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Abstract—In this paper, we consider moving target detection
using a distributed multiple-input multiple-output (MIMO) radar
on stationary platforms in nonhomogeneous clutter environ-
ments. Our study is motivated by the fact that the multistatic
transmit–receive configuration in a distributed MIMO radar
causes nonstationary clutter. Specifically, the clutter power for the
same test cell may vary significantly from one transmit–receive
pair to another, due to azimuth-selective backscattering of the
clutter. To account for these issues, a new nonhomogeneous clutter
model, where the clutter resides in a low-rank subspace with dif-
ferent subspace coefficients (and hence different clutter power) for
different transmit–receive pair, is introduced and the relation to a
general clutter model is discussed. Following the proposed clutter
model, we develop a generalized-likelihood ratio test (GLRT) for
moving target detection in distributed MIMO radar. The GLRT
is shown to be a constant false alarm rate (CFAR) detector, and
the test statistic is a central and noncentral Beta variable under
the null and alternative hypotheses, respectively. Simulations are
provided to demonstrate the performance of the proposed GLRT
in comparison with several existing techniques.

Index Terms—Generalized likelihood ratio test, moving target
detection, multiple-input multiple-output (MIMO) radar, multi-
static configuration, nonhomogeneous clutter.

I. INTRODUCTION

M ULTIPLE-INPUT multiple-output (MIMO) radar,
equipped with multiple transmit and multiple receive

antennas along with multiple probing waveforms, has received
significant interest in recent years (see [1]–[21] and references
therein). Compared with the conventional phased-array radar
using one transmit aperture with a single probing waveform,
MIMO radars offer a number of unique benefits including
higher spatial resolution [4], more degrees of freedom (DOFs)
[3], enhanced parameter identifiability [5], better spatial cov-
erage [8], detection diversity gain [10], and possibility of direct
application of adaptive array techniques [7]. In general, there
are two broad types of array configurations being considered

Manuscript received November 29, 2010; revised April 15, 2011; accepted
June 16, 2011. Date of publication June 27, 2011; date of current version
September 14, 2011. The associate editor coordinating the review of this
manuscript and approving it for publication was Prof. Visa Koivunen. This
work was supported in part by a subcontract with Dynetics, Inc., for research
sponsored by the Air Force Research Laboratory (AFRL) under Contract
FA8650-08-D-1303.

P. Wang and H. Li are with the Department of Electrical and Computer En-
gineering, Stevens Institute of Technology, Hoboken, NJ 07030 USA (e-mail:
pwang4@stevens.edu; hli@stevens.edu).

B. Himed is with the AFRL/RYMD, Dayton, OH 45433 USA (e-mail:
Braham.Himed@wpafb.af.mil).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSP.2011.2160861

for MIMO radar: one with co-located antennas, [3]–[9], and the
other with widely separated antennas [10]–[19]. In this paper,
we focus on the latter category, and such radar systems are
referred to as distributed MIMO radars. A distributed MIMO
radar employs widely separated antennas within the transmit
and, respectively, receive aperture, and the transmit antennas
probe a radar scene using multiple orthogonal waveforms
which are separated at each receive antenna by matched filter
processing [10], [12].

A distributed MIMO radar allows one to exploit the spa-
tial or geometric diversity to enhance target detection. In par-
ticular, radar targets often exhibit significant azimuth-selective
backscattering with tens of dB of fluctuation in their radar cross
section (RCS) [22]. As such, it would be difficult for a traditional
mono-static or bistatic radar with a single transmit–receive site
to detect such a target, if the sensors are unfavorably located.
The spatial diversity of distributed MIMO radar was first dis-
cussed in [10] for stationary target detection and later extended
in [12] for moving target detection. The focus of [10] was to
establish the detection diversity gain, and the effect of clutter
was ignored. Meanwhile, the effect of clutter was included in
[12] and [19] for moving target detection where it was shown
that distributed MIMO radar systems can provide significant
performance gain over traditional phased array radar systems.
However, the clutter was assumed to be spatially homogeneous,
i.e., the clutter covariance matrix is identical for all transmit–re-
ceive pairs and for all resolution cells. For adaptive detection,
it was suggested to estimate the clutter covariance matrix using
training data from adjacent resolution cells due to the homoge-
neous assumption.

