulations, the MLE is implemented
in two steps: a coarse 2-D grid search followed
by the Newton algorithm [5]. It is seen that the
simulated MSE conforms to the theoretical MSE for
the ICPF-based estimator. Moreover, the ICPF-based
estimate produces lower MSE than the CPF-based
estimates at low SNR, especially below ¡3 dB. The
SNR threshold for the ICPF-based estimator is around
¡8 dB, as predicted by (20), which is 5 dB lower than
that of the CPF-based estimator around ¡3 dB. In
addition, it is shown that the ICPF-based estimator
has almost identical performance with the MLE above
the ICPF-based SNR threshold.
Fig. 4 shows the MSE of the a2 estimate with the

corresponding CRB [27] as the number of samples N
increases. The other parameters are the same as in the
previous example. At SNR=¡2 dB, the CPF-based
estimator works only when N is fairly large, while the
ICPF-based estimator and the MLE provides lower
MSE at smaller N. Moreover, it is seen that the ICPF
estimate of a2 is nearly efficient for most values of N
considered here, whereas the CPF-based estimator has
a noticeable gap to the CRB even after the threshold
effect disappears.
With a performance similar to the MLE, the

ICPF-based estimator is beneficial from the viewpoint
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Fig. 4. MSE versus N for a2 estimate, when SNR=¡2 dB.

of complexity. In implementing the MLE, a brute
force 2-D grid search is required to locate the
convergence region around the optimum. As opposed
to the 2-D maximization and search of the MLE,
the ICPF-based estimator needs only a 1-D search
to estimate the chirp-rate parameter. In addition,
as shown in Figs. 3 and 4, once the initial estimate
of the MLE is out of the convergence region, the
MLE converges to local maxima and achieves worse
performance.

B. Multi-Component LFM Signals Estimation

A 2-component LFM signal embedded in complex
white Gaussian noise is considered. The parameters
of the 2-component LFM signal are A1 = A2 = 1,
(a1,0,a1,1,a1,2) = (0,0:2¼,0:22¼=N), (a2,0,a2,1,a2,2) =
(0,0:8¼,¡0:31¼=N), n0 = 0, and N = 64 [17].
To reduce estimation bias, as we mentioned in
Section III, a refining estimation step is performed by
canceling out all other components except the one to
be estimated. The MSE of the ICPF-based estimates is
seen to match well with the theoretical MSE obtained
in Section IV. The MSE is also compared with the
CRB corresponding to the case of multi-component

Fig. 5. MSE for a2 estimate of 2-component LFM signal, (a) first component; (b) second component, when N = 64.

LFM signals [10, 17]. The performance of the
multi-component MLE was shown in [17].
Fig. 5 shows the MSE for the first component of

the LFM signal, using the CPF-based and ICPF-based
estimators, respectively. It is shown that the SNR
threshold of the ICPF-based estimate is around
¡1 dB, which agrees with the analytical result in
(20). At an SNR above the threshold, the MSE for
the ICPF-based estimate is close to the theoretical
MSE. For the CPF-based estimation, the time index
is chosen at n= 36, where spurious peaks appear
according to ½(n) = 0 in (6). Compared with the
ICPF-based estimate, the CPF-based estimate is worse
due to interference, including cross-terms and spurious
peaks, even at high SNR.
A more challenging case involving a 5-component

LFM signal with varying SNRs and close chirp-rates
is considered next. Specifically, the ith component
SNR is defined as A2i =¾

2. The LFM signal parameters
are (A1,a1,0,a1,1,a1,2) = (1,0,0:2¼,0:4¼=N),
(A2,a2,0,a2,1,a2,2) = (0:5,0,0:1¼,0:1¼=N),
(A3,a3,0,a3,1,a3,2) = (0:25,0,0:4¼,0:3¼=N),
(A4,a4,0,a4,1,a4,2) = (0:125,0,0:6¼,¡0:3¼=N), and
(A5,a5,0,a5,1,a5,2) = (0:0625,0,0:3¼,¡0:2¼=N),
respectively.
Figs. 6(a) and (b) show the MSE of the chirp-rate

estimates for the first and second LFM components,
using the CPF-based and the ICPF-based estimators
and the MLE, respectively, together with the
multi-component cancelation procedure. The SNR
shown is the first component’s SNR. For the
CPF-based estimation, the time index is chosen at the
middle point of observations where no spurious peaks
appear. As seen from these figures, the ICPF-based
estimator achieves performance similar to the MLE
and outperforms the CPF-based estimator. The latter
approaches the CRB only at high SNRs.

