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ABSTRACT

Attracted by the enormous potentials of Graphics Processing Units
(GPUs), an array of efforts has surged to deploy Breadth-First Search
(BFS) on GPUs, which, however, often exploits the static mecha-
nisms to address the challenges that are dynamic in nature. Such a
mismatch prevents us from achieving the optimal performance for
offloading graph traversal on GPUs.

To this end, we propose XBFS that leverages the runtime op-
timizations atop GPUs to cope with the nondeterministic charac-
teristics of BFS with the following three techniques: First, XBFS
adaptively exploits four either new or optimized frontier queue
generation designs to accommodate various BFS levels that present
dissimilar features. Second, inspired by the observation that the
workload associated with each vertex is not proportional to its de-
gree in bottom-up, we design three new strategies to better balance
the workload. Third, XBFS introduces the first truly asynchronous
bottom-up traversal which allows BFS to visit vertices for multiple
levels at a single iteration with both theoretical soundness and prac-
tical benefits. Taken together, XBFS is, on average, 3.5×, 4.9×, 11.2×
and 6.1× faster than the state-of-the-art Enterprise, Tigr, Gunrock
on a Quadro P6000 GPU and Ligra on a 24-core Intel Xeon Platinum
8175M CPU. Note, the CPU used for Ligra is more expensive than
the GPU for XBFS.
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1 INTRODUCTION

BFS is the building block for a collection of graph algorithms, for
example, the Strongly Connected Component (SCC) detection al-
gorithm relies on forward and backward BFS to identify the SCCs
from a directed graph [19]. Other algorithms, such as, Betweenness
Centrality (BC) [27, 29] and subgraph matching [6, 16, 17] also rely
heavily on BFS. Toward practical usefulness, BFS is also readily
supporting a variety of applications, e.g., peer-to-peer network
routing [39]. The importance of BFS is ultimately signified by the
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fact that Graph 500 [11], one of the most popular supercomputers
ranking organizations, directly uses BFS to rank supercomputers
from the world.

GPUs, with exceptional computing and memory throughput ca-
pabilities, are attractive platforms to accelerate graph traversal. In
addition, GPU hardware is upgraded in a steady pace with improve-
ments in both computing and memory capabilities. For instance,
the new Volta V100 GPU [41] features 16 Tera-Floating Point Oper-
ations per Second (TFLOPS), 32 GB memory configurations, and
900 GB/s memory throughput, all of which are significant improve-
ments over the last generation Pascal GPUs [32]. While one may
concern about the limited memory capacity of GPUs, we find that
the 32 GB memory space is adequate for a majority of the large
graphs that is evaluated by the state-of-the-art distributed and
external memory-based projects [25, 44].

Traditional BFS consists of the following three steps at each
iteration:

(1) Load the neighbors of frontiers (i.e., Definition 2.1).
(2) Check the statuses of these neighbors.
(3) Store the first-time visited neighbors in frontier queue.

In order to maximize the bandwidth utilization, as well as circum-
vent the thread contentions on GPUs, two research problems draw
particular attentions, that is, frontier queue generation and workload
balancing. Specifically, first, instead of step (3) which introduces
atomic operation, conventional methods [24, 42] scan the status
array to generate the frontier queue. Note, status array indicates
the “status” (i.e. the visited level) of each vertex. Second, to remedy
the workload imbalance problem, existing work [24, 30, 42] either
assigns various number of threads to vertices with respect to their
degrees or uses single source shortest path (SSSP) to relax the syn-
chronization requirement [5, 33] thus mitigates the penalty caused
by workload imbalance.

1.1 Related Work and Challenges

In this section, we analyze the closely related work within the
aforementioned three aspects, i.e., frontier queue generation, work-
load balancing and synchronous traversal, as well as outline the
challenges that are observed in these directions.

Challenge I. Dissimilar BFS levels present different frontier queue
generation requirements. Traditional “one frontier queue genera-
tion approach fits the entire graph traversal” philosophy falls short
at several aspects. First, the hierarchical queuemethod [28] excels at
levels with very few frontiers but will suffer from enormous space
consumption and strided memory access at levels with tremen-
dous frontiers. Second, the edge frontier filtering concept from
B40C [30] and Gunrock [42] will also suffer from enormous space
consumption, as well as duplicated frontiers at levels with tremen-
dous frontiers. This also explains why Gunrock cannot deal with FR
graph in Table 2. Third, the scan approach from Enterprise [24] is
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Figure 1: Related work vs. XBFS design.

designed for levels with large volume of frontiers but ends up with
noticeable overhead at levels with low frontier count. It is worthy
of noting that several work [15, 22] has already explored adaptive
graph traversal concept, XBFS is distinct because we place adaptive
concept only atop frontier queue generation – an important step
for graph traversal.

Challenge II. The workload of each vertex, in bottom-up, is de-
termined at runtime. A vast majority of existing efforts follow the
rule – vertex degree indicates its associated workload. Towards
that end, [14] divides thread warps into sub-warps with different
number of threads to accommodate various frontiers. B40C [24, 30]
extends this idea to assigning a cooperative thread array (CTA), to
a frontier followed by a warp and thread. Eventually, [8, 20, 21, 31]
propose to pre-calculate the workload of each frontier and divide
them into segments in order to ultimately balance the workload.
While the degree-workload association rule is correct in top-down
BFS, the early termination in bottom-up BFS ultimately breaks this
tie (as shown in Figure 9), putting all existing workload balancing
optimizations in vein. GraphGrind [38] also suggests the break of
this degree-workload tie for different graph algorithms but from a
dissimilar point – various edges could yield different amounts of
work.

Challenge III. SSSP-based asynchronous BFS tends to introduce
exceeding amount of redundant work [12, 33]. Particularly, [5, 33]
use SSSP algorithm [7, 40] to conduct BFS traversal thus various
threads do not need synchronization. However, this design might
update various vertices at multiple iterations, leading redundant
vertex revisiting problem. And SIMD-X [26] finds that this redun-
dant check is the culprit to make SSSP severely slower than BFS.