In this paper, moving target detection with a distributed
MIMO radar in spatially nonhomogeneous clutter environ-
ments is considered. Our study is motivated by the fact that
multistatic transmit–receive configuration usually causes non-
stationary clutter across resolution cells [23] and the fact
that the clutter power for the same resolution cell may vary
significantly from one transmit–receive pair to another, due
to azimuth-selective backscattering of clutter scatterers [22].
To take these issues into consideration, we assume that the
clutter power is different from one transmit–receive pair to
another and, in addition, from one resolution cell to another,
although the clutter shares a common low rank structure (see
Section II for details). Using this nonhomogeneous clutter
model, we develop a generalized-likelihood ratio test (GLRT).
The statistical distributions of the GLRT decision variable
under both the null and alternative hypotheses are derived
in closed forms. The analytical result shows that the GLRT
decision variable under the null hypothesis has a central Beta
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distribution independent of the clutter and noise parameters,
which implies that the proposed GLRT is a constant false alarm
rate (CFAR) detector. Extensive numerical results are provided
to verify our analysis and to compare with other detectors in
nonhomogeneous environments.

The remainder of the paper is organized as follows. Our signal
model is introduced in Section II. The proposed GLRT detector
along with the underlying maximum likelihood estimator are
developed in Section III. Section IV contains our statistical anal-
ysis of the GLRT detector. Simulation results are provided in
Section V. Finally, conclusions are drawn in Section VI.

II. SIGNAL MODEL

Consider a distributed MIMO radar system with transmit
antennas and receive antennas. The transmit and receive
antennas are on stationary platforms. We use the standard
assumption for MIMO radars that the transmit antennas
probe a common area of interest using orthogonal wave-
forms [1]–[21]. Pulsed transmission is employed as in standard
Doppler radars [22]. Each transmitter sends a succession of

periodic pulses, i.e., repetitions of an orthogonal wave-
form, over a coherent processing interval (CPI). Each receiver
employs a bank of matched filters corresponding to the
orthogonal waveforms. The matched filter output is sampled
at the pulse rate via slow-time sampling. Let
denote the vector formed by the samples of the matched
filter output (within a CPI) at the th receiver matched to
the th transmitter. The problem of interest is to detect the
presence/absence of a moving target in the test cell using
observations .

Specifically, the problem involves the following hypothesis
testing:

(1)

where denotes the clutter, denotes the noise,
is the signal steering vector due to a Doppler fre-

quency , and is the amplitude of the signal, which
is determined by the radar cross section (RCS) of the target. A
similar hypothesis testing problem for moving target detection
was examined in [12] and [19] and interested readers are
referred to their work for additional discussions of the problem
setup. The main difference is that homogeneous clutter was
considered there, while nonhomogeneous clutter is the focus in
the current work, as explained shortly.

The Doppler frequency is due to the presence of a moving
target, which is usually unknown for the multistatic receivers.
The moving target has a velocity denoted by its - and -com-
ponent , assuming 2-dimensional (2-D) motion.
This motion creates a different Doppler frequency for different
transmit–receive antenna pair. Using the geometry depicted in
Fig. 1, the normalized Doppler frequency is given by [1],
[12], [23]

(2)

Fig. 1. Transmit–receive pair geometry of a distributed MIMO radar.

where denotes the wavelength of the carrier signal and is the
pulse repetition interval (PRI). The signal steering vector, which
is formed over the reception of coherent pulses, is given by

(3)

where is introduced to signify the steering vector for
the th transmit–receive antenna pair.

The unknown signal amplitude is related to the RCS
of the target. In general, it varies significantly with the aspect
angle, due to the azimuth-selective backscattering [10], [12],
[22]. As such, in our data model, is different for different
transmit–receive antenna pairs.

The noise is assumed to be spatially and temporally
white with zero mean and covariance matrix

(4)

where denotes the unknown variance of the noise, and
is the discrete impulse function.

The clutter components contain reflections from sta-
tionary (e.g., ground, buildings) and slow moving objects (e.g.,
grass, forest) within the considered test cell. We assume that the
clutter from any transmit–receive pair falls within a subspace
which is expanded by the columns of a matrix (as-
sume )

(5)

where and are
the Doppler frequencies in the low frequency region. As a result,
the clutter for a given transmit–receive pair can be expressed as
a linear combination of the columns of the matrix :

(6)

where denotes the unknown complex coefficient
vector associated with the clutter viewed from the aspect of the

th transmit–receive pair over one CPI and may vary from
one CPI to another. The clutter has nonhomogeneous powers for
different transmit–receive pairs with distinct clutter coefficients

, i.e., . Moreover, for a given transmit–re-
ceive pair, the clutter coefficients are also different for different
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Fig. 2. Clutter power spectral density with � � � and � � 0.3 m.

range resolution cells and, therefore, the model is able to repre-
sent nonhomogeneous clutter in range. It is noted that the pro-
posed GLRT does not require range training. In Section V, we
discuss how to generate nonhomogeneous training signals for
other methods, such as the sample covariance matrix-based de-
tector [12], [19], for the distributed MIMO radar.

