
C-SAW: A Framework for Graph Sampling and
Random Walk on GPUs

Santosh Pandey Lingda Li+ Adolfy Hoisie+ Xiaoye S. Li∗ Hang Liu
Stevens Institute of Technology +Brookhaven National Laboratory ∗Lawrence Berkeley National Laboratory

Abstract—Many applications require to learn, mine, analyze
and visualize large-scale graphs. These graphs are often too large
to be addressed efficiently using conventional graph process-
ing technologies. Fortunately, recent research efforts find out
graph sampling and random walk, which significantly reduce
the size of original graphs, can benefit the tasks of learning,
mining, analyzing and visualizing large graphs by capturing
the desirable graph properties. This paper introduces C-SAW,
the first framework that accelerates Sampling and Random
Walk framework on GPUs. Particularly, C-SAW makes three
contributions: First, our framework provides a generic API which
allows users to implement a wide range of sampling and random
walk algorithms with ease. Second, offloading this framework on
GPU, we introduce warp-centric parallel selection, and two novel
optimizations for collision migration. Third, towards supporting
graphs that exceed the GPU memory capacity, we introduce
efficient data transfer optimizations for out-of-memory and
multi-GPU sampling, such as workload-aware scheduling and
batched multi-instance sampling. Taken together, our framework
constantly outperforms the state of the art projects in addition
to the capability of supporting a wide range of sampling and
random walk algorithms.

I. INTRODUCTION

Graph is a natural format to represent relationships that
are prevalent in a wide range of real-world applications,
such as, material/drug discovery [1], web-structure [2], so-
cial network [3], protein-protein interaction [4], knowledge
graphs [5], among many others. Learning, mining, analyzing
and visualizing graphs is hence of paramount value to our
society. However, as the size of the graph continues to grow,
the complexity of handling those graphs also soars. In fact,
large-scale graph analytics is deemed as a grand challenge that
draws a great deal of attention. Popular evidences are Graph
500 [6] and GraphChallenge [7].

Fortunately, recent research efforts find out graph sampling
and random walk, which significantly reduce the size of the
original graphs, can benefit learning, mining and analyzing
large graphs, by capturing the desirable graph properties [8]–
[10]. For instance, Zeng et al. [11], GraphSAINT [12], Graph-
Zoom [13], Pytorch-biggraph [14] and Deep Graph Library
(DGL) [15] manage to learn from the sampled graphs and
arrive at vertex embeddings that are either similar or better
than directly learning on the original gigantic graphs [13].
Weisfeiler-Lehman Algorithm [16] exploits graph sampling
to find isomorphic graphs. Furthermore, various random walk
methods are used to generate vertex ranking and embedding in
a graph [17]–[20]. Sampling and random walk can also help
classical graph computing algorithms, such as BFS [21] and
PageRank [18].

Despite great importance, limited efforts have been made to
deploy graph sampling and random walk algorithms on GPUs
which come with tempting computing, data access capabilities
and ever-thriving community [9]. This paper finds three major
challenges that prevent this effort.

First, although there is a variety of platforms to accelerate
traditional graph processing algorithms on GPUs [22]–[25],
graph sampling and random walk pose unique challenges.
Unlike traditional graph algorithms which often treat various
vertices and edges similarly and focus on optimizing the
operations on the vertex or edge, sampling and random walk
algorithms center around how to select a subset of vertex
or edge based upon a bias (Section II-B). Once selected,
the vertex is merely visited again. Consequently, how to
efficiently select the vertices of interest which is rarely studied
by traditional algorithms becomes the core of sampling and
random walk. This process needs to construct and potentially
update the selection bias repeatedly which is very expensive
hence significantly hampers the performance.

Second, it is difficult to arrive at a GPU-based framework
for various graph sampling and random walk algorithms that
address the needs of vastly different applications. Particularly,
there exists a rich body of graph sampling and random walk
algorithms (detailed in Section II-A), deriving the common
functionalities for a framework and exposing different needs as
user programming interface is a daunting task. And offloading
this framework on GPU to enjoy the unprecedented computing
and bandwidth capability yet hiding the GPU programming
complexity further worsens the challenge.

Third, an extremely large graph, which drives the needs of
graph sampling and random walk, usually goes beyond the
size of GPU memory. While there exists an array of solutions
for GPU-based large graph processing, namely, unified mem-
ory [26], topology-aware partition [27] and vertex-range based
partitions [28], graph sampling and random walk algorithms,
which require all the neighbors of a vertex to present in
order to compute the selection probability, exhibit stringent
requirement on the partitioning methods. In the meantime, the
asynchronous and out-of-order nature of graph sampling and
random walk provides some unique optimization opportunities
for out-of-memory sampling, which are neither shared nor
explored by traditional out-of-memory systems.

This work advocates C-SAW, to the best of our knowledge,
the first GPU-based framework that addresses all the three
aforementioned challenges and supports a wide range of

SC20, November 9-19, 2020, Is Everywhere We Are
978-1-7281-9998-6/20/$31.00 c©2020 IEEE

Bias
criterion

of neighbors (NeighborSize)
Per layer Per vertex

1 > 1 Constant Variable

Unbiased
Simple random walk, metropolis hasting random walk,
random walk with Jump, random walk with restart

Unbiased neighbor sampling
Forest fire sampling,
Snowball sampling

Biased
Static Biased random walk Layer sampling Biased neighbor sampling

Dynamic Multi-dimensional random walk, Node2vec

TABLE I: The design space of traversal based sampling and random walk algorithms.

sampling and random walk algorithms. Taken together, C-
SAW significantly outperforms the state of the art systems that
support either part of sampling or random walk algorithms.
The contributions of this paper are as follows:

• We propose a generic framework which allows end users
to express a large family of sampling and random walk
algorithms with ease (Section III).

• We implement efficient GPU sampling with novel tech-
niques. Our techniques parallelize the vertex selection on
GPUs, with efficient algorithm and system optimizations
for vertex collision migration (Section IV).

• We propose asynchronous designs for sampling and ran-
dom walk, which optimizes the data transfer efficiency
for graphs that exceed the GPU memory capacity. We
further scale C-SAW to multiple GPUs (Section V).

The remainder of this paper goes as follows: Section II
presents the background. Section III outlines the Application
Programming Interface (API) and Sections IV and V optimize
C-SAW. Section VI presents the evaluation results. Section VII
discusses the related works and Section VIII concludes.

II. BACKGROUND

A. Graph Sampling & Random Walk Variations

This section presents the required background for various
graph sampling and random walk algorithms [29]. Graph
sampling refers to the random exploration of a graph, which
results in a subgraph of the original graph.

One Pass Sampling only goes through the original graph
once to extract a sample. Random node and random edge
sampling belong to this category [29]. They select a subset
of vertices/edges in original graph uniformly and randomly.

Traversal based Sampling often traverses the graph in a
Breath-First Search manner to better preserve the properties
of original graphs [30]. Traversal based sampling follows
sampling without replacement methodology, i.e., it avoids
sampling the same vertex more than once.

As shown in Table I, traversal based sampling algorithms
are categorized based upon the number of sampled neighbors,
called NeighborSize, and the criterion to select neighbors,
which is referred to as bias. Snowball sampling [31] initiates
the sample using a set of uniformly selected seed vertices.
Iteratively, it adds all neighbors of every sampled vertex
into the sample, until a required depth is reached. Neighbor
sampling [32] samples a constant number of neighbors per
vertex. The sampling could be either biased or unbiased. Forest
fire sampling [29] can be regarded as a probabilistic version

of neighbor sampling, which selects a variable number of
neighbors for each vertex based on a burning probability. Un-
like neighbor and forest fire sampling, which select neighbors
for each vertex independently, layer sampling [9] samples a
constant number of neighbors for all vertices present in the
frontier in each round. It repeats this process until a certain
depth is reached.

Random Walk simulates a stochastic process of traversing
the graph to form a path of connected vertices. The length of
path is constrained by a user given sampling budget. Random
walk can be viewed as a special case of sampling when only
one neighbor is sampled at a step with the salient difference
lies in that random walk allows repeated appearance of a vertex
while sampling does not. Table I summarizes the design space
of random walk algorithms.

Similar to traversal based sampling, random walk algo-
rithms use bias to decide the probability of selecting a certain
neighbor. For unbiased simple random walk, the bias is uni-
form for all neighbors, i.e., every neighbor has the same chance
to be selected. Deepwalk [17] and metropolis hasting random
walk [33] are two examples of unbiased random walk. While
Deepwalk samples neighbors uniformly, meropolis hasting
random walk decides to either explore the sampled neighbor
or choose to stay at the same vertex based upon the degree of
source and neighbor vertices.

For a biased random walk, the bias varies across neighbors.
Furthermore, depending on how to decide the bias, biased
random walks are classified into static random walks and
dynamic random walks. For static random walk, the bias is
determined by the original graph structure and does not change
at runtime. Biased Deepwalk [34] is an example of static
random walk which extends the original Deepwalk algorithm.
The degree of each neighbor is used as its bias.

Since a simple random walk may get stuck locally, random
walk with jump [35], random walk with restart [36] and multi-
independent random walk [30] are introduced. Particularly,
random walk with jump jumps to a random vertex under a
certain probability. Random walk with restart jumps to a pre-
determined vertex. Multi-independent random walk performs
multiple instances of random walk independently.

For dynamic random walks, the bias depends upon the
runtime states. Node2vec [19] and multi-dimensional random
walk (a.k.a. frontier sampling) [37] belong to this genre.
Node2vec is an advanced version of Deepwalk which provides
more control to the random walk. The bias of a neighbor
depends upon the edge weight and its distance from the vertex
explored at preceding step. In multi-dimensional random walk,
a pool of seed vertices are selected at the beginning. At each

2
4
6

(c) Dartboard method (d) Alias method

3 6 2 2 2
v5

Bias
0 3 9 11 13 15

Prefix sum

CTPS

(a) Toy graph (b) Inverse transform sampling

🎯
🎯

1

2

Reject

Accept4 5

7 8 9

3
2

1

60 10

11 12

0 0.2 0.6 0.73 0.87 1

v7 v9 v10 v11

v5 v7 v9 v10 v11

v5v7
v91

2
3

bin 1 2 3 4 5

v10 v11

v7 v7 v7

Normalization

0 1

🎯

🎯
CTPS

Fig. 1: Example of graph sampling and vertex selection techniques. (a) A toy graph example to select a neighbor of v8 (v5, v7, v9, v10, v11),
assuming the bias of a neighbor is defined as its degree. (b) Inverse Transform Sampling which does a binary search on a 1-D space to
select v7. (c) Dartboard method that rejects 1 and accepts 2 (v7). (d) Alias method that selects v7.

step, multi-dimensional random walk explores one vertex v
from the pool based on their degrees. One random neighbor
of v is added to the pool to replace v. This process repeats
until a desired number of vertices are sampled.