1.2 Contributions

Figure 1 depicts the radical distinctions between XBFS and the re-
lated work. XBFS identifies and addresses the problems that are
faced by BFS which cannot be addressed in a static manner from ex-
isting endeavors. In particular,XBFS is, on average, 3.5×, 4.9×, 11.2×
and 6.1× faster than the state-of-the-art Enterprise [24], Tigr [31]
and Gunrock [42] on Quadro P6000 GPU and Ligra [35] on 24-
core Intel Xeon Platinum 8175M CPU, respectively. Note, Quadro
P6000 GPU [2] is cheaper than the CPU used for Ligra [18]. These
speedups would not be possible without the following contribu-
tions.

First, XBFS adaptively exploits various either optimized or new
frontier queue generation mechanisms to deal with the dynam-
ics across the entire course of BFS traversal. To start with, we
introduce four frontier queue generation methods, i.e., scan-free,
single-scan and optimized double-scan, as well as no frontier queue

generation methods. In particular, countering the traditional wis-
dom [24, 30, 42] which advocates to use prefix sum [13] to con-
catenate frontiers from various threads, XBFS finds out that atomic
operation-based implementation is actually faster on recent GPUs
(detailed in Figure 5). This has inspired our scan-free and single-
scan designs. Further, our double-scan optimizes the design from
Enterprise [24] to yield sorted frontier queue without strided mem-
ory access. Also, XBFS can surprisingly conduct one level traversal
without the need of frontier queue generation. Eventually, we ju-
diciously combine these designs based upon their fitness toward
different levels of BFS (as shown in Figure 7).

Second, XBFS designs one static and two dynamic workload
balance strategies to tackle the nondeterministic workload issue
faced by the bottom-up BFS. This design is motivated by the novel
observation that the actual workload (in bottom-up) tends to be
both small and not necessarily proportional to the degree of the vertex
(Figure 9) due to early termination [4]. Correspondingly, our static
solution always assigns a single thread to a frontier regardless of
the degree, which yields 1.4× speedup over the performance of
first contribution. To further accommodate the unpredictability in
the workload, our thread- and warp- centric approaches rely on
atomic operation to schedule the tasks at runtime, which yields an
extra 13.3% performance boost. And our dynamic workload balance
brings another 59% speedup to XBFS.

Third, XBFS introduces a truly asynchronous bottom-up traver-
sal which allows BFS to visit vertices frommultiple levels at a single
iteration with both theoretical soundness and practical benefits. In
particular, in bottom-up BFS, the unvisited vertices of i + 1 level
are a subset of level i , which suggests that we can actually visit
unvisited vertices from multiple level at one iteration. Furthermore,
on one hand, if one vertex does not have a neighbor from level i − 1,
it surely will not be a level i vertex. On the other hand, we propose
to track whether this vertex contains neighbors from level i . Once
both conditions hold, we can surely visit this level i + 1 vertex one
iteration earlier. Our evaluation shows that this design can identify
88% next level vertices, in addition to all the vertices from current
level, with negligible overhead, yielding up to 20% performance
gain over earlier contributions.

1.3 Paper Organization

The rest of this paper is organized as follows: Section 2 introduces
the background of GPU hardware, direction-optimizing BFS and
graph datasets. Section 3 overviews the framework of XBFS. Sec-
tion 4 presents the detail of our adaptive frontier queue generation
strategy. Section 5 talks about the runtime optimized bottom-up
traversal. Section 6 presents the experimental setup and overall
performance evaluations of XBFS. Section 7 concludes.

2 BACKGROUND

This section presents the essential background knowledge for XBFS.
In particular, we briefly introduce the architecture of GPUs, direc-
tion optimizing BFS algorithm and the graph datasets used by this
work.
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Figure 2: (a) An example toy graph used throughout this paper and

(b) A valid BFS traversal tree with 0 as the source vertex from (a).

2.1 General-Purpose GPUs

The history of general-purpose GPUs dates back to 2006 when Com-
pute Unified Device Architecture (CUDA) is initially introduced to
this community. Thereafter, we observe a wave of emerging GPU
microarchitectures, such as, Tesla, Fermi, Kepler, Pascal and Volta
at 2007, 2009, 2013, 2016 and 2017, respectively. To the best of our
knowledge, linear algebra, such as Linpack [10] and Lapack [3],
inspires Tesla and Fermi. Energy efficiency is the major target of
Kepler architecture. And Pascal and Volta are tailored for deep learn-
ing. Across these architecture generations, we observe a steady pace
of enhancements in memory throughput, capacity and computing
capability, reflecting the long-lasting merits of deploying graph tra-
versal on GPUs. For more details regarding GPU history, we refer
the readers to [43]. Below, we walk the readers through essential
GPU hardware features with Pascal P100 GPU [32].

Streaming processors and threads. A P100 GPU consists of
six Graphics Processing Clusters (GPCs), each of which encom-
passes ten Streaming Multiprocessors (SMXs). Every SMX has 64
single-precision (FP32) CUDA cores and four texture units. With 60
SMXs, P100 features a total of 3,584 single precision CUDA cores.
During execution one GPU thread runs on one CUDA core and an
SMX schedules a group of 32 consecutive threads, which is termed
as a warp, in a Single Instruction Multiple Data (SIMD) manner.
With two dispatchers of eight warp schedulers, an SMX can handle
as many as 64 warps. A collection of warps formulates a Coopera-
tive Thread Arrays (CTAs), or a block. And all CTAs, together, are
called a grid.