The proposed subspace clutter model of (6) for the distributed
MIMO radar has been motivated by the following considera-
tions. First, as noted previously, the subspace model provides
a simple yet flexible tool to approximate the nonhomogeneous
clutter from different transmit–receive pairs and from different
resolution cells. Second, the subspace clutter model is indeed
motivated by the widely accepted fact that the clutter in many
practical scenarios has a low-rank structure: , where

denotes a subspace of with a rank lower than [24].
Third, the subspace clutter model is also linked to a standard
clutter Doppler spectrum model. Specifically, it is generally un-
derstood that the clutter is temporally (i.e., across pulses within
a CPI) correlated due to internal motions of the clutter scat-
terers caused by, e.g., wind affecting a forest or grassland. The
temporal correlation of the clutter can be characterized by its
Doppler power spectral density (PSD) taking the form [19], [22]

(7)

where is the Doppler frequency variable, the clutter power,
and the root mean-square (RMS) of the clutter velocity. Fig. 2
shows the PSD of the clutter as a function of the Doppler fre-
quency in several cases of the RMS of the clutter velocity
when and 0.3 m. It is seen that the PSD of the
clutter is in general located in the low frequency region, and the
clutter spread is controlled by : the smaller the , the more
spiked the clutter PSD. Our subspace based clutter model (6)
can be considered as an approximation of (7), by properly se-
lecting the columns, or basis vectors, of . For example, we can
choose PRF PRF , where PRF stands for the

pulse repetition frequency and PRF denotes the Doppler reso-
lution of using pulses in a CPI [22]. That is, the columns of
the form a set of discrete Fourier transform vectors and the
number of such vectors is determined by the Doppler spread
of the clutter spectrum. Alternatively, given an upper bound on
the bandwidth of the clutter spectrum, we can select uni-
formly spread across the clutter bandwidth, and is determined
by the rank of the clutter covariance matrix. It should be noted
that our clutter model (6) is employed to facilitate algorithmic
development. In Section V-C, we will test our detector and other
methods by generating clutter from model (7).

III. GENERALIZED-LIKELIHOOD RATIO TEST

For notational simplicity, define the following vectors
and matrices: ,

,
. In the following, a GLRT is developed by exploiting

the clutter structure. The general form of the test statistic of the
GLRT for the problem of interest can be written as

(8)

where and denote the like-
lihood functions under and , respectively. Next, we
first present the maximum-likelihood (ML) estimates of the
unknown parameters under both hypotheses, followed by a
summary of the GLRT detector.

A. ML Estimation Under

The ML estimates of the unknown parameters under are
given by (see Appendix I for derivation)

(9)

(10)

(11)

(12)

where denotes the projection matrix projecting to the or-
thogonal complement of the range of :

(13)

B. ML Estimation Under

The ML estimates of the unknown parameters under can
be obtained by setting in (11) and (12), respectively,

(14)

(15)
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C. GLR Test Statistic

Using the ML estimates obtained above, it is straightforward
to show that the GLR test statistic reduces to

(16)

where is the ML estimate of the noise variance under
in (15), while is given by (12), which can be simplified as
follows:

(17)

Dropping the th power of (16) and using the monotonicity
of the function , we have

(18)

where

(19)

and is a threshold selected to meet a given probability of false
alarm.

It is recognized that corresponds to the decision
variable of a matched subspace detector [25] computed using the
local measurement , i.e., matched filter output at the th
receive antenna matched to the th transmit antenna. Hence,
our GLRT can be interpreted as consisting of 1) local matched
subspace detection; 2) noncoherent combining using local de-
cision variables of all transmit–receive pairs; 3) selecting the
velocity yielding the largest noncoherent sum; and 4) declaring

is true if the largest noncoherent sum is “significant” com-
pared with the white noise variance estimate under . Clearly,
how “significant” the noncoherent sum should be depends on
the selected test threshold or, equivalently, the probability of
false alarm. In Section IV, we provide a statistical analysis of the
GLRT detector, which can be employed to select and compute
the corresponding probability of detection for this detector.