Summary. Traversal based sampling and random walk are
widely used and share two core similarities: 1) they are based
on graph traversal, and 2) they selectively sample vertices
based on biases (detailed in Section II-B). Their difference
is the number of sampled neighbors, as shown in Table I. In
the rest of this paper, we use graph sampling to refer to
both traversal based sampling and random walk, unless
explicitly specified.

B. Bias based Vertex Selection

This section discusses the key challenge of graph sampling:
to select vertices based on user defined biases, i.e., bias based
vertex selection. As discussed in Section II-A, all sampling
algorithms involve the process of picking up a subset of
vertices from a candidate pool of vertices. For unbiased graph
sampling, the selection is straightforward: one can generate a
random integer in the range of 1 to the candidate count and
use it to select a vertex. Vertex selection is more challenging
biased graph sampling. Given certain biases, we need to
calculate the probability of selecting a certain vertex, which
is called transition probability. Theorem 1 gives the formula
to calculate transition probabilities from biases.

Theorem 1. Let vertices v1, v2, ..., vn be the n candidates,
and the transition probability of vk, i.e., tk, be proportional
to the bias bk. Then, one can formally obtain tk = bk∑n

i=1 bi
.

Theorem 1 underscores that bias is the key to calculate
transition probability. All popular vertex selection algorithms
– inverse transform sampling [38], dartboard [39], and alias
method [40], [41] – obey this rule.

The key idea of inverse transform sampling is to generate
the cumulative distribution function of the transition proba-
bility. Fig. 1(b) shows an example. First, inverse transform
sampling computes the prefix sum of biases of candidate
vertices, to get an array S, where Sm =

∑m
i=1 bi−1 (1 ≤

m ≤ n+1) and n= total # of candidate vertices. In Fig. 1(b),
S = {0, 3, 9, 11, 13, 15}. Then S is normalized using Sn+1,
to get array F , where Fm = Sm/Sn+1 (1 ≤ m ≤ n + 1).
F = {0, 0.2, 0.6, 0.73, 0.87, 1} in Fig. 1(b). In this way, the
transition probability of vk can be derived with F , because

tk =
bk∑n
i=1 bi

=

∑k
i=1 bi −

∑k−1
i=1 bi∑n

i=1 bi

=
Sk − Sk−1

Sn
=
Sk

Sn
−
Sk−1

Sn
= Fk − Fk−1.

(1)

We call the array of F Cumulative Transition Probabil-
ity Space (CTPS). To select a neighbor, inverse transform
sampling generates a random number r in the range of (0,1),
and employs a binary search of r over the CTPS. Assuming
r = 0.5 in Fig. 1(b), it falls between F2 = 0.2 and F3 = 0.6.
As a result, the second candidate v7 is selected on the CTPS.
When implemented sequentially, ITS has the computational
complexity of O(n), determined by the prefix sum calculation.

Dartboard [39] uses 2D random numbers to select/reject
vertices. As shown in Fig. 1(c), we build a 2D board using
the bias of each vertex as a bar, and then throw a dart to the
2D board formed by two random numbers. If it does not hit
any bar (e.g., 1), we reject the selection and throw another
dart, until a bar is hit (e.g., 2). This method may require
many trials before picking up a vertex successfully, especially
for scale-free graphs where a few candidates have much larger
biases than others. Similar to dartboard, the alias method [41]
also uses a 2D board. To avoid rejection, the alias method
converts the sparse 2D board into a dense one as shown in
Fig. 1(d). It breaks down and distributes large biases across
bins on the x axis, with the guarantee that a single bin contains
at most two vertices. The drawback of alias method is its high
preprocessing cost to break down and distribute biases, which
is not suitable for GPUs.

III. C-SAW ARCHITECTURE

A. Motivation

Need for Generic Sampling Framework. After sifting
across numerous graph analytical frameworks (detailed in
Section VII), we find the need of a new framework for graph
sampling, because sampling algorithms pose distinct needs on
both the framework design and APIs. For framework design,
several sampling algorithms, e.g., layer sampling, require the
information beyond a vertex and its neighbors for computing,
which postulates hardship for traditional vertex-centric frame-
works that limit the view of a user to a vertex and its 1-hop
neighbors. When it comes to API design, bias is the essence
of sampling and random walk. In comparison, traditional
graph frameworks focus upon the operators that alter the

1. VERTEXBIAS (Vertex v)
{ // Define bias for vertex v among frontier candidates. }

2. EDGEBIAS (Edge e)
{ // Define bias for vertex u corresponds to edge e from frontier v. }

3. UPDATE (Edge e)
{ // Define the vertex to be added to the frontier pool according to

the sampled vertex u which is a neighbor of frontier v in edge e. }
(a) User programming interface

1: MAIN (FrontierSize, NeighborSize, Seeds) {
2: FrontierPool = Seeds[];
3: for (i = 0; i < Depth; i++) {
4: Frontier = SELECT (VERTEXBIAS(FrontierPool), FrontierSize);
5: NeighborPool = GATHERNEIGHBORS (Frontier);
6: Sampled = SELECT (EDGEBIAS(NeighborPool), NeighborSize);
7: FrontierPool.INSERT (UPDATE(Sampled));
8: Samples.INSERT (Sampled.u);
9: }

10: } (b) MAIN function

Fig. 2: C-SAW framework and API functions.

information on an edge or a vertex, e.g., minimum operator
in single source shortest path. We also notice recent attempts,
e.g., KnightKing [39] and GraphSAINT [12], but they cannot
support both sampling and random walk algorithms.

Need for Sampling and Random Walk on GPUs. For
sampling, short turnaround time is the key. It is also the root
cause of the invention of sampling [11], [42]. The good news
is that GPU is a proven vehicle to drive an array of graph
algorithms beyond their performance ceiling [22]–[25], [43]–
[45], thanks to the unprecedented computing capability and
memory bandwidth [46]. When it comes to sampling which
are much more random than traditional graph algorithms,
GPUs will best CPU at even larger margins because extreme
randomness puts the large caches of CPU in vein.

B. C-SAW: A Bias-Centric Sampling Framework

C-SAW offloads sampling and random walk on GPUs with
the goal of a simple and expressive API and a high perfor-
mance framework. Particularly, simple means the end users
can program C-SAW without knowing the GPU programming
syntax. Expressiveness requires C-SAW to not only support the
known sampling algorithms discussed in Section II-A, but also
prepare to support emerging ones. High performance targets
the framework design. That is, the programming simplicity
does not prevent C-SAW from exploring major GPU and
sampling related optimizations.

C-SAW encompasses two types of user involvements, i.e.,
parameter and API based options. The parameter-based option
only needs a choice from the end users thus is simple, e.g., de-
ciding the number of selected frontier vertices (FrontierSize
in line 4 of Fig. 2(b)) and neighbors (NeighborSize in line
6). API based involvement, in contrast, provides more expres-
siveness to users. Particularly, C-SAW offers three user defined
API functions as shown in Fig. 2(a), most of which surround
bias, that is, VERTEXBIAS, EDGEBIAS, and UPDATE. We will
discuss the design details of these API functions in Section
III-C.

VERTEXBIAS (Vertex v) {
return 1; }

EDGEBIAS (Edge e) {
PrevSource = SOURCE(e.v);
if (e.u.ISNEIGHBOR (PrevSource))

return e.weight;
else if (e.u == PrevSource)

return e.weight * (1/p);
else

return e.weight * (1/q); }

UPDATE (Edge e) {
return e.u; } (a) Node2vec

VERTEXBIAS (Vertex v) {
return v.degree; }

EDGEBIAS (Edge e) {
return 1; }

UPDATE (Edge e) {
return e.u; }

(b) Multi dimensional
random walk

Fig. 3: Implementing two sampling algorithms with C-SAW API.

Fig. 2(b) gives an overview of the C-SAW algorithm. Par-
ticularly, bias based vertex selection occurs in two places: to
select frontier vertices from a pool (line 4), and to select the
neighbors of frontier vertices (line 6). While the latter case is
required by all graph sampling algorithms, the former becomes
essential when users want to introduce more randomness, such
as multi-dimensional random walk.

In the beginning, the frontier FrontierPool is initialized
with a set of seed vertices (line 2). Sampling starts from
these seeds until reaching the desired depth (line 3). In each
iteration of the while loop, first, VERTEXBIAS is called on the
FrontierPool to retrieve the bias for each candidate vertex.
SELECT method uses the biases provided by VERTEXBIAS
to choose FrontierSize vertices as the current frontier (line
4). Next, all neighbors of the frontier vertices are collected
in the NeighborPool using the GATHERNEIGHBORS method
(line 5). For these neighbors, we first define their biases
using the EDGEBIAS method. Similarly, SELECT method
uses the biases to choose NeighborSize neighbors from
the NeighborPool (line 6). From the selected neighbors,
UPDATE is used to pick new vertices for the FrontierPool
(line 7). The selected neighbors are also added to the final
sample list Sampled (line 8) before we move forward to the
next iteration.

C. C-SAW API

VERTEXBIAS defines the bias associated with a candidate
vertex of the FrontierPool. We often use the pertinent
property of vertex to derive the bias. Equation (2) formally
defines the bias for each vertex v in the FrontierPool. We
apply function fvBias over the property of v to define the
associated bias.

VERTEXBIAS ←−
v ∈ FrontierPool

fvBias(v). (2)

Using multi-dimensional random walk as an example, it
uses the vertex degree as a bias for the vertex of interest.