GPUmemory architecture. In P100, each SMX contains 65,536
registers and every thread can use up to 255 registers. Further, each
thread block owns a fast on-chip shared memory that is available
to all threads of the CTA whose shared memory retains the same
lifetime. Specifically, each P100 SMX is equipped with a dedicated
64 KB shared memory and a separate L1 cache which means one
SMX will always possess 64KB shared memory, avoiding shared
memory/L1 space competition which exists in prior generations of
GPUs. GPU also comes with a unified L2 cache and a global memory
that are shared by all SMXs. Each memory controller is attached to
512 KB of L2 cache, and each High Bandwidth Memory 2 (HBM2)
DRAM stack is controlled by a pair of memory controllers. The
entire GPU includes a total of 4096 KB L2 cache and 12 GB global
memory.

2.2 Direction-Optimizing BFS

Briefly, conventional BFS traverses a graph level by level, at each
of which it checks the neighbors of all frontiers and marks those

first times visited neighbors as the next level frontiers and puts
them in the next frontier queue. Eventually, all the frontier queues
formulate a valid BFS tree. Taking level 1 from Figure 2(b) whose
frontiers are {0} as an example, BFS will check the neighbors of
vertex 0, i.e., {1, 5}, and put the first time visited neighbors, that is
{1, 5}, in next frontier queue. Iteratively, one will arrive at a BFS tree
which could be the same as in Figure 2(b).

Recently, the direction-optimizing BFS [4] which comprises top-
down and bottom-up directions prevails in graph traversal. In par-
ticular, top-down BFS is identical to traditional BFS – checking the
neighbors of parent vertices to find children vertices, e.g., level 1, 2,
and 4 in Figure 2(b). Whereas, bottom-up BFS checks the neighbors
of unvisited vertices to find potential parent. For ease of illustration,
we follow Enterprise [24] to define frontiers as follows.

Definition 2.1. (Frontier) At level i , v , which is a vertex from
graph G becomes a frontier if

• Top-down BFS: v is visited at level i − 1; or
• Bottom-up BFS: v remains unvisited until level i − 1.

For instance, {3, 4, 8, 9} are unvisited vertices and stored in fron-
tier queue in Figure 2(b).Whenworking on each frontier, bottom-up
BFS terminates the search once one parent vertex is found, which
is called early termination. Using vertex 3 from Figure 2 as an
example, bottom-up BFS will terminate the search once it finds 2 as
its parent, leaving the remaining neighbors – {2, 4, 9} untouched.

2.3 Graph Datasets

Table 1: Graph specification.

Datasets Abbr. |V | |E | Size
DBpedia DB 3,966,924 13,820,853 205MB
DBLP-author DP 4,000,150 8,649,016 134MB
EnWiki EW 21,504,191 266,769,613 7GB
Friendster FR 65,608,357 710,869,285 11.9GB
LiveJournal LJ 4,036,538 34,681,190 502MB
Orkut OR 3,072,626 117,185,083 1.8GB
Trackers TR 27,665,730 140,613,762 2GB
USpatent US 3,774,768 16,518,947 256MB
Wiki-dbpedia WK 18,268,992 172,183,984 2.7GB
Wiki-link WL 12,150,976 378,142,420 6GB

Table 1 describes the ten graph datasets that are evaluated by
XBFS. Note, these datasets cover a wide range of applications, such
as social network (FR, OR, LJ, DP, US), webpages (WK, WL, EW),
knowledge graph (DB), and advertisement (TR). Particularly, they
are retrieved from either KONECT [9] or SNAP [36]. The vertex
and edge counts ranges of these graphs are 3,072,626 to 65,608,357
and 8,649,016 to 710,869,285, respectively. For ease of supporting
direction-optimizing traversal, we intentionally add a reverse to
each edge, which doubles the edge count for every graph. Provided
as edge tuples, we follow the tradition to transform them into
compressed sparse row (CSR) format [24, 30, 42]. Following the
same convention from Ligra [35], we use 4-byte and 8-byte to
represent the vertex ID and offset (also known as begin position
array) in CSR, respectively.
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Figure 3: Workflow of state-of-the-art vs. XBFS.

3 OVERVIEW

As shown in Figure 3,XBFS advances the state-of-the-art projects [24,
42] in both frontier generation and traversal phases – shadowed
boxes in Figure 3(b).

On one hand, instead of merely using a single frontier queue
generation approach through the entire BFS traversal, we propose
the adaptive frontier queue generation strategy to cope with the
dynamics exhibited in various stages of BFS traversal. First, we
revamp single-scan and double-scan, as well as introduce the new
scan-free and no frontier queue generation approaches. Eventually,
as shown in Section 4, XBFS judiciously alternates among these
designs at runtime to arrive at the best performance.

On the other hand, we unveil our novel dynamic bottom-up
optimizations. First, we introduce the novel observation that the
workload of each vertex in bottom-up BFS is not necessarily pro-
portional to its degree. Correspondingly, we design our static and
thread- and warp- centric dynamic techniques as well as intra-
warp working donation attempts to tackle this workload dynamics.
Second, we enable the first, to the best of our knowledge, truly
asynchronous traversal which can discover frontiers from more
than one level with less workload than the traditional direction
optimizing BFS algorithm [4], which is different from the SSSP
based asynchronous traversal [33] that actually introduces more
workload than the traditional BFS.

4 ADAPTIVE FRONTIER QUEUE

GENERATION

This section discusses various frontier queue generation strategies.
Subsequently, we unveil the judicious criteria to combine these
mechanisms.

4.1 Top-Down Frontier Queue Generation

In top-down BFS, we employ three frontier queue generation ap-
proaches, i.e., scan-free, single-scan and no frontier queue gener-
ation. In particular, the former two are inspired by Observation 1
while the last one by Observation 2.

Observation 1. On emerging GPU generations atomic operation-
based frontier queue generation is faster than the mainstream prefix
sum-based methods.