D. Sample Covariance Matrix Based Detector

The GLRT is notably different from the sample covariance
matrix (SCM) based detector introduced in [12] and [19]:

(20)

where is a threshold for a given probability of
false alarm, and is the sample covariance ma-
trix computed from homogeneous training signals

, for the th
transmit–receive pair:

(21)

To ensure that the sample covariance matrix is full rank,
training signals are required for each transmit–receive pair. In

general, training signals are needed for a reasonable
performance. As such, the SCM detector (20) requires about

training signals in total, which may be difficult to fulfill
in a nonhomogeneous distributed MIMO radar environment. In
contrast to the SCM detector, the proposed GLRT requires no
training and is well suited to handle clutter with nonhomoge-
neous power. It is computationally simpler to implement since
the projection matrix needs to be computed only once, while
the SCM detector requires to estimate and invert the sample co-
variance matrix for each transmit–receive pair.

IV. PERFORMANCE ANALYSIS

In this section, we provide a statistical analysis of the pro-
posed GLRT detector under the condition that the nonlinear
velocity parameter is known. This is standard in the anal-
ysis of radar signal detection such as space-time adaptive pro-
cessing (STAP) [24]–[27], where nonlinear target parameters,
e.g., angle and Doppler frequency are assumed known. In prac-
tical implementation, the uncertainty region of the target param-
eter space is usually divided into small “cells” and each is tested
for the presence of target [22], [24]. We follow the same prac-
tice. Our analysis provides a benchmark of the best achievable
detection performance when the estimation error of is negli-
gible. In Section V, we will provide simulation results for both
known and unknown cases, and make comparison.

The following theorem contains our main result.
Theorem 1: Given the signal model in Section II, the statis-

tical distributions of the GLRT test variable (18) under both the
null and alternative hypotheses are

under
under (22)

where denotes a central Beta distribution
with parameters and [28, pp. 944–945],
and denotes a noncentral Beta dis-
tribution with parameters and and
noncentrality parameter [26], [29]–[31]

(23)

The proof of Theorem 1 benefits from two lemmas regarding
the distributions of the numerator and denominator of the GLRT
decision variable under the and hypotheses, respectively.
The first lemma is concerned with the distributions of the nu-
merator and denominator under .

Lemma 1: Let the denominator and numerator of the GLRT
test variable be denoted by

(24)
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(25)

Under the hypothesis, they are equivalent to

(26)

(27)

where are zero-mean complex Gaussian variables with
variance which are independent and identically distributed
(i.i.d.) for different , , and/or . Furthermore, under ,

(28)

(29)

where denotes a central Chi-square distribution with de-
grees of freedom.

Proof: See Appendix II.
The next lemma addresses the distribution of the numerator

and denominator of the GLRT test variable under .
Lemma 2: Under the hypothesis, the denominator and

numerator of the test variable can be expressed as

(30)

(31)

where are complex Gaussian variables with mean
and variance which are independent

for different , , and/or . Furthermore, under ,

(32)

(33)

(34)

where is given by (23) and denotes a noncentral Chi-
square distribution with degrees of freedom and noncentrality
parameter .

Proof: see Appendix III.

Proof of Theorem 1 Under

From Lemma 1, the GLRT test variable under is a
ratio between two central Chi-square random variables:

(35)

As shown in Appendix II, the numerator is a portion of the de-
nominator under . We can write

(36)

where . Let

(37)

Then the random variable is the ratio of two independent cen-
tral Chi-square distributions with and
degrees of freedom (see Lemma 1), respectively. Therefore, it
is an -distribution [28, Ch. 26]. As a result, the above GLRT
test variable which can be represented as

(38)

has a central Beta distribution with parameters and
[26], [29] (also see Proposition 5 of Appendix IV).

This completes the proof of the distribution of the GLRT test
variable under .

Proof of Theorem 1 Under

Similar to the case of and from Lemma 2, the GLRT test
variable (18) under can be decomposed as

(39)

where

(40)

(41)

Also from Lemma 2, is the ratio of a central Chi-square
random variable with degrees of freedom to a
non-central Chi-square random variable with degrees of
freedom and noncentrality parameter . It follows from Proposi-
tion 6 of Appendix IV that the is a noncentral Beta distri-
bution as given by (22). This concludes the proof of Theorem 1.