EDGEBIAS defines the bias of each neighbor in the Neigh-
borPool. It is named as EDGEBIAS because every neighboring
vertex is associated with an edge. While, again, any static or
dynamic bias is applicable, a typical bias is induced from the
properties of the associated edge. Equation (3) defines EDGE-
BIAS formally. Let v be the source vertex of u. Assuming

8 0 3
VERTEXBIAS

8

FrontierPoolt

Frontiert

5 7 9 10 11NeighborPool

EDGEBIAS

0 3
VERTEXBIAS

FrontierPoolt+1 7

3Frontiert+1

2 4
EDGEBIAS

7
UPDATE

4

8
7
3
4

NeighborPool

Sampled edges

Fig. 4: A multi-dimensional
random walk example. As-
suming {v8, v0, v3} in
FrontierPoolt, we use VER-
TEXBIAS to select v8 as the
sampling frontier at iteration
t. Based on EDGEBIAS in
Fig. 3(d), we select v7, and
put it in sampled edges ar-
ray. According to UPDATE,
C-SAW further puts v7 in
FrontierPoolt+1 as {v0, v3,
v7}. Similar process contin-
ues until C-SAW gathers ad-
equate samples.

edge e = (v, u) carries the essential properties of v, u and e,
we arrive at the following edge bias:

EDGEBIAS ←−
e ∈ NeighborPool

feBias(e) (3)

UPDATE decides the vertex that should be added to the
FrontierPool based on the sampled neighbors. It can return
any vertex to provide maximum flexibility. For instance, this
method can be used to filter out vertices that have been visited
before for most traversal based sampling algorithms. Whereas
for random walk, this method can be used to implement the
jump or restart action in the random walk with jump and with
start, respectively. Equation (4) quantifies this method, where
we will decide whether to add the sampled vertex u, a neighbor
of frontier v from edge e into FrontierPool based upon the
properties of e and its endpoints.

FrontierPool←− UPDATE(e) (4)

D. Case Study

C-SAW can support all graph sampling and random walk
algorithms introduced in Section II-A. Fig. 3 exhibits how to
use C-SAW to implement two popular algorithms: Node2vec
and multi-dimensional random walk.

Without loss of generality, we use the simplest example,
i.e., multi-dimensional random walk to illustrate how C-SAW
works, as shown in Fig. 4. FrontierSize and NeighborSize
are set as 3 and 1 respectively. VERTEXBIAS is based on the
degree of vertices in the frontier pool in multi-dimensional
random walk. EDGEBIAS returns 1, resulting in the same
transition probability for every neighbor. UPDATE always adds
the currently sampled neighbor to the FrontierPool.

IV. OPTIMIZING GPU SAMPLING

Fig. 2(b) has shown the overall algorithm of C-SAW. In this
section, we discuss how to implement this algorithm efficiently
on GPUs. We will discuss our general strategies to parallelize
the SELECT function on GPUs (Section IV-A) and how to
address the conflict when multiple GPU threads select the
same vertex (Section IV-B).

A. Warp-Centric Parallel Selection

The core part of the C-SAW algorithm is to select a subset of
vertices from a pool (lines 4 and 6 in Fig. 2(b)). As discussed

1: BITMAP (Selected) {
2: Val = ATOMICADD (&Selected,1);
3: if (Val == 0) {return 0;}
4: else {return 1;}

5: SELECT (Biases[], NeighborSize) {
6: Sums[] = PREFIXSUM (Biases[]);
7: Probs[] = Sums[] / MAX (Sums[]);
8: INITBITMAP();
9: for (i = 0; i < NeighborSize; i++) {
10: do {
11: R = RANDOMNUM ();
12: Selected = BINARYSEARCH (R, Probs[]);
13: IsDuplicate = BITMAP (Selected);
14: } while (IsDuplicate);
15: return Selected; }

Fig. 5: The unoptimized implementation of SELECT function.

in Section II-B, several algorithms have been proposed in this
regard. In this paper, we adopt inverse transform sampling [38]
for GPU vertex selection, because 1) it allows to calculate
transition probabilities with flexible and dynamic biases, and
2) it shows more regular control flow which is friendly to
GPU execution. Fig. 5 illustrates the SELECT algorithm using
inverse transform sampling. We aim to have an efficient GPU
implementation of it.

Inter-warp Parallelism. Each thread warp, no matter intra
or inter thread blocks, is assigned to sample a vertex in
FrontierPool. To fully saturate GPU resources, thousands
of candidate vertices needs to be sampled concurrently. There
are two sources of them. First of all, many sampling algo-
rithms naturally sample all vertices in FrontierPool con-
currently. For instance, neighbor sampling allows all vertices
in FrontierPool to be sampled concurrently and requires a
separate NeighborPool for each vertex in the FrontierPool.

Second, most sampling applications including Graph Con-
volutional Network (GCN) [47] , Deepwalk, Node2vec, and
Personalized PageRank (PPR) [42], need to launch many
instances of sampling either from the same seeds or different
seeds. Here, an instance generates one sampled graph from
the original graph. Particularly, for all algorithms except
multi-dimensional random walk, an instance starts with one
source vertex. For multi-dimensional random walk, an instance
has multiple source vertices, which collectively generate one
sampled graph. Applications like GCN require multiple sample
instances for training the model [9], [12], [48], while Deep-
walk, Node2vec, and PPR require multi-source random walk to
either generate vertex embeddings or estimate PPR [17], [19],
[49]. With thousands of concurrent instances, C-SAW is able
to leverage the full computing power of GPU. Since the inter-
warp parallelism is straightforward to implement, we focus on
exploiting the intra-warp parallelism for C-SAW.

Intra-warp Parallelism. A thread warp is used to execute
one instance of SELECT on a pool of vertices. An obvious
alternative is to use a thread block. Most real world graphs
follow power-law degree distribution, i.e., the majority of the
vertices in the graph have very few edges. Using a thread
block for a neighbor pool will fail to saturate the resource.

Original CTPS

(a) Repeated sampling on original CTPS

0 0.2 0.6 0.73 0.87 1

0 1

Updated prefix sum

Updated bias

0 3 5 7 9

(b) Sampling on the updated CTPS

0 0.33 0.56 0.78 1

0 1

3 2 2 2
v5 v9 v10 v11

Repeated selection
Updated CTPS

r = 0.58 🎯

Original CTPS 0 0.2 0.6 0.73 0.87 1

0 1

r’=0.58
(c) C-SAW bipartite region search

🎯

3 6 2 2 2
v5

Bias
v7 v9 v10 v11

l h

r = !"
#
= 0.348, where λ = 1.667

r = $"
%
+ 𝛿 = 0.748r = $"

%

𝛿 = 0.4

Fig. 6: Assuming v7 is already selected (dotted line in CTPS): (a) naive repeated sampling on the original CTPS, (b) updated sampling on
the recalculated CTPS, and (c) our bipartite region search approach.

Our evaluation shows that using thread warps achieves ∼ 2×
speedup compared with using thread blocks. Thus we choose
to use thread warps to exploit the parallelism within SELECT.

As shown in Fig. 5, first, SELECT calculates the prefix
sum of the biases of all vertices (line 6). Fortunately, parallel
prefix sum is a well-studied area on GPUs. In this paper, we
adopt the Kogge-Stone algorithm [50] which presents superior
performance for the prefix sum of warp-level where all threads
execute in lock-step. The normalization of prefix sums (line
7) can be naturally parallelized by distributing the division of
different array elements across threads.

To parallelize the vertex selection loop (line 10-14), C-SAW
dedicates one thread for each vertex selection to maximize
the parallelism. For each loop iteration, a random number is
generated to select one vertex, as introduced in Section II-B.
However, this creates a crucial challenge that different threads
may select the same vertex, i.e., selection collision.

B. Migrating Selection Collision

To migrate the aforementioned selection collision, we pro-
pose two interesting solutions: bipartite region search, and
bitmap based collision detection. Before introducing our new
design, we first discuss naive solutions.

Naive Solutions. A naive solution is to have a do-while loop
(line 10-14 in Fig. 5) to re-select another one until success, i.e.,
repeated sampling. However, many iterations may be needed
to make a successful selection. As shown in Fig. 6(a), if the
region of v7 (i.e., 0.2 - 0.6 in CTPS) is already selected,
our newly generated random number 0.58 will not lead to
a successful selection. In fact, our evaluation observes that
this method suffers for scale-free graphs whose transition
probability can be highly skewed, or when a large fraction of
the candidates need to be selected i.e larger NeighborSize.

Another solution is to recalculate the CTPS by excluding
the already selected vertices, i.e., updated sampling, such as
Fig. 6(b). Then we can always pick unselected vertices by
searching through the updated CTPS. Particularly in Fig. 6(b),
we will perform another Kogge-Stone prefix-sum for the new
bias array {3, 2, 2, 2} towards {0, 3, 5, 7, 9}. Consequently,
the CTPS becomes {0, 0.33, 0.56, 0.78, 1}. Then, the random
number r = 0.58 selects v10. Recalculating prefix sum is,
however, time consuming.

Bipartite Region Search inherits the advantages of both re-
peated and updated sampling, while avoiding their drawbacks.

That is, it does not need the expensive CTPS update compared
with updated sampling, while greatly improve the chance of
successful selection compared with repeated sampling.

Particularly, while updated sampling updates the CTPS
without changing the random number as shown in Fig. 6(b),
the key idea of bipartite region search is to adjust the random
number r so that the CTPS remains intact and can be reused.
Most importantly, bipartite region search warrants that its
random number adjustment leads to the same selections as
updated sampling. Note, this method is called bipartite region
search because when the random number selects an already
selected vertex, bipartite region search searches either the right
or the left side of the already selected region in CTPS. Below,
we discuss this adjustment.

1 Generate a random number r′ (0 ≤ r′ < 1).
2 Use r′ to select a vertex in CTPS. If the vertex has not been selected,

done. Otherwise, the region that r′ falls into corresponds to a pre-selected
vertex. Assume the boundary of this region in CTPS is (l, h). Go to 3 .
3 Let λ = 1/(1− (h− l)), δ = h− l and update r to r′/λ. If r < l,

select (0, l) and go to 4 . Otherwise select (h, 1) and go to 5 .
4 Use the updated r to search in (0, l). If updated r falls in another

selected region, go to 1 . Otherwise done.
5 Further update r to r + δ and search in (h, 1). If updated r falls in

another selected region, go to 1 . Otherwise done.