Observation 1 counters the traditional wisdom that prefix sum [13,
37] is faster than atomic operation-based frontier queue genera-
tion [13, 24, 30, 34, 42]. In detail, both methods scan through a status
array and put the frontiers into a queue, resembling the dotted area
in Figure 4(b) – with the difference dwelling in how to enqueue the

discovered frontiers. In particular, atomic operation enqueues fron-
tiers atomically while prefix sum approach relies on prefix sum to
figure out the offset for each frontier. Note, prefix sum is introduced
by [30], in part, to avoid enqueuing frontiers atomically.

Figure 5 presents the speedup of atomic operation-based ap-
proach over the prefix sum-based counterpart. In this test, we ran-
domly generate arrays at sizes of 1 - 512 million and use these
two approaches to gathering frontiers. We find, on average, atomic
operation-based option is 5.2×, 4.1×, 2.5× and 1.7× faster than the
prefix sum based one on K80, P6000, Titan Xp and V100 GPUs,
respectively.

Single-scan frontier queue generation extends the aforemen-
tioned observation to graph traversal. During traversal, each thread
first loads the neighbors of the frontiers and updates the first time
visited neighbors in status array. After the traversal is done, it scans
through the entire status array, and puts those just updated vertices
into next frontier queue with atomic operation.
Example 1. Figure 4(b) exemplifies single-scan design with the toy
graph from Figure 2 at level 2, where the frontiers are {1, 5}. Assum-
ing the black and blue threads work on frontier 1 and 5, respectively,
vertices {2, 6, 7} will have their statuses updated. Since repeated up-
dating the status for vertex 7 will end up with a valid update, atomic
operation is thus avoided here. Further, these two threads sequentially
and consecutively scan the status array and atomically enqueue the
frontiers into next frontier queue. Note, due to atomic operation, these
frontiers may appear out of order, like {2, 7, 6} in Figure 4(b).

Scan-free frontier queue generation goes further on exploit-
ing atomic operation stemming from the fact that scanning through
the status array (even merely a single scan) can be costly. In par-
ticular, scan-free method simultaneously generates frontier queue
while conducting traversal. This method uses atomic operation to
update the status of each neighbor. Once the status update succeeds
which means this neighbor is indeed the first time visited, we fur-
ther resort to atomic operation to enqueue this frontier into the next
frontier queue. In summary, scan-free approach exploits atomic
operation in two phases: status updates and frontier enqueuing.
Example 2. Figure 4(a) explains the way scan-free method works
when traversing the toy graph from Figure 2 at level 0. This method
first loads the neighbors of 0 – {1, 5}, then atomically updates their
statuses to 1s in status array. Eventually, this method relies on atomic
operation to enqueue {1, 5} into the next frontier queue.

Observation 2. The frontier queue from the bottom-up traversal
at level i encompasses the necessary frontiers for the top-down BFS at
level i + 1.

Proof. On one hand, bottom-up BFS puts the unvisited vertices
in frontier queue and updates those ones which belong to current
level. On the other hand, top-down level regards vertices visited in
the preceding level as frontiers. As such, the frontier queue from
the preceding bottom-up level consists of both unvisited vertices
and the frontiers for the subsequent top-down BFS. This is also
evident by level 3 and 4 from Figure 2(b). □

No frontier generation approach takes this inspiration to
avoid frontier queue generation. Whereas, it is important to notice
that this frontier queue also consists of unvisited vertices. We thus
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rely on a condition statement to distinct the frontiers from the
unvisited vertices.
Example 3. Figure 4(c) explains how to use the frontier queue from
bottom-up to conduct top-down traversal. Basically, we will iterate
through the bottom-up frontier queue but only traverse those vertices
that are just visited – {3, 4, 8}. The actual traversal is identical to
scan-free approach in Figure 4(a).

It is worthy of mentioning that no frontier queue generation
method presents two benefits. First, it avoids scanning the status
array for the frontier queue. Note traditional BFS will need to scan
through the entire status array to produce the frontier queue for the
first top-down iteration after the switch. Second, bottom-up BFS
always generates sorted frontier queue, which introduces friendly
memory access [24].

4.2 Bottom-Up Frontier Queue Generation

Since bottom-up BFS will potentially explore a majority of the ver-
tices in the graph [4], storing the frontiers (i.e., unvisited vertices)
in order will result in sequential memory accesses to their neigh-
bor lists, as suggested by Enterprise [24], thus better performance.
However, to generate such a sorted frontier queue, Enterprise [24]
experiences strided memory accesses, which is addressed by our
double-scan method.

Double-scan frontier queue generation. Basically, thismethod
partitions the status array into multiple segments. Note, we try to
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Figure 6: Double-scan based frontier generation in bottom-up of Fig-

ure 2 at level 3. Note, in bottom-up, the unvisited vertices (i.e., status

equals to -1) are treated as frontiers according to Definition 2.1.

make the length of each segment evenly divisible by 32 which is
the number of threads in a warp. As such, the biggest difference
between different segments can be 32. Scan I counts the number of
frontiers from each segment. Next, it uses prefix sum to compute
the global offsets for each segment to place the frontiers. Note,
we choose prefix sum for the global offset computation because
we need to generate globally sorted frontiers. Scan II puts those
frontiers from each segment into next frontier queue based upon
the global offsets.

The most noteworthy part of double-scan is that we manage to
generate a sorted frontier queue with coalesced memory access.
The key toward this achievement is that even various threads from
a warp are responsible for different segments, we schedule them
to collaboratively scan each segment. That is, when processing
a specific segment, all the threads in the same warp should fo-
cus on the same segment. Here, we use CUDA shuffle function
to communicate the essential begin and end offsets information
surrounding the focused segment across warp. During scan, all
threads use __ballot_sync [23] to indicate whether the 32 scanned
indices are frontiers. But only the thread that is responsible for this
segment needs to keep, process and extract the frontiers from this
returned ballot value.
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Example 4. Figure 6 exemplifies the flow of double-scan at level 3
of the toy graph from Figure 2. In this example, we assume a warp
contains two threads – the black and blue threads. And black thread
accounts for segment of indices 0 - 5 and blue thread corresponds to
segment of indices 6 - 9. Note, this partition ensures each segment
contain the number of indices that are divisible by two – the assumed
warp size.