Given the distributions of the GLRT test variable, we can an-
alytically compute the probability of detection and the proba-
bility of false alarm, which is employed in Section V. Mean-
while, we see from the above analysis that the distribution of
the GLRT test variable under is independent of the nuisance
parameters, i.e., the clutter power and the noise variance ,
and hence, the GLRT detector of (18) is a constant false alarm
rate (CFAR) detector.

V. SIMULATION RESULTS

In this section, computer simulation results are presented
to verify the above analysis and compare the performance of
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Fig. 3. Distributed MIMO radar configuration used in simulation.

the proposed GLRT with other detectors, including the SCM
detector (20) in nonhomogeneous environments. We present
detection results when the target velocity is known and when

is unknown and has to be estimated. The signal-to-noise
ratio (SNR) and clutter-to-noise ratio (CNR) metrics adopted
in this paper are defined as

(42)

(43)

The distributed MIMO configuration is shown in Fig. 3, which
consists of two transmitters at 0 and 65 relative to the target
and two receivers at and 40 . It is noted that the configura-
tion is the same as the one in [12] and [19]. The pulse repetition
frequency is 500 Hz, the carrier frequency is 1 GHz, the target
velocity is 108 km/h, and the number of pulses within a CPI
is . The above parameters lead to a normalized target
Doppler frequency in (2): .

A. Subspace Clutter With Nonhomogeneous Power

Detection performance in terms of the receiver operating
characteristic (ROC) is evaluated for the case of known target
velocity to verify our statistical analysis of the GLRT in
Section IV. Specifically, the target is assumed to move towards
the direction of 30 in the coordinates of Fig. 3. The
amplitude is one realization of a complex Gaussian random
variable with zero mean and unit variance with the squared
magnitude equal to . The
clutters are generated according to (6) with Doppler
frequencies and with the determin-
istic clutter coefficients . Two cases, 15 dB and

10 dB, are considered while fixing 40 dB.
Fig. 4 shows that the ROC curves for both the GLRT and

the SCM obtained by simulation. Also included in Fig. 4 is
the ROC curve of the GLRT computed by using the anal-
ysis in Section IV. It is seen that the analysis matches well
with computer simulation. In addition, the GLRT is observed

Fig. 4. Receiver-operating-characteristic (ROC) curves for the GLRT and the
SCM detectors obtained by computer simulation and analytical computation.

to attain better detection performance than the SCM de-
tector in the considered nonhomogeneous environment. It
is noted that, for each transmit–receive pair, the SCM uses

training signals, ,
generated as , where are i.i.d.
complex Gaussian vectors with variance determined by the
squared magnitude of the entries of of the test signal.
Therefore, in each Monte Carlo run, the training signals
have nonhomogeneous power with respect to the clutter
of the test signal. In contrast, the proposed GLRT has no need
for training signals.

B. Spatial Diversity

One advantage of MIMO radar over phased-array radar is
a so-called spatial diversity that is helpful in target detection
from several aspects. First, spatial diversity helps dealing with
azimuth-selective backscattering of the target. In particular,
while a phased-array radar probes and observes the target from
a fixed aspect angle which may be associated with a weak
target response, a MIMO radar employs geometrically
different probe-observe angles, and it is less likely to experi-
ence small target amplitude defined in (1) for all
transmit–receive pairs [10], [12]. Second, spatial diversity also
helps improving moving target detection since for a given target
velocity, different transmit–receive pairs see different Doppler
frequencies [see (2)] that are less likely to be all small. On the
other hand, a phased-array radar sees only one Doppler fre-
quency, which may be small due to an unfavorable radar-target
geometry and hard to detect as it resides in the clutter region
[1], [12].

In the following, we examine the spatial diversity perfor-
mance of the GLRT and the SCM detector for MIMO radar
relative to a representative detector for phased-array radar. To
this end, we consider average detection performance averaged
over the target moving direction since a fixed direction rela-
tive can be particularly favorable or unfavorable to the phased-
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array radar (i.e., with maximum or zero Doppler frequency de-
pending on the radar-target geometry). We consider two dif-
ferent cases of target characteristics. In Case A, the moving
direction is randomly chosen according to a uniform distribu-
tion over the range 180 180 during each simulation trial,
while the target amplitude is constant for all transmit–receive
pairs, i.e., nonfluctuant target amplitudes. Case B considers not
only random target moving direction as in Case A but random
(fluctuant) target amplitude as well. Specifically, are gen-
erated as complex Gaussian random variables with zero mean
and variance . In this case, the SNR is defined as

. The assumption of nonfluctuant
target amplitude in Case A allows us to isolate the performance
gain due to the distributed transmit–receive configuration from
the performance gain from the target fluctuations [19].