Fig. 6(c) explains how bipartite region search works for the
same example in Fig. 6(b). Assuming we get a random number
r′ = 0.58, it corresponds to v7 in the original CTPS. Since
v7 is already selected, bipartite region search will adjust this
random number to 0.348 in 3 . Since the updated r = 0.348 >
l = 0.2, bipartite region search selects (0.6, 1) to explore.
Consequently in 5 , we further add δ = 0.4 to r which leads
to r = 0.748. 0.748 corresponds to v10, and thus results in a
successful selection. It is important to note that this selection
is identical as updated sampling in Fig. 6(b).

Proof of Bipartite Region Search. We will prove the
soundness of bipartite region search mathematically, in the
scenario when one and only one vertex has been pre-selected.

Theorem 2. Assuming vk’s probability region is (Fk, Fk+1) in
the original CTPS. Remind the definition of F in Section II-B.
Let vs be the pre-selected vertex, and F ′k be the probability
in the updated CTPS. l = Fk, h = Fk+1, λ = 1

1−(h−l) and
δ = h− l, we prove that:

F ′k =

{
λ · Fk; k < s,

λ · (Fk − δ); otherwise.
(5)

Proof. Adopting Equation 1, we get Fk =
∑k−1

i=1 bi∑n
i=1 bi

. Denoting

F =
∑s−1

i=1 bi +
∑n

i=s+1 bi, Theorem 1 leads to:

F ′k =

∑k−1

i=1 bi
F ; k < s,∑s−1

i=1 bi+
∑k−1

i=s+1 bi

F ; otherwise.
(6)

When k < s,

F ′k =

∑k−1
i=1 bi

F
=

∑k−1
i=1 bi∑n
i=1 bi

·
∑n
i=1 bi

F
= Fk ·

∑n
i=1 bi

F
. (7)

Since
∑n

i=1 bi
F = 1

1−(h−l) = λ, we prove F ′k = λ · Fk. When
k > s,

F ′k =

∑s−1
i=1 bi +

∑k−1
i=s+1 bi

F
=

∑s−1
i=1 bi +

∑k−1
i=s+1 bi∑n

i=1 bi
·
∑n
i=1 bi

F

=

∑s−1
i=1 bi +

∑k−1
i=s+1 bi∑n

i=1 bi
· λ =

∑k−1
i=1 bi − bs∑n
i=1 bi

· λ

= (

∑k−1
i=1 bi∑n
i=1 bi

−
bs∑n
i=1 bi

) · λ = (Fk −
bs∑n
i=1 bi

) · λ.

(8)

Since bs∑n
i=1 bi

= h− l = δ, we obtain F ′k = λ · (Fk − δ).

Theorem 2 states that one can adjust the probabilities from
the original CTPS to derive the updated CTPS. Reversing the
transformation direction, we further obtain:

Fk =

{
F ′k
λ
; k < s,

F ′k
λ

+ δ; otherwise.
(9)

Since r′ is the random number for the updated CTPS,
we can substitute F ′k with r′ in Equation 9 to derive the
corresponding r in the original CTPS that falls right at the
region boundaries of original CTPS, e.g., {0, 0.33, 0.56, 0.78,
1} in Fig. 6(b) fall right at {0, 0.2, 0.73, 0.87, 1} in Fig. 6(c).
Further, since Fk is a strictly monotonic function of F ′k, it
is clear that if r′ falls between the region boundaries of the
updated CTPS, the derived r will also do so in the original
CTPS. This ensures bipartite region search will make identical
selection as if the CTPS is updated. It is also provable that
statistically, the selection probability of our algorithm is the
same as the desired transition probability in more complicated
scenarios where multiple vertices have been pre-selected.

Strided Bitmap for Collision Detection. Bipartite region
search requires a collision detection mechanism. We introduce
a per vertex bitmap to detect selection collision (line 13 in
Fig. 5). For every candidate vertex, there is a unique bit in the
bitmap to indicate whether it has been selected. The bitmap
is shared by all threads of a warp. After each thread selects
a vertex, we perform an atomic compare-and-swap operation
to the corresponding bit in the bitmap. If the bit is 0, which
means no other threads have picked this vertex, we set it to 1.

Since GPUs do not have variables that support bit-wise
atomic operations currently, we may use either 8-bit or 32-
bit integer variables for bitmap representation, where each bit
corresponds to one vertex. As using 32-bit variables results in
more conflicts when updating multiple bits within the same
variable, we choose 8-bit variables instead.

0 0 0 0
5 7 9

0 0 0 0
10VertexID

Bitmap
(a) Contiguous bitmap (b) Strided bitmap

0 0
5 7911 1011

Fig. 7: Sampling the neighbors of v8 in Fig. 1(a), under: (a)
contiguous bitmap and (b) strided bitmaps.

To resolve the atomic contentions, we propose to use strided
bitmaps, inspired by the set-associative cache organization
[51]. A strided bitmap scatters the bits of adjacent vertices
across different 8-bit variables, as shown in Fig. 7. Instead of
using the first five bits of the same 8-bit variable to indicate
the status of all vertices in the contiguous bitmap, the strided
bitmap spreads them into two variables to reduce conflicts.

Data Structures. C-SAW employs three major data struc-
tures: frontier queues, per-warp bitmap, and per-warp CTPS.
All these data structures are allocated in the GPU global
memory before sampling starts. A frontier queue is a structure
of three arrays, V ertexID, InstanceID, and CurrDepth
to keep track of the sampling process. Till now, all threads
share one frontier queue, with a few exceptions that will be
introduced in Section V. Per-warp bitmaps and CTPSs are
stored as arrays and get reused across the entire sampling
process. They are also located in global memory.

V. OUT-OF-MEMORY & MULTI-GPU C-SAW

Thanks to sampling and random walk which lift important
obstacles for out-of-memory computation, that is, they need
neither the entire graph nor synchronization during computa-
tion. This section takes advantage of this opportunity to enable
fast out-of-memory and multi-GPU C-SAW.

A. Graph Partition

C-SAW partitions the graph by simply assigning a contigu-
ous and equal range of vertices and all their neighbor lists
to one partition. We adopt this method instead of advanced
topology-aware partition (e.g., METIS [27], [28], [52]) and
2-D partition [53], for three reasons. First and foremost,
sampling and random walk require all the edges of a vertex
be present in order to compute the transition probability.
Splitting the neighbor list of any vertex, which is the case
in 2-D partition, would introduce fine-grained communication
between partitions, that largely hampers the performance.
Second, topology-aware partition would require extremely
long preprocessing time, as well as yield discontinued vertex
ranges which often lead to more overhead than benefit. Third,
this simple partitioning method allows C-SAW to decide which
partition a vertex belongs to in constant time that is important
for fast bulk asynchronous sampling (Fig. 8).

B. Workload-Aware Partition Scheduling

Since multiple sampling instances are independent of each
other, this dimension of flexibility grants C-SAW the freedom
of dynamically scheduling various partitions based upon the
workload from both graph partitions and workers (such as
GPU kernels and devices).

Workload-Aware Partition Scheduling. C-SAW tracks the
number of frontier vertices that falls into each partition to
determine which partition will offer more workload (1 in Fig.
8). We refer them as active vertices. Based upon the count, we
also allocate thread blocks to each GPU kernel with thread
block based workload balancing described in next paragraph.
Subsequently, the partitions that contain more workload are
transferred to the GPU earlier and sampled first (2 in Fig. 8).
Non-blocking cudaMemcpyAsync is used to copy partitions
to the GPU memory asynchronously. C-SAW samples this
partition until it has no active vertices. Note that, C-SAW
stores frontier queues from all partitions in the GPU memory.
It allows a partition to insert new vertices to its frontier
queue, as well as the frontier queues of other partitions to
enable communications. The actively sampled partition is only
released from the GPU memory when its frontier queue is
empty. The reason is that partitions with more active vertices
often insert more neighbors in its own frontier queue, which
further leads to more workloads. As a result, this design can
reduce the number of partitions transferred from CPU to GPU.

When it comes to computation, we dedicate one GPU kernel
to one active partition along with a CUDA stream, in order
to overlap the data transfer and sampling of different active
partitions. After parallel partition sampling finishes, we count
the vertex number in each frontier queue to decide which
partitions should be transferred to GPU for sampling next (3
in Fig. 8). The entire sampling is complete when there are no
active vertices in all partitions.

Thread Block based Workload Balancing. Depending
upon the properties of graphs and sample seeds, frontiers are
likely not equally distributed across partitions. As a result, the
sampling and data transfer time are not the same as well. Since
the straggler kernel determines the overall execution time, it
is ideal to balance the workload across kernels. Consequently,
we implicitly partition the GPU resources by controlling the
thread block number of different kernels.

Example. Fig. 8 shows an example of out-of-memory
sampling. Here, we assume three graph partitions (i.e., P1,
P2, P3) for the same graph in Fig. 1(a), two GPU kernels (i.e.,
Kernel1 and Kernel2), and the GPU memory can contain two
active partitions. If we start sampling from vertices {0, 2, 8},
P1, P2, and P3 will have 2, 0, and 1 active vertices initially.
Hence, kernel K1 is assigned to work on P1 and kernel K2 for
P3. To balance the workload, the ratio of thread block numbers
assigned to K1 and K2 is set to 2:1. Assuming vertices 0, 2,
and 8 pick 7, 3, and 5, respectively, the frontier queues for P1,
P2 and P3 become {3}, {7, 5} and {φ} as shown in bottom
right of Fig. 8. Subsequently, K2 exits because P3’s frontier
queue is empty, while K1 continues sampling 3 and puts 4
into the frontier queue of P2. Then, K1 also exits and leaves
{7, 5, 4} in the frontier queue of P2 to be scheduled next.

Correctness. The out-of-order nature of the workload-aware
partition scheduling does not impact the correctness of C-SAW.
With out-of-order scheduling, the sampling of one instance is
not in the breath-first order as in the in-order case. The actual

x

Queue
size

P1 P3

GPUCPU

Frontier queues

2 0 1
#active frontier verticesW

or
kl

oa
d-

aw
ar

e
sc

he
du

lin
g

Transfer
partition

2

1
Workload
balancing

3

Partition P1
Partition P2
Partition P3
Source
Sampled

v

P1 P2 P3Queue = {0, 2, 8}
7, 5, 4

Frontier queues

Frontier queues

(Kernel K2 exits)

(Kernel K1 exits)

4 5

7 8 9

3
2

1

60 10

11 12

3 7, 5

0, 2 8
7 53

4

P1 P2 P3

K2K1

v

ɸ

ɸ

ɸ ɸ

Fig. 8: Workload-aware scheduling of graph partition. The upper
part shows the toy graph and its partition. We start sampling within
partitions 1 and 3. The lower part shows an example for out-of-
memory sampling. For simplicity, we hide InstanceID and CurrDepth
from the frontier queue.

sampling order can be considered as a combination of breath-
first and depth-first orders. However, since we keep track of the
depth of sampled vertices to prevent an instance from reaching
beyond the desired depth, the sampling result will be the same
as if it is done in the breath first order.