C. LFM Signal Detection

To compare the performance of the
GLRT/RWT-based, RAT-based, and ICPF-based
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Fig. 6. MSE for a2 estimate of 5-component LFM signal with varying component SNRs, (a) first component; (b) second component,
when N = 64.

Fig. 7. Probability of detection versus SNR when probability of
false alarm is fixed to 0.01 and N = 64.

detectors, an LFM signal is generated using
parameters a0 = 0:1¼, a1 = 0:2¼, a2 = 0:1¼=N, and
n0 = 0. Due to the nonlinear transformation, analytical
expressions of the probability of detection and
probability of false alarm cannot be derived in closed
form. Here, the simulated probability of detection
versus SNR for a given probability of false alarm
is shown in Fig. 7, where N = 64. It is shown that
the ICPF-based detector provides a close detection
performance as the GLRT/RWT-based detector, while
the RAT-based detector provides worse results which
may be attributed to the coordinate transformation and
polar line integrals. Specifically, compared with the
GLRT/RWT-based detector, the ICPF-based detector
shows about 0.5 dB performance loss, but saves in
computational complexity from the 2-D search to the
1-D search.
To verify the theoretical output SNR of the

ICPF-based detector, an LFM signal with the same
parameters as in the above example is simulated,
except that N = 256. Fig. 8 shows the output SNR
obtained from the Monte-Carlo simulation for
the three squared-form detectors as well as their
theoretical output SNR. It is observed that the
simulated output SNR for the ICPF-based detector

Fig. 8. Output SNR for squared RAT, RWT, and ICPF when
N = 256.

conforms to the theoretical expression in (19).
Moreover, the detection performance for the three
detectors are almost the same in terms of the output
SNR.

VII. CONCLUSION

The ICPF has been proposed for LFM signal
analysis. For either single- or multi-component LFM
signals, the ICPF-based approach provides improved
estimation accuracy and better capability of rejecting
the interference than the CPF-based approach.
Performance analysis has been carried out in terms
of the asymptotic bias and MSE for the estimation
problem and the output SNR and SNR threshold
for the detection problem. Comparison with other
approaches including the MLE for the estimation
and the GLRT for the detection shows that the ICPF
provides a reliable and computationally efficient tool
for LFM signal detection and estimation.

APPENDIX I. ASYMPTOTIC BIAS AND MSE

A. Chirp-Rate Parameter Estimate

We follow a first-order perturbation analysis as
used in [7] for LFM signal estimation. Let gN(−) be a

WANG ET AL.: INTEGRATED CUBIC PHASE FUNCTION FOR LINEAR FM SIGNAL ANALYSIS 971



noise-free function depending on − and N. A random
perturbation ±gN(−) moves the global maximum −0
of the gN(−) to the point −0 + ±−. For the ICPF-based
parameter estimator, the random perturbation is due to
interference including cross-terms and noise-related
terms. To derive the MSE of the ICPF-based
estimates, let gN(−) and ±gN(−) be

gN(−) =
X
n

X
m

X
l

s1s2s
¤
3s
¤
4e
¡j−(m2¡l2) (21)