Subsequently, we schedule these two threads to collaboratively scan
the status array and use __ballot_sync to return whether a vertex is a
frontier (i.e., ‘1’ in Ballot array in the figure means it is a frontier).
Since 0 - 5 belongs to black thread, all the ballot returned values in
this range go to black thread. Similarly, the ballot returned values of
6 - 9 will go to blue threads. Afterwards, each thread uses __popc [1]
to figure out the number of frontiers. Finally, it executes the prefix
sum to figure out the global offset – 0 and 2 – for each thread.

Scan II is roughly similar to scan I during scanning and ballot
operation, except it needs to extract and put the frontiers from the
returned ballot value into the next frontier queue at correct location.
In particular, the black thread puts frontiers {3, 4} into the next frontier
queue starting from offset 0 while the blue thread puts {8, 9} in this
queue from offset 2. Eventually, we have the sorted frontier queue {3,
4, 8, 9}.

4.3 Runtime Management

It is crystal clear that various frontier queue generation methods
excel at different traversal stages, which suggests we need an adap-
tive approach to retain the best performance. Figure 7 plots the best
adaptation design. In particular, we start with scan-free frontier
queue generation and change to single-scan right before bottom-up.
Bottom-up traversal relies on double-scan. The second top-down
phase begins with no frontier queue generation and ends up with
scan-free.

The majority of the switching criteria are straightforward – scan-
free prefers small number of frontiers – thus it will be used at the
initial and ending levels of BFS. Since double-scan and no frontier
queue generation are directly tied to direction optimizing [4], XBFS
adopts the same switch condition as direction-optimizing BFS, that
is, switching from top-down to bottom-up when edдeCheck

|E | ≥ α
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Figure 8: Example for the cause of nondeterministic workloads and

the possibility of asynchronous traversal at level 3 of the graph in

Figure 2.

(i.e., double-scan) and back to top-down when that condition does
not hold. In this paper, we use α = 0.1.

Whereas, determining the criterion for switching to single-scan
cannot hinge upon direction switching since direction switching
happens after this level. In order to accurately predict this level,
we introduce another parameter λ which measure the edдeCheck
incremental ratio.

λ =
edдeCheckcurrent level
edдeCheckpr ior level

(1)

With λ, the condition of deciding the level before direction
switching can be expressed as following:

edдeCheckcurrent level · λ

|E |
≥ α , (2)

Note, λ is not pre-tuned. Instead, we calculate this relative ratio
from previous to current level. Since we always need to track this
edgeCheck parameter in order to determine direction switching, the
overhead of this computation is negligible.

5 RUNTIME OPTIMIZED BOTTOM-UP

TRAVERSAL

While rapidly generating frontier queues only solves half of the
problem for BFS, this section unveils the dynamic optimizations
for bottom-up traversal, including dynamic workload balancing and
asynchronous traversal.

5.1 Dynamic Bottom-Up Workload Balancing

5.1.1 Observations. This technique is mainly motivated by Ob-
servation 3, which suggests the mismatch between predominately
used degree-based workload balancing technique and bottom-up
BFS.

Observation 3. In bottom-up BFS, the workload associated with
each vertex is not necessarily proportional to its degree.

Illustration.Thanks to early termination [4] which stops check-
ing more neighbors once a valid parent is found in bottom-up, BFS
can tremendously reduce the workload associated with each vertex.
However, this design also breaks the correlation between degree
and workload. In other words, those high degree vertices might
end up with small workloads because of early termination.
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Figure 9: The frontier degree and its real workload (number of tra-

versed edges) across all datasets.

Example 5. Figure 8 exemplifies this situation. Vertex 3 has degree of
three while vertices 4 and 8 have degrees of two, but vertices 3, 4 and
8 possesses real workloads of one, two and one, respectively, because
they find their parent vertices at the first, second and first check of
their neighbor lists, respectively. This example suggests that the final
workload from each frontier, in bottom-up, is not proportional to its
degree.

Figure 9 further studies the vertex degree and workload rela-
tionship for all the real graphs from this paper. The following twin
observations are implied:

(1) A majority of the high degree frontiers presents a small
volume of workloads.

(2) For some datasets, e.g., DP, US andWL, high degree frontiers
could come with a large volume of workloads.

The first observation suggests that existingGPU-based attempts [24,
30, 42] which assign a CTA and Warp of threads to frontiers with
large and medium degrees, respectively might waste GPU resources.
The second observation represents the unpredictability of the work-
load.

5.1.2 Techniques. To this end, we present three types of solu-
tions. First, a static solution that assigns a single thread to one

Algorithm 1 Thread-centric dynamic workload balancing

1: procedure threadCentricWB
2: myFrontier← frontierQueue[tid];
3: traverse (myFrontier);
4: while myFrontierIndex < |frontierQueue | do
5: myFrontier← atomicInc (myFrontierIndex, 1);
6: traverse (myFrontier);
7: end while

8: end procedure

frontier regardless of the degree to save threads. In addition, we
introduce two dynamic mechanisms, i.e., thread- and warp- centric
approaches, to deal with the unpredictable amounts of workloads.
Below, we describe the designs.

Static solution generates a single universal frontier queue to
hold all frontiers since there is no need to classify the frontiers into
large, medium and small ranges, which is used by the traditional
attempt [24]. Afterwards, we schedule thread tid to work on the
frontiers stored in indices blockDim.x ×дridDim.x ×p + tid of the
frontier queue at iteration p.