C. Batched Multi-Instance Sampling

In the out-of-memory setting, C-SAW introduces batched
multi-instance sampling, which concurrently samples multiple
instances, to combat the expensive data transferring cost.

Batched sampling is implemented by combining the active
vertices of various concurrently sampling instances into a
single frontier queue for each partition. Along with the queue,
we need to keep two extra metadata for each vertex, i.e.,
InstanceID and CurrDepth, which tracks the instance that
a vertex belongs to and stores the current depth of that instance
respectively. During sampling, a thread warp in the kernel can
work on any vertex in the queue, no matter whether they are
from the same or different instances. After it finishes selecting
vertices (line 6 in Fig. 2(b)), InstanceID is used to find the
corresponding frontier pool and sampled graph to update (line
7-8). Note that there may exist multiple copies of the same
vertex in the queue, because a common vertex can be sampled
by multiple instances.

Batched sampling can also balance the workload across
sampling instances. Otherwise, if we sample various instances
separately, since many real-world graphs hold highly skewed
degree distributions, some instances may encounter higher
degree vertices more often and thus more workloads. This
will end up with skewed workload distributions. Batched
sampling solves this problem using a vertex-grained workload
distribution, instead of instance-grained distribution.

D. Multi-GPU C-SAW

As the number of sources continues to grow, the workload
will saturate one GPU and go beyond. In this context, scaling
C-SAW to multiple GPUs would help accelerate the sampling
performance. Since various sampling instances are indepen-
dent from each other, C-SAW simply divides all the sampling

AM AS CP FS LJ OR RE TW WG YE
0

20

40

60
M

il
li

o
n

S
E

P
S

95 135

KnightKing
C-SAW (1 GPU)
C-SAW (6 GPUs)

(a) C-SAW vs. KnightKing on biased random walk.
AM AS CP FR LJ OR RE TW WG YE

0

2

4

6

8

10
GraphSAINT C-SAW (1 GPU) C-SAW (6 GPUs)

(b) C-SAW vs. GraphSAINT on multi-dimensional random walk.

Fig. 9: C-SAW vs. the state-of-the-art in million sampled edges per second with 1 GPU and 6 GPUs (higher is better).

instances into several disjoint groups, each of which contains
equal number of instances. Here, the number of disjoint groups
is the same as the number of GPUs. Afterwards, each GPU
will be responsible for one sampling group. During sampling,
each GPU will perform the same tasks as shown in Fig. 8 and
no inter-GPU communication is required.

VI. EVALUATIONS

C-SAW is implemented with ∼4,000 lines of CUDA code
and compiled by CUDA Toolkit 10.1.243 and g++ 7.4.0 with
optimization flag as -O3. We evaluate C-SAW on the Sum-
mit supercomputer of Oak Ridge National Laboratory [54].
Each Summit node is equipped with 6 NVIDIA Tesla V100
GPUs, dual-socket 22-core POWER9 CPUs and 512 GB main
memory. Particularly, each V100 GPU is equipped with 16GB
device memory. For the random number generation, we use the
cuRAND library [55].

Dataset Abbr. Vertex
Count

Edge
Count

Avg.
degree

Size
(of CSR)

Amazon0601 [56] AM 0.4M 3.4M 8.39 59 MB
As-skitter [56] AS 1.7M 11.1M 6.54 325 MB
cit-Patents [56] CP 3.8M 16.5M 4.38 293 MB
LiveJournal [56] LJ 4.8M 68.9M 14.23 1.1 GB
Orkut [56] OR 3.1M 117.2M 38.14 1.8 GB
Reddit [12], [57] RE 0.2M 11.6M 49.82 179 MB
web-Google [56] WG 0.8M 5.1M 5.83 85 MB
Yelp [12], [57] YE 0.7M 6.9M 9.73 111 MB
Friendster [56] FR 65.6M 1.8M 27.53 29 GB
Twitter [58] TW 41.6M 1.5M 35.25 22 GB

TABLE II: Details of evaluated graphs.

Dataset. We use the graph datasets in Table II to study
C-SAW. This dataset collection contains a wide range of
applications, such as social networks (LJ, OR, FR and TW),
forum discussion (RE and YE), online shopping (AM), citation
networks (CP), computer routing (AS) and web page (WG).

Metrics. Instead of Traversed Edges Per Second (TEPS)
in classical graph analytics [22], [23], we introduce a new
metric - Sampled Edges Per Second (SEPS) - to evaluate the
performance of sampling and random walk. Formally, SEPS
= # SampledEdges

Time . This metric is more suitable than TEPS to
evaluate sampling and random walk because these algorithms
might use different methods thus traverse a different number
of edges but end up with the same number of sampled edges.
Similar to previous work [22], [23], the kernel execution time
is used to compute SEPS, i.e., the time spent on generating the

samples, except for the out-of-memory case that also includes
the time for transferring the partitions. Note, each reported
result is an average of three runs with different sets of seeds.

Test Setup. Analogous to GraphSAINT [12], we gener-
ate 4,000 instances for random walk algorithms and 2000
instances for sampling algorithms. For sampling, both the
NeighborSize (i.e., number of neighbors sampled from one
frontier) and Depth are 2 for analyzing the performance
of C-SAW except forest fire, which uses Pf= 0.7 to derive
NeighborSize as in [29]. For biased random walk algorithm,
the length of the walk is 2,000. For multi-dimensional random
walk, similar to GraphSAINT, we use 2,000 as the FrontierSize
for each instance.

A. C-SAW vs. State-of-the-art

First, we compare C-SAW against the state-of-the-art frame-
works, KnightKing and GraphSAINT. Our profiling result
shows that both GraphSAINT and KnightKing use multiple
threads to perform the computation, where the # threads
= # cores. Since KnightKing only supports random walk
variations, we compare C-SAW with KnightKing for biased
random walk. GraphSAINT provides both Python and C++
implementations. We choose the C++ implementation [11]
which exhibits better performance. The C++ version only
supports multi-dimensional random walk which is studied in
Fig. 9(b).

As shown in Fig. 9, C-SAW presents superior performance
over both projects. On average, C-SAW is 10× and 14.7×
faster than KnightKing with 1 GPU and 6 GPUs, respectively.
Compared to GraphSAINT, C-SAW is 8.1× and 11.5× faster
with 1 GPU and 6 GPUs respectively. Each instance of
sampled graphs has 1,703 edges on average. While C-SAW
outperforms both projects across all graphs, we generally
observe better speedup on graphs with a lower average degree,
such as, AM, CP and WG on KnightKing and AM on
GraphSAINT. This is rooted from 1) the superior computing
capability of GPU over CPU, 2) C-SAW is free of bulk
synchronous parallelism (BSP) [59], which allows it to always
have adequate computing tasks for sparse graphs, and 3) the
unprecedented bandwidth of the V100 GPU over the POWER9
CPU, i.e., 900 GB/s vs. 170 GB/s [54]. This underscores the
need of GPU-based sampling and random walk.

A
M A
S

C
P L
J

O
R

R
E

W
G

Y
E

0

1

2

3

4

5

S
p

ee
d

u
p

Repeated sampling (original CTPS)
Sampling (updated CTPS)
Bipartite region search
Bipartite region search + Bitmap

(a) Biased neighbor sampling.

A
M A
S

C
P L
J

O
R

R
E

W
G

Y
E

0

1

2

3

4

5

(b) Forest fire sampling.

A
M A
S

C
P L
J

O
R

R
E

W
G

Y
E

0

1

2

3

4

S
p

ee
d

u
p

(c) Layer sampling.

A
M A
S

C
P L
J

O
R

R
E

W
G

Y
E

0

1

2

3

4

(d) Unbiased neighbor sampling.

Fig. 10: Performance impacts of in-memory optimizations for various
sampling algorithms.

A
M A
S

C
P L
J

O
R

R
E

W
G

Y
E

0

5

10

15

#
it

er
at

io
n

31

(a) Biased neighbor sampling.

A
M A
S

C
P L
J

O
R

R
E

W
G

Y
E

0

5

10

15

(b) Forest fire sampling.

A
M A
S

C
P L
J

O
R

R
E

W
G

Y
E

0

5

10

15

#
it

er
at

io
n

(c) Layer sampling.

A
M A
S

C
P L
J

O
R

R
E

W
G

Y
E

0

5

10

15 Baseline
Bipartite region search

(d) Unbiased neighbor sampling.

Fig. 11: Average # iteration w/ and w/o bipartite region search for
various algorithms.

B. In-memory Optimization

Fig. 10 studies the performance impacts of bipartite re-
gion search and bitmap optimizations over repeated sampling
(Fig. 6(a)) and updated sampling (Fig. 6(b)) across four appli-
cations, which include both biased and unbiased algorithms.
Repeated sampling is used as the performance baseline for
comparison. FR and TW are not studied in this subsection
because they exceed the GPU memory capacity. Particularly,
bipartite region search introduces, on average, 1.7×, 1.4×,
1.7× and 1.17× speedup, on biased neighbor sampling, forest
fire sampling, layer sampling, and unbiased neighbor sampling
respectively. Bipartite region search presents better perfor-
mance compared with both repeated sampling and updated
sampling. Bitmap further improves speedup to 1.8×, 1.5×,
1.8×, and 1.28× on these four applications, respectively. The
performance for AM, CP, and WG gleams the effectiveness of
C-SAW. With a lower average degree of vertices, they suffer

A
M A
S

C
P L
J

O
R

R
E

W
G

Y
E

0.0

0.5

1.0

R
at

io

(a) Biased neighbor sampling.

A
M A
S

C
P L
J

O
R

R
E

W
G

Y
E

0.0

0.5

1.0

(b) Forest fire sampling.

A
M A
S

C
P L
J

O
R

R
E

W
G

Y
E

0.0

0.5

1.0

R
at

io

(c) Layer sampling.

A
M A
S

C
P L
J

O
R

R
E

W
G

Y
E

0.0

0.5

1.0
Bitmap

(d) Uniased neighbor sampling.