±gN(−)¼
X
n

X
m

X
l

zvse
¡j−(m2¡l2) (22)

where s1 = s(n+m), s2 = s(n¡m), s3 = s(n+ l),
s4 = s(n¡ l) for notation simplicity, and zvs includes
the interference with no more than two noise terms
due to the high SNR assumption:

zvs ¼ s1s2s¤3v¤4 + s1s2s¤4v¤3 + s1s¤3s¤4v2 + s2s¤3s¤4v1
+ s1s2v

¤
3v
¤
4 + s1s

¤
3v2v

¤
4 + s1s

¤
4v2v

¤
3

+ s2s
¤
3v1v

¤
4 + s2s

¤
4v1v

¤
3 + s

¤
3s
¤
4v1v2 (23)

where fvig4i=1 are defined similarly as fsig4i=1 from the
noise samples.
By definition of the maximum, we have

@[gN(−)+ ±gN(−)]
@−

¯̄̄̄
−0+±−

= 0: (24)

By using a first-order approximation, the above
equation can be approximated as

@gN(−0)
@−

+
@±gN(−0)
@−

+
@2gN(−0)
@−2

±− ¼ 0: (25)

The first term is zero since −0 maximizes gN(−).
Therefore, the estimation error ±− can be expressed
as

±− =¡®
¯

(26)

where ®= @±gN(−0)=@− and ¯ = @2gN(−0)=@−
2. By

using the derivatives of (21) and (22) in the above
equation, we have

®=
X
n

X
m

X
l

(m2¡ l2)zvse¡j−0(m
2¡l2¡¼=2) (27)

¯ ¼¡A4 N
7

630
: (28)

Taking the expectation on (26) yields

Ef±−g=¡Ef®g
¯

= 0 (29)

due to the fact that

Ef®g ¼ ¡2A2¾2
X
n

X
m

X
l

(m2¡ l2)[±(m¡ l) + ±(m+ l)]

= 0 (30)

where ±(n) indicates the Kronecker delta function.
Hence, the chirp-rate estimate is asymptotically
unbiased as a first-order approximation.
According to (26), the variance of ±− can be

expressed as

Efj±−j2g= Ef®®
¤g

¯2
: (31)

Based on the high-order moment properties of the
Gaussian random variable [28], we have the following
types of intermediate results:

s1s2s
¤
3s
¤
5s
¤
6s7Efv¤4v8gej−0[(m

2
2¡l22)¡(m2¡l2)]

= A6¾2±(n¡ l¡n2 + l2)
s1s2s

¤
5s
¤
6Efv¤3v¤4v7v8gej−0[(m

2
2¡l22)¡(m2¡l2)]

= A4¾4±(n+ l¡n2¡ l2)±(n¡ l¡n2 + l2)
+A4¾4±(n+ l¡ n2 + l2)±(n¡ l¡ n2¡ l2)

(32)

where s5 = s(n2 +m2), s6 = s(n2¡m2), s7 = s(n2 + l2),
s8 = s(n2¡ l2), and fvig8i=5 are similarly defined.
Based on the above results and (27), Ef®®¤g can
be computed as multiple summations of the delta
functions in (32), and the results are approximated
as

Ef®®¤g ¼ A6¾2
μ
8N9

8744

¶
+A4¾4

μ
4N8

1440
+
16N8

4033

¶
:

(33)
Using the above equation in (31), we have

Efj±−j2g ¼ 363
SNRN5

+
2677

SNR2N6
: (34)

Since − = 2a2, the mean-square value of ±a2 is

Ef(±a2)2g=
90
N5

μ
1:008
SNR

+
7:433

SNR2N

¶
: (35)

B. Frequency Parameter Estimate

The dechirped signal can be expressed as

xd(n) = x(n)e
¡jâ2n2 = x(n)e¡j(a2+±a2)n

2

= [s(n)+ v(n)]e¡j(a2+±a2)n
2

= [Aej(a0+a1n) + v(n)e¡ja2n
2
]e¡j±a2n

2
: (36)

Since ±a2 is of order N
¡5=2 (see (35)) and ±a2n

2 is
of order N¡1=2 for all n, the following approximation
holds for large N [7]

e¡j±a2n
2 ¼ 1¡ j(±a2)n2: (37)