For both Cases A and B, the clutter coefficients
are randomly generated from trial to trial as a zero-mean
complex Gaussian vector with a diagonal covariance matrix

. Similarly to
using random target direction/amplitude, the purpose is to pro-
vide average detection performance not specific to one set of
clutter coefficients. As a result, the clutter is a
Gaussian distributed vector with zero mean and covariance ma-
trix . For the SCM detector, the training
signals for the th transmit–receive pair are generated as
a Gaussian distributed vector with zero mean and covariance
matrix . It should be noted that the clutter of the
test signal is random with the same covariance matrix as that of
the training signals. As a result, homogeneous training is used
for the SCM for these examples.

We consider also using a phased-array (PA) radar in a similar
setup for comparison. The phased-array radar has
co-located transmit and receive antennas. It employs a stan-
dard transmit beamforming on transmit, receive beamforming
on receive, and finally Doppler processing by using an adap-
tive signal detection algorithm. Since the focus here is Doppler
processing (for moving target detection), the spatial location
(angle) of the target in beamforming is assumed known. Due to
transmit–receive beamforming, the receive beamformer output
contains a target signal (under ) with an effective ampli-
tude and noise with variance , where denotes the
target amplitude and the noise variance before receive beam-
forming [9], [19]. Hence, the SNR for the phased-array radar
is times higher than that of the MIMO radar offered by
transmit beamforming [9]. In the following, the clutter for the
phased-array radar at the receive beamformer output is gener-
ated similar to its counterpart in the MIMO radar, using a co-
variance matrix , where the factor of is due to
receive beamforming. For Doppler processing, we employ the
well-known adaptive matched filter (AMF) [27], denoted as the
PA-AMF for brevity. The PA-AMF detector uses ho-
mogeneous training signals.

The results of the simulation for Case A are shown in Fig. 5,
which indicates the detection performance averaged over ran-
domly moving direction and randomly generated clutter coef-
ficient . In this case, with nonfluctuant target amplitude,
the proposed GLRT detector outperforms the SCM detectors
and the PA-AMF in both cases of known and unknown target

Fig. 5. ROC curves for the GLRT, the SCM, and the PA-AMF detectors with
random target moving detection and nonfluctuant target amplitude.

Fig. 6. ROC curves for the GLRT, the SCM, and the PA-AMF detectors with
random target moving detection and fluctuant target amplitude.

velocity . It is also seen that the SCM detector with overall
training signals provides better detection performance

than the PA-AMF, despite the fact the phased-array radar has an
SNR gain (due to the aforementioned transmit beamforming)
over the MIMO radar. This confirms the significance of spa-
tial diversity provided by the distributed MIMO radar in moving
target detection at high SNR, compared with the phased-array
radar.

The simulation results for Case B are shown in Fig. 6,
which evaluates the average performance against random target
moving direction and fluctuant (random) target amplitude. It
is seen that the proposed GLRT is still the best one among all
considered detectors. Comparing Fig. 5 with Fig. 6, it is noted
that the MIMO radar provides even larger spatial diversity than
the phased-array radar as larger performance gain observed
between the MIMO-based detectors (e.g., the GLRT and SCM
detectors) and the phased-array-based PA-AMF detector.
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C. General Clutter Model

As shown in Section II, a general clutter model (7) is widely
used to model the clutter Doppler characteristics. In this section,
we examine the performance of the GLRT in clutter generated
according to (7), which in general cannot be exactly represented
by the subspace model (6). The purpose is to show the robust-
ness of the proposed GLRT when there is a model mismatch.

According to (7), the temporal correlation function of the
clutter can be computed as [19], [22]

(44)

The covariance matrix is obtained by sampling the above
temporal correlation function at PRF
[19], [22]:

...
...

...
. . .