Thread-centric dynamic workload balancing. To deal with
the workload unpredictability, this method schedules each thread
to fetch a new frontier once it finishes current one. All to be pro-
cessed frontier is decided during runtime with atomic operation.
Particularly, we partition the whole frontier queue into two ranges,
where the first range is at size of the total number of threads. The
remaining part is the second range. The first range will not need
atomic operation since we can simply schedule thread tid to work
on the frontier that resides at index tid from the frontier queue. For
the second range, a global counter is shared across all threads to
retrieve the frontiers.

Algorithm 1 sketches the proposed design with the highlighted
lines as the dynamic scheduling. Each thread fetches one frontier
from the frontier queue at line 5. In line 6, all threads traverse the
neighbors of their own frontiers.

Warp-centric dynamic workload balancing attempts to re-
duce the atomic operation but with the overhead of more instruc-
tions, including a warp level shuffle instruction. Particularly, this
design schedules one thread to fetch 32 new frontiers instead of
one at a time. Afterwards, this thread will disseminate the fetched
frontiers across the warp. It is worthy of noting that the remaining
threads that are not fetching new frontiers will not move forward
after finishing their own frontiers due to the SIMD nature. In this
way, we can reduce the atomic operation usage by 32× but with
more intra-warp communications.

Algorithm 2 explains the design of our warp-centric method,
where the highlighted lines are the novel design. At line 6 in Algo-
rithm 2, after traversal, all threads in a warp should have finished
their work due to locked execution convention from SIMD. Now
instead of each thread fetch its own workload, XBFS schedules the
laneId = 0 thread to obtain the next frontier begin position for the
entire warp with atomic operation (line 6 - 8). Finally, XBFS uses
the __shfl_sync to share this new bulk of frontiers across the warp
(lines 9).

Dynamic intra-warp working donation aims to schedule
light loaded threads to help heavy ones inside the warp. Note,
our warp-centric approach should already ensure the inter-warp
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Algorithm 2 Warp-centric dynamic workload balancing

1: procedure warpCentricWB
2: laneId← threadIdx.x & 31;
3: while myFrontierIndex < |frontierQueue| do
4: int myFrontier← frontierQueue [myFrontierIndex];
5: traverse (myFrontier);
6: if laneId==0 then ▷Warp-based workload fetching
7: warpFrontierBegin← atomicAdd (counter, 32)
8: end if

9: myFrontierIndex← __shfl_sync() + laneId
10: end while

11: end procedure

workload balance. The main idea in this work donation design
is to inform all the finished threads in the warp to together help
the last unfinished thread. Note, other designs are also possible
but would involve much higher overhead. After every five neigh-
bors, we schedule all threads to execute popCount(__ballot_sync()).
Once it returns 31, we will assign the workload from the unfinished
thread to the remaining threads in the warp.

While doing this can help balance the workload, nontrivial over-
head is introduced to check whether majority of the threads have
finished. Our evaluation shows this method suffers from 1 - 5% slow
down across various graphs.

5.2 Asynchronous Bottom-Up Traversal

This asynchronous bottom-up traversal allows us to discover fron-
tiers for more than one level at each iteration, which will reduce
the repeated edge checks for the same frontier in bottom-up. In
particular, this design is inspired by the following novel rules:

Lemma 1. In bottom-up BFS, the next iteration frontiers will be a
subset of that in current iteration.

Proof. Supposing Qcurrent and Qnext denote the frontiers in
current and next iterations, respectively. By the definition of the
frontiers in bottom-up BFS in Section 2.2, Q consists of all unvisited
vertices before the starting of this iteration. Since each iteration will
certainly visit some unvisited vertices, which means Qcurrent =

Qnext
⋃
vertexcurrent . Because current level should visit some

frontiers, that is, vertexcurrent , ∅, then Qnext⊂ Qcurrent . □

Lemma 2. At level l of bottom-up, if one frontier does not have any
neighbors from level l − 1 but has neighbor from level l , this frontier
belongs to level l + 1.

Proof. We will use proof by contradiction to illustrate this the-
orem. As suggested by the nature of BFS, each vertex is reached by
its parent vertices, which is one level above this vertex. Therefore,
in order to be visited at level l , this vertex needs to have a parent
vertex which is from level l − 1. Otherwise, it should not belong to
level l . Further, because this vertex has neighbors in level l , it must
be discovered at level l + 1. □

Lemma 1 and 2 together warrant that we can discover ver-
tices from both current and next levels at bottom-up. In particular,
Lemma 1 ensures the frontiers from next iteration is a subset of
current iteration and Lemma 2 guarantees the correctness of this

Algorithm 3 Asynchronous bottom-up traversal

1: procedure asynchronousBottomUp
2: while tid < |frontierQueue | do
3: int myFrontier← frontierQueue[tid];
4: while nebr in adjacencyList (myFrontier) do
5: neighborLevel=statusArray[nebr];
6: if neighborLevel== l - 1 then
7: statusArray[myFrontier] = l; ▷ Early termination
8: isEarlyTermination = true; break;
9: end if

10: if neighborLevel == l then
11: hasCurrNeighbor = true;
12: end if

13: end while

14: if !isEarlyTermination && hasCurrNeighbor then
15: statusArray[myFrontier] = l+1; ▷ Find next level vertex
16: end if

17: end while

18: end procedure

asynchronous traversal, that is, we will not wrongly mark current
level vertex as next level.

Algorithm 3 sketches the pseudocode of our asynchronous tra-
versal with the highlighted part as the new design. Firstly, this algo-
rithm guarantees that the level l vertices can be updated correctly.
This is achieved via exactly following the traditional bottom-up
traversal process, that is, we scan the neighbor list for a frontier
(line 5 - 9 in Algorithm 3). Once one neighbor belongs to l − 1, this
algorithm will update the status of this frontier to be l and early
terminate the check.