By using (37), the dechirped signal can be
approximated as

xd(n) = Ae
j(a0+a1n) + [v(n)(1¡ j(±a2)n2)e¡ja2n

2

¡Aej(a0+a1n)j(±a2)n2]: (38)
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Once again, we apply a first-order perturbation
analysis to the a1 estimate, which is the frequency
location maximizing the magnitude squared DFT of
xd(n):

gN(!) =
X
n

Aej(a0+a1n)e¡j!n (39)

±gN(!) =
X
n

[v(n)(1¡ j(±a2)n2)e¡ja2n
2

¡Aej(a0+a1n)j(±a2)n2]e¡j!n: (40)

The functions gN(!), ±gN(!), and their derivatives
at the point of the global maximum !0 = a1 are given
by

gN(!0) = Ae
ja0N (41)

@gN(!0)
@!

=¡jAeja0
X
n

n¼ 0 (42)

@2gN(!0)
@!2

=¡Aeja0
X
n

n2 ¼¡Aeja0N
3

12
(43)

±gN(!0) =
X
n

[v(n)(1¡ j(±a2)n2)e¡j(a1n+a2n
2)

¡ jAeja0 (±a2)n2]

¼
X
n

v(n)(1¡ j(±a2)n2)e¡j(a1n+a2n
2)

¡ jAeja0 (±a2)
N3

12
(44)

@±gN(!0)
@!

=¡j
X
n

n[v(n)(1¡ j(±a2)n2)e¡j(a1n+a2n
2)

¡Aeja0j(±a2)n2]
¼¡j

X
n

nv(n)(1¡ j(±a2)n2)e¡j(a1n+a2n
2):

(45)

By utilizing the first-order analysis for the complex
sinusoid signal in [7] along with the above equations,
we obtain

®= 2<
½
gN(!0)

@2g¤N(!0)
@!2

+
@gN(!0)
@!

@g¤N(!0)
@!

¾
=¡A2N

4

6
(46)

¯ = 2<
½
gN(!0)

@±g¤N(!0)
@!

+
@gN(!0)
@!

±g¤N(!0)
¾

¼ 2N<
(
¡j
ÃX

n

ns(n)v¤(n)

+
X
n

n3s(n)v¤(n)j(±a2)

!)
= 2N(=f´g+=f°g) (47)

where ´ and ° represent the first and second
summations in (47), respectively.

Substituting (26) into the above equations yields
the following results:

Ef(=[´])2g ¼ A
2¾2N3

24
(48)

Ef´¤°g= 2Ef´°g ¼ ¾4 (49)

Ef°°g= 0 (50)

Ef°°¤g ¼ ¾
4N2

3
: (51)

Hence,

Ef¯2g= 4N2[E(=[´]2) +E(=[´]=f°g)
+E(=f°g2)]

¼ 4N2
·
A2¾2N3

24
+
¾4N2

6

¸
: (52)

Finally, the asymptotic MSE of the a1 estimate is

Ef(±a1)2g=
Ef¯2g
®2

¼ 6
N3SNR

μ
1+

4
NSNR

¶
:

(53)

C. Phase and Amplitude Parameter Estimates

We now derive the asymptotic MSE of the a0
and A estimates using the estimation procedure
described in Section III. According to (10) and (11),
the dechirping technique is used again. Similar to the
approximation used in (37), the dechirped signal can
be expressed as

xd2 (n) = Ae
ja0 [1+A¡2s¤(n)v(n)](1¡ j(±a1)n¡ j(±a2)n2)

¼ Aeja0 [1+A¡2s¤(n)v(n)¡ j(±a1)n¡ j(±a2)n2]:
(54)

Let #= (1=N)
P
n xd2 . We have

log#= log

(
Aeja0

"
1+

1
A2N

X
n

s¤(n)v(n)¡ j(±a2)
N2

12

#)

¼ logA+ ja0 +
1
A2N

X
n

s¤(n)v(n)¡ j ±a2N
2

12
: (55)

Using Â= e<flog(#)g in (11) yields

log Â= logA+<
(

1
A2N

X
n

s¤(n)v(n)

)
: (56)