(45)

where is the clutter power and PRF . To
account for the nature of nonhomogeneous clutter power
caused by azimuth-selective backscattering, the clutter power

associated to the general clutter model is changing over
the transmit–receive pairs, i.e., if

, and also over the training range cells, i.e.,
if . As a result, the CNR in

this case is computed as .
We consider a case with PRF 500 Hz and 1.5 m/s

for the general clutter model. The other simulation parameters
are the same as those used in Fig. 6 of Case B (random moving
directions and fluctuant target amplitudes). In order to apply the
proposed GLRT, we need a set of Fourier bases, i.e., and

, to approximate the clutter spectrum which roughly has
a bandwidth Hz, or equivalently in nor-
malized frequency normalized with respect to PRF 500 Hz;
see Fig. 2. In this simulation, we choose with normal-
ized frequencies at for the proposed
GLRT. Meanwhile, for each transmit–receive pair, the SCM de-
tector needs training signals. Due to nonhomogeneity,
the power level may change over the training range
cells and thus can be modeled with the compound-Gaussian
model [17], where a texture component (the square-root of the
power ) is used to capture the power variation
across range resolution cells. The range training signals is gener-
ated with a typical compound-Gaussian model: a -distributed
clutter with a scaling factor 0.5 and a shape factor 2.

The results are shown in Fig. 7 for the proposed GLRT,
SCM and the PA-AMF detectors in both cases of known and
unknown target velocity. It is seen that, with Fourier bases
at , the GLRT is able to suppress most of the
clutter located within the low frequency region and, hence,
gives good detection performance. From Fig. 7, it is also

Fig. 7. ROC curves for the GLRT, the SCM and the PA-AMF detectors in
clutter generated from the general clutter model (7).

observed that the proposed GLRT detector with out-
performs the SCM which may suffer from the power-varying
training signals and the PA-AMF which misses spatial diversity
and may suffer from a poor fixed aspect angle. Overall, with
a proper set of the Fourier bases, the GLRT, without requiring
any training signals, can achieve better performance than the
SCM detector and the PA-AMF detector. However, compared
with Fig. 6, there is a performance loss of the proposed GLRT
due to model mismatch.

VI. CONCLUSION

In this paper, we considered the problem of moving target
detection using a distributed MIMO radar in nonhomoge-
neous clutter environments. The clutter was modeled to have a
low-rank subspace structure along with a spatially nonhomo-
geneous clutter power. A new GLRT detector was developed,
which performs local matched subspace detection, noncoherent
combining using local decision variables of all transmit–receive
pairs, target velocity matching, and comparing with a white
noise variance estimate. Theoretical analysis was provided to
show that the GLRT is a CFAR detector and the distributions
of the test variable are central and noncentral Beta distributed
under the null and alternative hypotheses, respectively. Sim-
ulation results have been provided to verify our analysis.
Compared with the SCM detector for distributed MIMO radar
and the PA-AMF detector for phased-array radar, our GLRT
detector attains better detection performance in clutter envi-
ronments with nonhomogeneous power. The effect of model
mismatch is also investigated.

APPENDIX I
ML PARAMETER ESTIMATION

It is noted that the ML estimates under can be obtained by
setting in the ML estimates under . In the following,
we focus herein on the ML estimates under .
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According to the signal model described in Section II, the
likelihood function under can be expressed as

(46)

where denotes the vector 2-norm. Taking the derivative of
the log-likelihood with respect to and
setting it to zero, we find that the ML estimate of is given as

(47)

Substituting the above estimate back into (46), we find that the
ML estimates of the remaining parameters can be determined
by minimizing the following cost function

(48)

Let . The above cost function is
equivalent to

(49)

It is easy to show that the ML estimate of is given by

(50)

Substitute back into the cost function (48), which reduces
to

(51)

where is the projection matrix defined in (13). Therefore,
the ML estimate of is given by

(52)

Finally, substituting (52) into (51), we find the ML estimate of
is given by

(53)

APPENDIX II
PROOF OF LEMMA 1

Proof of (29): The dependence on velocity is henceforth
suppressed since it is assumed known. The numerator of the

GLRT test variable is defined in (25) and repeated here for easy
reference:

By recognizing , the th term of
is simplified as

(54)

where is a unit-norm vector obtained

by projecting into with denoting the column space
of and its orthogonal complement. The eigenvalue de-
composition (EVD) of the rank-1 matrix is

(55)

where contains the eigenvectors. It follows
that and the remaining eigenvectors are
arbitrary as long as they are mutually orthogonal and also or-
thogonal to . Since , we can choose the
eigenvectors as

(56)

By applying the above EVD, (54) is simplified as

(57)

where and denotes its first element.
Since has complex Gaussian distribution with zero mean
and covariance matrix , i.e., , we
have and hence .
Therefore, the th term of the GLRT numerator, scaled
by , is a central Chi-square random variable with 2 degrees
of freedom:

(58)

It is observed that are i.i.d. for different and . Hence,
(29) follows.