Fig. 12: Total search reduction by bitmap for various algorithms.

from more selection collision. Using bipartite region search,
we achieve better speedup by mitigating the collision.

Fig. 11 and 12 further profile the effectiveness of our
two optimizations. On average, bipartite region search re-
duces the average number of iterations to pick a neighbor
by 5.0×, 1.5×, 1.8×, and 1.7× for these four applications,
respectively. Here, # iterations refers to the trip count of
do-while loop in Fig. 5 (line 10-14), which represents the
amount of computation used to select a vertex. For analysis,
we compare the average number of iterations for all sampled
vertices, i.e., Total # iterations of sampled vertices

sampled vertices . We observe more
reduction on # iterations for biased neighbor sampling than
other algorithms as it has a higher selection collision chance
and thus requires more iterations without bipartite region
search. With relatively larger neighbor pools, collision is
less likely to happen in layer sampling which explains its
lower benefits from bipartite region search. Similarly, unbiased
neighbor sampling and forest fire sampling incur less collision
due to unbiased sampling. Fig. 12 shows the effectiveness of
bitmap over the baseline which stores the sampled vertices in
the GPU shared memory and performs a linear search to detect
collision. The ratio metric in Fig. 12 compares the total number
of searches performed by bitmap with that of baseline, i.e.,
Ratio =

∑
searches in bitmap∑
searches in baseline . Compared to baseline, bitmap

reduces the total searches by 63%, 83%, 71%, and 81% for
these four applications, respectively. Despite of the significant
search count reduction from bitmap, the overhead of atomic
operations refrains us from achieving speedups proportional
with the search count reduction.

C. Out-of-memory Optimization

Fig. 13 presents the performance impacts of multi-instance
batched sampling (BA), workload-aware scheduling (WS), and
thread block based workload balancing (BAL) on both large
graphs and small graphs. For the sake of analysis, we pretend
small graphs do not fit in GPU memory. For the experimental
analysis, we use 4 partitions for each graph and two CUDA

A
M A
S

C
P L
J

O
R

R
E

W
G

Y
E

F
S

T
W

0

1

2

3

4

5

6

S
p

ee
d

u
p

(a) Biased neighbor sampling.

A
M A
S

C
P L
J

O
R

R
E

W
G

Y
E

F
S

T
W

0

1

2

3

4

5

6
Baseline
Batched sampling (BA)
BA + Workload aware scheduling (WS)
BA + WS + Workload balancing

(b) Biased random walk.

A
M A
S

C
P L
J

O
R

R
E

W
G

Y
E

F
S

T
W

0

1

2

3

4

5

S
p

ee
d

u
p

(c) Forest fire sampling.

A
M A
S

C
P L
J

O
R

R
E

W
G

Y
E

F
S

T
W

0

1

2

3

4

5

(d) Unbiased neighbor sampling.

Fig. 13: Performance impacts of out-of-memory optimizations. Here,
baseline implementation refers to partition transfer based on active
partition without any optimization.

A
M A
S

C
P L
J

O
R

R
E

W
G

Y
E

F
S

T
W

0.0

0.5

1.0

R
at

io

(a) Biased neighbor sampling.

A
M A
S

C
P L
J

O
R

R
E

W
G

Y
E

F
S

T
W

0.0

0.5

1.0

Baseline
Batched sampling (BA)
BA + Workload balancing

(b) Biased random walk.

A
M A
S

C
P L
J

O
R

R
E

W
G

Y
E

F
S

T
W

0.0

0.5

1.0

R
at

io

(c) Forest fire sampling.

A
M A
S

C
P L
J

O
R

R
E

W
G

Y
E

F
S

T
W

0.0

0.5

1.0

(d) Unbiased neighbor sampling.

Fig. 14: Standard deviation of kernel time for multi-instance batching
and workload-aware balancing in out-of-memory C-SAW (lower is
better). Here, baseline represents even distribution of resources.

streams. Assume the GPU memory can keep at most two
partitions at the same time, for all graphs. Particularly, batched
sampling introduces, on average, 2.0×, 1.9×, 2.1×, and 2.7×
speedup, respectively on biased neighbor sampling, biased
random walk, forest fire sampling, and unbiased neighbor
sampling. Workload-aware scheduling further introduces 3.2×,
2.8×, 3.9×, and 3.3× speedups on these four applications,
respectively. Workload balancing gives, on average, 3.5×
speedup over all applications.

Fig. 14 and 15 reasons the effectiveness of two opti-
mizations. We use standard deviation to measure workload
imbalance in runtime of two kernels for overall sampling.
On average, multi-instance batched sampling (BA) and thread
block based workload balancing (BAL) reduce the average
kernel time by 27%, 12%, 23%, and 26%, respectively on

A
M A
S

C
P L
J

O
R

R
E

W
G

Y
E

F
S

T
W

0

5

10

15

P
ar

ti
ti

o
n

tr
a
n

sf
er

(a) Biased neighbor sampling.

A
M A
S

C
P L
J

O
R

R
E

W
G

Y
E

F
S

T
W

0

5

10

15

(b) Biased random walk.

A
M A
S

C
P L
J

O
R

R
E

W
G

Y
E

F
S

T
W

0

5

10

15

P
ar

ti
ti

on
tr

an
sf

er

Active
Workload-aware scheduling

(c) Forest fire sampling.

A
M A
S

C
P L
J

O
R

R
E

W
G

Y
E

F
S

T
W

0

5

10

15

(d) Unbiased neighbor sampling.

Fig. 15: Partition transfer counts for workload-aware scheduling
(lower is better).

four applications. As active vertices increase exponentially
with depth during sampling, biased neighbor sampling, forest
fire sampling, and unbiased neighbor sampling observe more
reduction in kernel time than biased random walk. Workload-
aware scheduling reduces the overall partition transfers by
1.2×, 1.3×, 1.2×, and 1.1× on these four applications, re-
spectively. Even with moderate decrease in partition transfers,
we still achieve noticeable speedups.

A
M A
S

C
P

F
R L
J

O
R

R
E

T
W

W
G

Y
E

0

10

20

30

40

50

60

70

S
am

p
li
n

g
ti

m
e

(m
s) 1

4
2
8

(a) NeighborSize: 1 - 8.

A
M A
S

C
P

F
R L
J

O
R

R
E

T
W

W
G

Y
E

0

10

20

30

40

50

60

70

S
am

p
li
n

g
ti

m
e

(m
s) 2k

8k
4k
16k

(b) # instances: 2k - 16k.
Fig. 16: Biased neighbor sampling with (a) NeighborSize as 1, 2 4
and 8 and (b) # instances as 2k, 4k, 8k and 16k.

D. Studying NeighborSize and # Instances in C-SAW

Fig. 16 reports the time consumption impacts of various
NeighborSize and # instances. Here, we use Depth= 3 and
16k instances in Fig. 16 (a) for extensive analysis. For Fig. 16
(b), we use NeighborSize = 8. As shown in Fig. 16(a), larger
NeighborSize leads to longer sampling time. The average

A
M A
S

C
P

F
R L
J

O
R

R
E

T
W

W
G

Y
E

0

2

4
S

p
ee

d
u

p
1
2

3
4

5
6

(a) 2,000 instances.

A
M A
S

C
P

F
R L
J

O
R

R
E

T
W

W
G

Y
E

0

2

4

S
p

ee
d

u
p

(b) 8,000 instances.

Fig. 17: Scaling C-SAW from 1 to 6 GPUs with (a) 2,000 and (b)
8,000 instances for biased neighbor sampling.

sampling time for NeighborSize of 1, 2, 4, and 8 are 3, 4,
7, and 14 ms. Similarly, the increase of sampling instances,
as shown in Fig. 16(b) also results in longer sampling time.
The average sampling time for 2k, 4k, 8k, and 16k instances
is 2, 5, 9, and 15 ms. It is important to note that graphs with
higher average degrees, i.e., TW, RE, and OR, have longer
sampling time, while the impact of graph sizes on sampling
time is secondary.

E. C-SAW Scalability

Fig. 17 scales C-SAW from 1 to 6 GPUs for different number
of sampling instances. For 2,000 and 8,000 instances, we
achieve 1.8× and 5.2× speedup with 6 GPUs, respectively.
The reason is that 2,000 instances fail to saturate 6 GPUs.
With 8,000 instances, we observe more workloads that lead to
better scalability. We also observe that lower average degree
graphs present better scalability because their workloads are
better distributed across sampling instances.

VII. RELATED WORKS

Despite there is a surge of frameworks for classical graph al-
gorithms including think like a vertex [59], [60], an edge [61],
a graph [62], an IO partition [63], and Domain Specific
Languages [64], [65], among many others [24], [66], [67], very
few projects target graph sampling and random walk which are
the focus of C-SAW. This section discusses the closely related
work from the following three aspects.

Programming Interface. KnightKing [39] proposes a
walker-centric model to support random walk [33], [37], e.g.,
Node2vec [19], [68], Deepwalk [17], and PPR [42], [69],
[70], and hence fails to accommodate sampling algorithms
that are important for graph learning and sparsification [9],
[29], [37], [48], [71]–[73]. Similarly for [74], [75] which
also only support limited sampling/random walk algorithms.

GraphSAINT [11], [12] explores three graph sampling meth-
ods, i.e., random vertex and edge sampling, and random walk
based sampler, but fails to arrive at a universal framework.
[76] supports deletion based sampling algorithms [77]. But this
design is inefficient for large graphs that need to remove most
edges. In this work, C-SAW offers a bias-centric framework
that can support both sampling and random walk algorithms,
and hide the GPU programming complexity from end users.

Transition Probability Optimizations. Existing projects
often explore the following optimizations, i.e., probability
pre-computation and data structure optimization. Particularly,
KnightKing [39] pre-computes the alias table for static tran-
sition probability, and resorts to dartboard for the dynamic
counterpart which is similar to [11]. Interestingly, kPAR [78]
even proposes to pre-compute random walks to expedite
the process. Since large graphs cannot afford to index the
probabilities of all vertices, [70] only pre-computes for hub
vertices and further uses hierarchical alias method, i.e., alias
tree for distributed sampling. However, not all sampling and
random walk algorithms could have deterministic probabilities
that support pre-computation. C-SAW finds inverse transform
sampling to be ideal for GPUs, and achieves superior per-
formance over the state-of-the-art even when computing the
probability during runtime.