Since log Â= log[A(1+ ±A=A)]¼ logA+ ±A=A [7], the
estimation error of A can be expressed as

±A¼ 1
NA

<
(X

n

s¤(n)v(n)

)
: (57)

Then the MSE of the amplitude estimate is

Ef(±A)2g= 1
N2A2

A2¾2N

2
=
¾2

2N
: (58)
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Meanwhile, the estimate of a0 can be expressed as

â0 ==flog#g

= a0 +
1
NA2

=
(X

n

s¤(n)v(n)

)
¡ ±a2N

2

12
: (59)

Therefore, the MSE of the a0 estimate is

Ef(±a0)2g ¼
1

2NSNR
+

1
144

N4Ef(±a2)2g¡ 0

¼ 1:13
NSNR

+
4:65

N2SNR2
: (60)

APPENDIX II. OUTPUT SNR ANALYSIS

With signal only, the test statistic in (17) at the
maximum point −0 = 2a2 is

ICPFs(−0) = A
4
X
n

X
m

X
l

s1s2s
¤
3s
¤
4e
¡j−0(m2¡l2)

= A4
N¡1X
n=0

X
m

X
l

1

= A4
N3 +2N

3
¼ A4N

3

3
(61)

where we consider the case when the observation time
is n= 0,1, : : : ,N ¡ 1 in order to compare it with the
output SNR results of the RWT and RAT [9, 13]; m
and l are subject to the constraint accordingly, and
the last approximation is valid for NÀ 1. The output
SNR for the case n=¡(N ¡ 1)=1, : : : ,0, : : : , (N ¡
1)=2 can be similarly obtained. When the signal is
corrupted by noise, the expectation of ICPFx(−0) can
be expressed by exploiting the moment properties of a
complex Gaussian random variable [28]

EfICPFx(−0)g

=
X
n

X
m

X
l

fs1s2s¤3s¤4 + s1s¤3Efv2v¤4g+ s1s¤4Efv2v¤3g

+ s2s
¤
3Efv1v¤4g+ s2s¤4Efv1v¤3g

+Efv1v2v¤3v¤4gge¡j−0(m
2¡l2): (62)

Using the following results,

s1s2s
¤
3s
¤
4e
¡j−0(m2¡l2) = A4

s1s
¤
3Efv2v¤4ge¡j−0(m

2¡l2) = A2¾2±(m¡ l)
s1s

¤
4Efv2v¤3ge¡j−0(m

2¡l2) = A2¾2±(m+ l)

s2s
¤
3Efv1v¤4ge¡j−0(m

2¡l2) = A2¾2±(m+ l)

s2s
¤
4Efv1v¤3ge¡j−0(m

2¡l2) = A2¾2±(m¡ l)
Efv1v2v¤3v¤4ge¡j−0(m

2¡l2) = ¾4[±(m¡ l) + ±(m+ l)]

(63)

we can express (62) as

EfICPFx(−0)g

=
X
n

X
m

X
l

fA4 + (2A2¾2 +¾4)[±(m+ l) + ±(m¡ l)]g

¼ A4N
3

3
+2A2¾2N2 +¾4N2: (64)

The second-order moment is

EfjICPFx(−0)j2g

=
X
n

X
m

X
l

X
n2

X
m2

X
l2

£Ef(s1 + v1)(s2 + v2)(s¤3 + v¤3)(s¤4 + v¤4)(s¤5 + v¤5)(s¤6 + v¤6)
£ (s7 + v7)(s8 + v8)gej−0[(m

2
2
¡l2
2
)¡(m2¡l2)]: (65)

By using the properties shown in (63), (65) can be
simplified as multiple summations of delta functions,
and the results are

EfjICPFx(−0)j2g

= A8
N6

9
+A6¾2

μ
67
30
N5
¶
+A4¾4

μ
2
3
N5 +

71
6
N4
¶

+A2¾6
μ
4N4 +

64
3
N3
¶
+¾8(N4 +4N3): (66)

Combining (62) and (66), the variance can be
obtained as

varfICPFx(−0)g=
9
10
A6¾2N5 +

47
6
A4¾4N4

+
64
3
A2¾6N3 +4¾8N3: (67)

Substituting (61) and (67) in (18) yields (19).