Proof of (28): The denominator of the GLRT test variable
(24) is repeated here for easy reference:

For the th term of , we have
. It is known that the projection matrix has

eigenvalues equal to 0 and eigenvalues identically equal
to 1. Therefore, the EVD of is

(59)
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where is the th column vector of and also the th eigen-
vector. From (56), it is convenient to choose

(60)

As a result, we obtain that

(61)

where and denotes the th term of
. Similarly to (57), we have

(62)

The distribution (28) follows from the fact that are inde-
pendent for different and .

Finally, we examine the relation between the numerator
and denominator of the GLRT test

variable. Since [see (60)], it follows immediately that
. Hence, in (25) is a part of the

denominator in (24). The proof for Lemma 1 is now
complete.

APPENDIX III
PROOF OF LEMMA 2

Proof of (33): Following the analysis provided
under , the derivation under starts by noting that

. The
th term of the GLRT numerator can be rewritten as

(63)

where , is the same as in (55), and
denotes the first element of . Similarly, we have the fol-
lowing intermediate results under the hypothesis:

where and denote the real and imaginary parts of the
argument, respectively. Therefore, is a scaled noncen-
tral Chi-square random variable with 2 degrees of freedom and

noncentrality parameter . Finally,
due to the i.i.d. nature of , the distribution (33) follows.

Proof of (32) and (34): By utilizing the EVD of [see
(59)], the th element of under can be ex-
pressed as

(64)

where . From the above equation
and the signal model, it is straightforward to show that

has a noncentral Chi-square distribution
with degrees of freedom and noncentrality parameter
given by

(65)

Since

(66)

the above noncentrality parameter can be rewritten as
, the same as the

of (23), which completes the proof of (32).
Similar to the case, the numerator and denominator of the

GLRT test variable are correlated. In particular, since
[see (60)], we have the Gaussian variable in (63) identical
to the in (64), i.e., . Hence,
in (31) is a part of the denominator of (30).

Finally, we provide a proof for (34). Following the calcula-
tions in (63), (64), and , we have

(67)

which seems to suggest that
is a noncentral Chi-square variable with

degrees of freedom and noncentrality parameter
. However, the noncen-

trality vanishes since

(68)

where the last equality is due to (recall ).
Hence, the difference reduces to
a central chi-square variable as shown in (34). The proof for
Lemma 2 is now complete.
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APPENDIX IV
DISTRIBUTION RELATED TO THE GAUSSIAN

For easy references, a brief summary of the statistics related
to the Gaussian distribution is provided. Similar results are dis-
cussed in [29, App. 2], which use complex distributions (e.g.,
complex Chi-square, complex - and complex Beta distribu-
tions). We present the results by using the more standard real
counterparts (e.g., as in Matlab).

Denote two Gaussian vectors with zero-mean and nonzero
mean as and .

Proposition 1: The random variable follows
a real central Chi-square distribution with degrees of
freedom, i.e., .

Proposition 2: The random variable follows
a real noncentral Chi-square distribution with degrees of
freedom and noncentrality parameter , i.e., ,
where .

Proposition 3: The random variable follows

a central -distribution with parameters and , where
and are assumed independent with each other [28, Ch. 26].
Denote the central -distribution as .

Proposition 4: The random variable follows
a noncentral -distribution with parameters and , and non-
centrality parameter , where and are assumed in-
dependent with each other [32, pp. 135 and 415], [33, pp. 893].
Denote the noncentral -distribution as .

Proposition 5: The random variable

or

or (69)

follows a central Beta distribution with parameters and
[28, pp. 944-945], i.e., . The PDF of the

Beta distribution is

(70)

where denotes the Beta function [28].
Proposition 6: The random variable

or

or (71)

follows a noncentral Beta distribution with parameters and
and noncentrality parameter [30], [31] and references

therein, i.e., . The PDF of the Beta distribution
is

(72)

where is the discrete Poisson probability at with
mean , and is the derivative of the incomplete Beta
function [28].
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