The advantage of Algorithm 3 lies in the situation when none of
the neighbors of a frontier is from l − 1. In this case, Algorithm 3
actually tracks whether any of the checked neighbor belongs to
l at line 10 - 12. Note, this process of tracking involves no extra
memory accesses. Once, we find a frontier does not have any level
l − 1 neighbors but has level l neighbors, we can surely mark this
frontier as level l + 1 vertex (line 14 - 16 in Algorithm 3).
Example 6. Frontier ‘9’ in Figure 8 is the example to aid the un-
derstanding of asynchronous traversal. When checking the neighbor
statuses for vertex 9, that is, {3, 8}, we find neither neighbors is from
preceding level (i.e., level 2), which assures frontier 9 does not belong
to level 3. Further, since 9 has at least one neighbor from level 3, we
can safely mark frontier 9 as level 4 vertex.

Lemma 3. The probability of level l+1 vertexvs being identified at
iteration l is (1 − s

|Q | )
Nl , where s is the index of vertex vs in frontier

queue Q and Nl is the number of neighbors of vertex vs that belongs
to level l .

Proof. In bottom-up traversal, the frontier queue Q consists of
three types of vertices, that is, the vertices belong to level l , l + 1
and level > l + 1. Here, we denote the set of vertices that belongs
to level l as Ql .

Assuming the vertex vs is at index s of this Q and belongs to
level l +1, the expected number of level l frontiers that have already
been visited before index s is:

El =
|Ql |

|Q |
· s (3)
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tion over the total number of vertices in next level.

Adopting a common estimation method, the probability of any
level l vertex that has already been visited before index s is: El

|Ql |
=

s
|Q | .
Sincevs belongs to level l+1, it should have at least one neighbor

that belongs to level l according to Lemma 2. Here, we assume vs
has Nl neighbors that belong to level l , the probability of vs being
identified is the same as one or more of vs ’s level l neighbors
(i.e., Nl ) is already visited. We first calculate the probability of
none of Nl is visited, that is:

P̄ = (1 −
El
|Ql |
)Nl = (1 −

s

|Q |
)Nl (4)

Thus, the probability of vs being visited at level i is:

P = 1 − P̄ = 1 − (1 −
s

|Q |
)Nl (5)

We analyze this probability in three cases:
• When s = 0, we get P = 0 which meansvs will not be visited
at level l .
• When s = |Q |, P = 1 which means vs will be traversed at
level l .
• When s ∈ [1, |Q |), P depends upon the value of s and Nl .
In particular, if s ≥ |Q |2 , the probability of vs being asyn-
chronously traversed becomes 50%, 75%, ..., if it has 1, 2, ...
neighbors from level l .

□

Figure 10 further evaluates the ratio of the extra vertices that
are identified at the first bottom-up iteration to the total number of
vertices belonging to the second level of bottom-up BFS. In most
of those testing graphs, especially for DP, OR, LJ, EW, TR and FR,
XBFS nearly visits all the next level vertices (>99%). Even for US,
we also have at least nearly 40% extra update ratio. On average, the
extra updates ratio is 88%. This result has practically exhibited the
correctness of Lemma 3.

6 EVALUATION

We implement XBFS with 1,500 lines of code (LOC) in C++ and
CUDA, extending a GPU-based high-performance BFS implemen-
tation - Enterprise [24]. XBFS is compiled with NVIDIA CUDA 9.2
with the optimization flag set to be O3. In this work, the experi-
ments are performed on NVIDIA Pascal Quadro P6000 GPU (which
comes with 24 GB memory) on a server with Intel(R) Core(TM) i7-
8700 (3.20Hz) CPU. The server runs Ubuntu Linux 16.04 operating
system with kernel version to be 4.15.0. Ligra runs on Amazon AWS
server which features 24-core Intel Xeon Platinum 8175M CPUs and
384 GB memory. Note, the Quadro P6000 and Intel Xeon Platinum
8175M CPU cost ∼$4,500 and ∼$8,000, respectively, according to
Amazon [2, 18].

Table 2: Runtime (ms) comparison between XBFS and state-of-the-

art projects with maximum and minimum speedups highlighted

with heavy and light shadows, respectively. Note, “OOM” stands for

out of memory. error.

Datasets XBFS Enterprise Tigr Gunrock Ligra
DB 7.9 30.2 12.9 16.4 54
DP 5.3 14 8.1 22.9 48.2
EW 19.6 88.7 74.7 145.0 71.9
FR 102.8 408 883.9 OOM 526.7
LJ 6.9 24 17.0 34.9 29.4
OR 2.83 14.2 48.7 154.1 29.8
TR 28.1 101.3 73.4 171.2 95.1
US 10.2 21.2 17.7 28.3 62.6
WK 21.4 76.9 92.1 168.5 259.3
WL 23.6 59.5 120.7 262.8 58.3
Avg. speedup - 3.5 4.9 11.2 6.1

6.1 XBFS vs. State-of-the-art

Table 2 compares XBFS against the state-of-the-art BFS implemen-
tations, including Enterprise [24], Tigr [31], Gunrock [42], and
Ligra [35]. XBFS, Enterprise, Tigr and Gunrock are tested in GPU
P6000. Ligra runs on the Intel Platinum 8175M CPU. On average,
XBFS presents 3.5×, 4.9×, 11.2× and 6.1× speedup over Enterprise,
Tigr, Gunrock, and Ligra, respectively.

XBFS turns out to be the fastest on every graph dataset. The
maximum speedup over Enterprise, Tigr and Gunrock occur in OR
datasets. The speedups are 5.0 ×, 17.2 × and 54.3 respectively. The
maximum speedup of 12.1 occurs on WK dataset over Ligra. For
minimum speedup, we observe 2.1 × on US over Enterprise, 1.5
× on DP over Tigr, 2.1 × on DB over Gunrock and 2.5 × on WL
over Ligra. Note, the performance numbers for the state-of-the-art
reported in Table 2 might mismatch the ones in their manuscripts
since we use different GPU/CPU platforms.