REFERENCES

[1] Rihaczek, A. W.
Principles of High-Resolution Radar.
New York: McGraw-Hill, 1969.

[2] Porat, B.
Digital Processing of Random Signals: Theory and
Methods.
Englewood Cliffs, NJ: Prentice-Hall, 1994.

[3] Curlandar, J. C. and McDonough, R. N.
Synthetic Aperture Radar–System and Signal Processing.
New York: Wiley, 1991.

[4] Wehner, D. R.
High-Resolution Radar.
Norwood, MA: Artech House, 1995.

[5] Abotzoglou, T.
Fast maximum likelihood joint estimation of frequency
and frequency rate.
IEEE Transactions on Aerospace and Electronic Systems,
22 (Nov. 1986), 708—715.

[6] Djuric, P. M. and Kay, S.
Parameter estimation of chirp signals.
IEEE Transactions on Signal Processing, 38, 12 (Dec.
1990), 2118—2126.

974 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 46, NO. 3 JULY 2010



[7] Peleg, S. and Porat, B.
Linear FM signal parameter estimation from discrete-time
observations.
IEEE Transactions on Aerospace and Electronic Systems,
27, 4 (July 1991), 607—614.

[8] Wood, J. C. and Barry, D. T.
Radon transformation of time-frequency distributions for
analysis of multicomponent signals.
IEEE Transactions on Signal Processing, 42, 11 (Nov.
1994), 3166—3177.

[9] Barbarossa, S.
Analysis of multicomponent LFM signals by a combined
Wigner-Hough transform.
IEEE Transactions on Signal Processing, 43, 6 (June
1995), 1511—1515.

[10] Friedlander, B. and Francos, J. M.
Estimation of amplitude and phase parameters of
multicomponent signals.
IEEE Transactions on Signal Processing, 43, 4 (Apr.
1995), 917—926.

[11] Peleg, S. and Friedlander, B.
Multicomponent signals analysis using the
polynomial-phase transform.
IEEE Transactions on Aerospace and Electronic Systems,
32, 1 (Jan. 1996), 378—387.

[12] Barbarossa, S., Scaglione, A., and Giannakis, G.
Product high-order ambiguity function for
multi-component polynomial phase signal modeling.
IEEE Transactions on Signal Processing, 46, 3 (Mar.
1998), 691—708.

[13] Wang, M., Chan, A. K., and Chui, C. K.
Linear frequency-modulated signal detection using
radon-ambiguity transform.
IEEE Transactions on Signal Processing, 46, 3 (Mar.
1998), 571—586.

[14] Xia, X-G.
Discrete chirp-Fourier transform and its application to
chirp rate estimation.
IEEE Transactions on Signal Processing, 48, 11 (Nov.
2000), 3122—3133.

[15] Volcker, B. and Ottersten, B.
Chirp parameter estimation from a sample covariance
matrix.
IEEE Transactions on Signal Processing, 49, 3 (Mar.
2001), 603—612.

[16] Wang, P. and Yang, J.
Multicomponent chirp signals analysis using product
cubic phase function.
Digital Signal Processing, 16, 6 (Nov. 2006), 654—669.

[17] Pham, D. S. and Zoubir, A. M.
Analysis of multicomponent polynomial phase signals.
IEEE Transactions on Signal Processing, 55, 1 (Jan. 2007),
56—65.

[18] Kulpa, K. S.
Focusing range image in VCO based FMCW radar.
In Proceedings of 2003 International Radar Conference,
Adelaide, Australia, Sept. 2003.

[19] O’Shea, P.
A fast algorithm for estimating the parameters of a
quadratic FM signal.
IEEE Transactions on Signal Processing, 52, 2 (Feb.
2004), 385—393.

[20] Wang, P., Djurović, I., and Yang, J.
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