Out-of-memory Processing. GPU unified memory and
partition-centric are viable method for out-of-memory graph
processing. Since graph sampling is irregular, unified memory
is not a suitable option [79], [80]. Besides, partition-centric
options [63], [81]–[84] load each graph partition from either
secondary storage to memory or CPU memory to GPU for
processing. Since prior work deals with classical graph algo-
rithms, they need BSP. In contrast, C-SAW takes advantage of
the asynchronous nature of sampling to introduce workload-
aware scheduling and batched sampling to reduce the data
transfer between GPU and CPU.

VIII. CONCLUSION

This paper introduces C-SAW, a novel, generic, and opti-
mized GPU graph sampling framework that supports a wide
range of sampling and random walk algorithms. Particu-
larly, we introduce novel bias-centric framework, bipartite
region search and workload aware out-of-GPU and multi-GPU
scheduling for C-SAW. Taken together, our evaluation shows
that C-SAW bests the state-of-the-art.

ACKNOWLEDGEMENT

We thank the anonymous reviewers for their helpful sug-
gestions and feedbacks. This research is supported in part by
the National Science Foundation CRII award No. 2000722,
the U.S. Department of Energy, Office of Science, Office
of Advanced Scientific Computing Research, under Contract
No. DE-AC02-05CH11231 at Lawrence Berkeley National
Laboratory, and Brookhaven National Laboratory, which is
operated and managed for the U.S. Department of Energy
Office of Science by Brookhaven Science Associates under
contract No. DE-SC0012704.

REFERENCES

[1] Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay Pande, and Jure Leskovec.
Graph Convolutional Policy Network for Goal-Directed Molecular
Graph Generation. In Advances in neural information processing systems
(NeurIPS), pages 6410–6421, 2018.

[2] Ravi Kumar, P Ragbavan, Sridhar Rajagopalan, and Andrew Tomkins.
The Web and Social Networks. Computer, 35(11):32–36, 2002.

[3] Laura Garton, Caroline Haythornthwaite, and Barry Wellman. Studying
online social networks. Journal of computer-mediated communication
(JCMC), 3(1), 1997.

[4] Christian Von Mering, Roland Krause, Berend Snel, Michael Cornell,
Stephen G Oliver, Stanley Fields, and Peer Bork. Comparative Assess-
ment of Large-Scale Data Sets of Protein–Protein Interactions. Nature,
417(6887):399, 2002.

[5] Roel Popping. Knowledge Graphs and Network Text Analysis. Social
Science Information (SSI), 42(1):91–106, 2003.

[6] Richard C Murphy, Kyle B Wheeler, Brian W Barrett, and James A
Ang. Introducing the Graph 500. Cray Users Group (CUG), 19:45–74,
2010.

[7] GraphChallenge. https://graphchallenge.mit.edu/, February 2020.
[8] Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. Adaptive

Sampling Towards Fast Graph Representation Learning. In Advances in
Neural Information Processing Systems (NeurIPS), pages 4563–4572,
2018.

[9] Hongyang Gao, Zhengyang Wang, and Shuiwang Ji. Large-Scale
Learnable Graph Convolutional Networks. In Proceedings of the 24th
ACM International Conference on Knowledge Discovery & Data Mining
(SIGKDD), pages 1416–1424. ACM, 2018.

[10] Jianfei Chen, Jun Zhu, and Le Song. Stochastic Training of Graph
Convolutional Networks with Variance Reduction. arXiv preprint
arXiv:1710.10568, 2017.

[11] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan,
and Viktor Prasanna. Accurate, Efficient and Scalable Graph Embedding.
In IEEE International Parallel and Distributed Processing Symposium
(IPDPS), pages 462–471. IEEE, 2019.

[12] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan,
and Viktor Prasanna. Graphsaint: Graph Sampling Based Inductive
Learning Method. arXiv preprint arXiv:1907.04931, 2019.

[13] Chenhui Deng, Zhiqiang Zhao, Yongyu Wang, Zhiru Zhang, and Zhuo
Feng. GraphZoom: A Multi-Level Spectral Approach for Accurate and
Scalable Graph Embedding. arXiv preprint arXiv:1910.02370, 2019.

[14] Adam Lerer, Ledell Wu, Jiajun Shen, Timothee Lacroix, Luca Wehrstedt,
Abhijit Bose, and Alex Peysakhovich. Pytorch-biggraph: A large-scale
graph embedding system. arXiv preprint arXiv:1903.12287, 2019.

[15] Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye,
Mufei Li, Jinjing Zhou, Qi Huang, Chao Ma, Ziyue Huang, Qipeng
Guo, Hao Zhang, Haibin Lin, Junbo Zhao, Jinyang Li, Alexander Smola,
and Zheng Zhang. Deep Graph Library: Towards Efficient and Scalable
Deep Learning on Graphs. arXiv preprint arXiv:1909.01315, 2019.

[16] Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt
Mehlhorn, and Karsten M Borgwardt. Weisfeiler-Lehman Graph Ker-
nels. Journal of Machine Learning Research (JMLR), 12(77):2539–
2561, 2011.

[17] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online
Learning of Social Representations. In Proceedings of the 20th ACM
international conference on Knowledge discovery and data mining
(SIGKDD), pages 701–710, 2014.

[18] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd.
The PageRank Citation Ranking: Bringing Order to the Web. Technical
report, Stanford InfoLab, 1999.

[19] Aditya Grover and Jure Leskovec. Node2vec: Scalable Feature Learning
for Networks. In Proceedings of the 22nd ACM international conference
on Knowledge discovery and data mining (SIGKDD), pages 855–864,
2016.

[20] Aapo Kyrola. Drunkardmob: Billions of Random Walks on Just a PC.
In Proceedings of the 7th ACM conference on Recommender systems
(RecSys), pages 257–264, 2013.

[21] Richard E Korf and Peter Schultze. Large-Scale Parallel Breadth-First
Search. In American Association for Artificial Intelligence (AAAI),
volume 5, pages 1380–1385, 2005.

[22] Hang Liu and H Howie Huang. Enterprise: Breadth-First Graph
Traversal on GPUs. In Proceedings of the International Conference for

High Performance Computing, Networking, Storage and Analysis (SC),
pages 1–12. IEEE, 2015.

[23] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy
Riffel, and John D Owens. Gunrock: A High-Performance Graph
Processing Library on the GPU. In Proceedings of the 21st ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP), pages 1–12, 2016.

[24] Hang Liu and H Howie Huang. SIMD-X: Programming and Processing
of Graph Algorithms on GPUs. In Proceedings of the USENIX
Conference on Usenix Annual Technical Conference (ATC), pages 411–
427, 2019.

[25] Anil Gaihre, Zhenlin Wu, Fan Yao, and Hang Liu. XBFS: eXploring
Runtime Optimizations for Breadth-First Search on GPUs. In Proceed-
ings of the 28th International Symposium on High-Performance Parallel
and Distributed Computing (HPDC), pages 121–131, 2019.

[26] Prasun Gera, Hyojong Kim, Piyush Sao, Hyesoon Kim, and David
Bader. Traversing Large Graphs on GPUs with Unified Memory. Pro-
ceedings of the VLDB Endowment (PVLDB), 13(7):1119–1133, 2020.

[27] George Karypis and Vipin Kumar. A Fast and High Quality Multilevel
Scheme for Partitioning Irregular Graphs. SIAM Journal on scientific
Computing (SISC), 20(1):359–392, 1998.

[28] Stephen Guattery and Gary L Miller. On the Performance of Spectral
Graph Partitioning Methods. In ACM-SIAM Symposium on Discrete
Algorithms (SODA), volume 95, pages 233–242, 1995.

[29] Jure Leskovec and Christos Faloutsos. Sampling from Large Graphs. In
Proceedings of the 12th ACM international conference on Knowledge
discovery and data mining (SIGKDD), pages 631–636. ACM, 2006.

[30] Pili Hu and Wing Cheong Lau. A Survey and Taxonomy of Graph
Sampling. arXiv preprint arXiv:1308.5865, 2013.

[31] Alex D Stivala, Johan H Koskinen, David A Rolls, Peng Wang, and
Garry L Robins. Snowball Sampling for Estimating Exponential Ran-
dom Graph Models for Large Networks. Social Networks, 47:167–188,
2016.

[32] NeighborSampler. https://docs.dgl.ai/en/0.4.x/api/python/sampler.html,
February 2020.

[33] Rong-Hua Li, Jeffrey Xu Yu, Lu Qin, Rui Mao, and Tan Jin. On Random
Walk based Graph Sampling. In 31st International Conference on Data
Engineering (ICDE), pages 927–938. IEEE, 2015.

[34] Michael Cochez, Petar Ristoski, Simone Paolo Ponzetto, and Heiko
Paulheim. Biased Graph Walks for RDF Graph Embeddings. In
Proceedings of the 7th International Conference on Web Intelligence,
Mining and Semantics (WIMS), pages 1–12, 2017.

[35] Leonidas Tzevelekas, Konstantinos Oikonomou, and Ioannis
Stavrakakis. Random Walk with Jumps in Large-Scale Random
Geometric Graphs. Computer Communications, 33(13):1505–1514,
2010.

[36] Hanghang Tong, Christos Faloutsos, and Jia-Yu Pan. Fast Random Walk
with Restart and its Applications. In Sixth international conference on
data mining (ICDM), pages 613–622. IEEE, 2006.

[37] Bruno Ribeiro and Don Towsley. Estimating and Sampling Graphs
with Multidimensional Random Walks. In Proceedings of the 10th
ACM conference on Internet measurement (SIGCOMM), pages 390–
403, 2010.

[38] Sheehan Olver and Alex Townsend. Fast Inverse Transform Sampling
in One and Two Dimensions. arXiv preprint arXiv:1307.1223, 2013.

[39] Ke Yang, MingXing Zhang, Kang Chen, Xiaosong Ma, Yang Bai, and
Yong Jiang. KnightKing: A Fast Distributed Graph Random Walk
Engine. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles (SOSP), pages 524–537, 2019.

[40] Alastair J Walker. An Efficient Method for Generating Discrete Random
Variables with General Distributions. ACM Transactions on Mathemat-
ical Software (TOMS), 3(3):253–256, 1977.

[41] Aaron Q Li, Amr Ahmed, Sujith Ravi, and Alexander J Smola. Reducing
the Sampling Complexity of Topic Models. In Proceedings of the 20th
ACM international conference on Knowledge discovery and data mining
(SIGKDD), pages 891–900, 2014.

[42] Peter A Lofgren, Siddhartha Banerjee, Ashish Goel, and C Seshadhri.
FAST-PPR: Scaling Personalized Pagerank Estimation for Large Graphs.
In Proceedings of the 20th ACM international conference on Knowledge
discovery and data mining (SIGKDD), pages 1436–1445. ACM, 2014.

[43] Hang Liu, H Howie Huang, and Yang Hu. iBFS : Concurrent Breadth-
First Search on GPUs. In Proceedings of the International Conference
on Management of Data (SIGMOD), pages 403–416. ACM, 2016.

[44] Santosh Pandey, Xiaoye Sherry Li, Aydin Buluc, Jiejun Xu, and Hang
Liu. H-INDEX: Hash-Indexing for Parallel Triangle Counting on GPUs.
In IEEE High Performance Extreme Computing Conference (HPEC),
pages 1–7. IEEE, 2019.

[45] Mauro Bisson and Massimiliano Fatica. High Performance Exact
Triangle Counting on GPUs. IEEE Transactions on Parallel and
Distributed Systems (TPDS), 28(12):3501–3510, 2017.

[46] Stephen W Keckler, William J Dally, Brucek Khailany, Michael Garland,
and David Glasco. GPUs and the Future of Parallel Computing. IEEE
micro, 31(5):7–17, 2011.

[47] Thomas N Kipf and Max Welling. Semi-Supervised Classification with
Graph Convolutional Networks. arXiv preprint arXiv:1609.02907, 2016.

[48] Jie Chen, Tengfei Ma, and Cao Xiao. FastGCN: Fast Learning with
Graph Convolutional Networks via Importance Sampling. arXiv preprint
arXiv:1801.10247, 2018.

[49] Morteza Alamgir and Ulrike Von Luxburg. Multi-Agent Random Walks
for Local Clustering on Graphs. In IEEE International Conference on
Data Mining (ICDM), pages 18–27. IEEE, 2010.

[50] Duane Merrill and Andrew Grimshaw. Parallel Scan for Stream
Architectures. University of Virginia, Department of Computer Science,
Charlottesville, VA, USA, Technical Report CS2009-14, 2009.

[51] Norman P Jouppi. Improving Direct-Mapped Cache Performance by
the Addition of a Small Fully-Associative Cache and Prefetch Buffers.
ACM SIGARCH Computer Architecture News, 18(2SI):364–373, 1990.

[52] George Karypis and Vipin Kumar. METIS–Unstructured Graph Parti-
tioning and Sparse Matrix Ordering System, Version 2.0. University of
Minnesota, 1995.

[53] Erik G Boman, Karen D Devine, and Sivasankaran Rajamanickam.
Scalable Matrix Computations on Large Scale-Free Graphs Using 2D
Graph Partitioning. In Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis (SC),
pages 1–12, 2013.

[54] Oak Ridge National Lab. SUMMIT Oak Ridge National Laboratory’s
200 Petaflop Supercomputer. Retrived from https://www.olcf.ornl.gov/
olcf-resources/compute-systems/summit/. Accessed: 2020, March 6.

[55] Xiang Tian and Khaled Benkrid. Mersenne Twister Random Number
Generation on FPGA, CPU and GPU. In NASA/ESA Conference on
Adaptive Hardware and Systems (AHS), pages 460–464. IEEE, 2009.

[56] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford Large
Network Dataset Collection. http://snap.stanford.edu/data, June 2014.

[57] GraphSaint Dataset. https://github.com/GraphSAINT/GraphSAINT,
February 2020.

[58] Twitter (WWW) Network Dataset – KONECT. http://konect.
uni-koblenz.de/networks/twitter, February 2020.

[59] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert,
Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: A System for
Large-Scale Graph Processing. In Proceedings of the ACM International
Conference on Management of data (SIGMOD), pages 135–146, 2010.

[60] Yucheng Low, Joseph E Gonzalez, Aapo Kyrola, Danny Bickson, Car-
los E Guestrin, and Joseph Hellerstein. GraphLab: A New Framework
for Parallel Machine Learning. arXiv preprint arXiv:1408.2041, 2014.

[61] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. X-stream: Edge-
centric Graph Processing using Streaming Partitions. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles
(SOSP), pages 472–488, 2013.

[62] Yuanyuan Tian, Andrey Balmin, Severin Andreas Corsten, Shirish
Tatikonda, and John McPherson. From” Think Like a Vertex” to”
Think Like a Graph”. Proceedings of the VLDB Endowment (PVLDB),
7(3):193–204, 2013.

[63] Hang Liu and H Howie Huang. Graphene: Fine-Grained IO Management
for Graph Computing. In Proceedings of the 15th USENIX Conference
on File and Storage Technologies (FAST), pages 285–299, 2017.

[64] Sungpack Hong, Hassan Chafi, Edic Sedlar, and Kunle Olukotun. Green-
Marl: A DSL for Easy and Efficient Graph Analysis. In Proceedings
of the seventeenth international conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), pages 349–
362, 2012.

[65] Yunming Zhang, Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil,
Julian Shun, and Saman Amarasinghe. Graphit: A High-Performance
Graph DSL. Proceedings of the ACM on Programming Languages
(OOPSLA), 2:1–30, 2018.

[66] David A Bader and Kamesh Madduri. GTGraph: A Synthetic Graph
Generator Suite. Atlanta, GA, February, 38, 2006.

[67] Narayanan Sundaram, Nadathur Rajagopalan Satish, Md Mostofa Ali
Patwary, Subramanya R Dulloor, Satya Gautam Vadlamudi, Dipankar
Das, and Pradeep Dubey. GraphMat: High Performance Graph Analytics
made Productive. arXiv preprint arXiv:1503.07241, 2015.

[68] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie
Tang. Network Embedding as Matrix Factorization: Unifying DeepWalk,
LINE, PTE, and Node2vec. In Proceedings of the Eleventh ACM
International Conference on Web Search and Data Mining (WSDM),
page 459–467, New York, NY, USA, 2018. Association for Computing
Machinery.

[69] Taher H. Haveliwala. Topic-Sensitive PageRank: A Context-Sensitive
Ranking Algorithm for Web Search. Technical Report 2003-29, Stanford
InfoLab, 2003.

[70] Wenqing Lin. Distributed Algorithms for Fully Personalized PageRank
on Large Graphs. In The World Wide Web Conference (WWW), pages
1084–1094. ACM, 2019.

[71] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L
Hamilton, and Jure Leskovec. Graph Convolutional Neural Networks
for Web-Scale Recommender Systems. In Proceedings of the 24th
ACM International Conference on Knowledge Discovery & Data Mining
(SIGKDD), pages 974–983, 2018.

[72] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive Represen-
tation Learning on Large Graphs. In Advances in Neural Information
Processing Systems (NeurIPS), pages 1024–1034, 2017.

[73] Anil Gaihre, Santosh Pandey, and Hang Liu. Deanonymizing Cryptocur-
rency With Graph Learning: The Promises and Challenges. In IEEE
Conference on Communications and Network Security (CNS), pages 1–
3. IEEE, 2019.

[74] Kartik Lakhotia, Rajgopal Kannan, Aditya Gaur, Ajitesh Srivastava, and
Viktor Prasanna. Parallel Edge-Based Sampling for Static and Dynamic
Graphs. In Proceedings of the 16th ACM International Conference on
Computing Frontiers (CF), pages 125–134, 2019.

[75] Xiaowei Chen, Yongkun Li, Pinghui Wang, and John Lui. A General
Framework for Estimating Graphlet Statistics via Random Walk. arXiv
preprint arXiv:1603.07504, 2016.

[76] Usman Tariq, Umer I Cheema, and Fahad Saeed. Power-Efficient and
Highly Scalable Parallel Graph Sampling using FPGAs. In International
Conference on ReConFigurable Computing and FPGAs (ReConFig),
pages 1–6. IEEE, 2017.

[77] Vaishnavi Krishnamurthy, Michalis Faloutsos, Marek Chrobak, Jun-
Hong Cui, Li Lao, and Allon G Percus. Sampling Large Internet
Topologies for Simulation Purposes. Computer Networks, 51(15):4284–
4302, 2007.

[78] Jieming Shi, Renchi Yang, Tianyuan Jin, Xiaokui Xiao, and Yin Yang.
Realtime Top-k Personalized Pagerank over Large Graphs on GPUs.
Proceedings of the VLDB Endowment (PVLDB), 13(1):15–28, 2019.

[79] Alok Mishra, Lingda Li, Martin Kong, Hal Finkel, and Barbara Chap-
man. Benchmarking and Evaluating Unified Memory for OpenMP GPU
Offloading. In Proceedings of the Fourth Workshop on the LLVM
Compiler Infrastructure in HPC (LLVM-HPC), New York, NY, USA,
2017. ACM.

[80] Lingda Li and Barbara Chapman. Compiler Assisted Hybrid Implicit
and Explicit GPU Memory Management under Unified Address Space.
In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), pages 1–16. ACM,
2019.

[81] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. GraphChi: Large-
Scale Graph Computation on Just a PC. In Presented as part of the 10th
Symposium on Operating Systems Design and Implementation (OSDI),
pages 31–46, Hollywood, CA, 2012. USENIX.

[82] Da Zheng, Disa Mhembere, Randal Burns, Joshua Vogelstein, Carey E
Priebe, and Alexander S Szalay. FlashGraph: Processing Billion-Node
Graphs on an Array of Commodity SSDs. In Proceedings of the 13th
USENIX Conference on File and Storage Technologies (FAST), pages
45–58, 2015.

[83] Wei Han, Daniel Mawhirter, Bo Wu, and Matthew Buland. Graphie:
Large-Scale Asynchronous Graph Traversals on just a GPU. In 26th
International Conference on Parallel Architectures and Compilation
Techniques (PACT), pages 233–245. IEEE, 2017.

[84] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-
Jui Hsieh. Cluster-GCN: An Efficient Algorithm for Training Deep
and Large Graph Convolutional Networks. In Proceedings of the 25th
ACM International Conference on Knowledge Discovery & Data Mining
(SIGKDD), pages 257–266, 2019.