6.2 Performance Impacts of Different

Techniques

Figure 11 examines the performance impact of various techniques,
where Ad, WB and Async stand for adaptive frontier queue gen-
eration, dynamic workload balancing and asynchronous traversal.
Here, we use the state-of-the-art Enterprise [24] as the baseline
and implement our contributions, i.e., Ad, WB and Async atop the
baseline for the comparison.

Adaptive frontier queue generationmethod, as shown in Fig-
ure 11, helps XBFS gain 2.3× speedup over baseline. In particular,
the maximum and minimum are 3.5× on DB and 1.1× on WL, re-
spectively. Dynamic workload balancing along with adaptive
frontier queue generation produces, on average, 3.1× speedup over
state-of-the-art Enterprise static workload balancing. On OR and
US, we get the maximum and minimum speedup, which is 4.8× and
1.9×, respectively. Asynchronous bottom-up traversal together
with the adaptive frontier queue generation and dynamic work-
load balancing, yields 3.5×, on average, performance boost over
Enterprise. The maximum climb is 5.0× on OR, while US gains the
minimum of 2.1× speedup.
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(b) After adaptive frontier generation optimization.
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Figure 12: The time consumption ratio dynamics of top-down vs.
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Figure 12 further presents the time consumption ratio dynamics
of top-down and bottom-up traversal with respect to these tech-
niques. In baseline, the time consumption ratios of top-down and
bottom-up are 30% and 70%, respectively. After our adaptive fron-
tier queue generation, as shown in Figure 12 (b), top-down and
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Figure 15: Number of edge checks by synchronous vs asynchronous

bottom-up traversal.

bottom-up retain similar ratios as 32% and 68%, respectively. Such
a slight change also matches the results we obtained in Figure 13
which suggests similar performance impacts brought by adaptive
frontier queue generation to top-down (i.e., scan-free, single-scan
and no frontier queue generation) and bottom-up (i.e., optimized
double-scan). Eventually, our runtime optimizations which mainly
target bottom-up traversal change the average ratio to 43% and 57%
for top-down and bottom-up, as shown in Figure 12(c).

6.3 Study of Various Techniques

Figures 13, 14 and 15 further study the speedup contributions from
the four scan approaches in adaptive frontier queue generation;
performance differences of three workload balancing methods; and
edge check reduction introduced by asynchronous traversal, re-
spectively.

As shown in Figure 13, the contribution breakdown of scan-free,
single-scan, no frontier queue generation and optimized double
scan are 18%, 15.7%, 11.4% and 54.9%, respectively. In particular,
scan-free observes contribution for graphs with higher diameters,
like DP, DB and US while optimized double scan for graphs with
high volume of workloads in bottom-up, such as EW, WL and OR.

Figure 14 demonstrates the impact of three workload balanc-
ing techniques in bottom-up traversal. On average, the speedup
increases over baseline with adaptive frontier queue generation
implementation for static, warp-centric and thread-centric are 1.4×,
1.6× and 1.6×, respectively. Surprisingly, warp-centric turns out to
be similar to thread-centric. We find the overhead of shuffle instruc-
tion is similar to atomic operation according to our profiling with
nvprof and two profiling flags – inst_executed_global_atomics and
inst_executed_global_reductions. Besides, warp-centric introduces
slightly more instructions than thread-centric option, resulting in
a similar performing warp-centric approach.

It is important to note that there is performance degradation
for the proposed approaches on DB dataset. It is caused by the
existence of outlier frontiers whose workloads are very high - close
to their degrees. This is also evident in Figure 9.

Figure 15 plots the number of edge checks in normal synchro-
nous and the asynchronous traversals. In particular, the edge check
reduction percentage is 23.2%, ranging from 51% on DP to a mini-
mum of 1% on OR dataset.
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6.4 XBFS Performance on Different GPUs

Figure 16 demonstrates the performance of XBFS on K80, P6000,
Titan Xp and V100 GPUs. The XBFS performance aligns with the
expectation, that is, the minimum appears on K80 across all the
datasets and goes on increasing along P6000, Titan Xp and V100
where V100 delivers the best performance. On average, P6000, Titan
Xp and V100 are 1.8×, 2.3× and 4.1× faster than K80, respectively.
Such climbing performance gains of XBFS from older to newer gen-
erations GPU also reflect the effectiveness and efficacy of various
optimizations from XBFS./

7 CONCLUSION

In this work, we develop XBFS which introduces dynamic opti-
mizations to BFS on GPUs. We adaptively use four either novel
or optimized scan approaches to rapidly generate frontier queue.
Further, inspired by the observation that bottom-up BFS experi-
ences unpredictable amounts of workload, we propose the novel
dynamic workload balancing method. Third, we design and imple-
ment the first truly asynchronous BFS traversal. Taken together,
XBFS is, on average, 3.5×, 4.9×, 11.2× and 6.1× faster than the state-
of-the-art Enterprise, Tigr, Gunrock and Ligra respectively. The
first three state-of-the-arts along with XBFS are run in P6000 GPU
and Ligra on 24-core Intel Xeon Platinum 8175M CPU for speedup
calculations.

ACKNOWLEDGMENT

We thank the anonymous reviewers and our shepherd Ana Lucia
Varbanescu for their constructive suggestions that help improve
the quality of this paper, and Julian Shun to help run the Ligra
experiment. We also would like to gracefully acknowledge the
support from XSEDE supercomputers and Amazon AWS, as well
as the NVIDIA Corporation for the donation of the Titan Xp and
Quadro P6000 GPUs. This work was in part supported by NSF CRII
Award No. 1850274.

REFERENCES

[1] Nvidia cuda c programming guide. NVIDIA Corporation (2018).
[2] Amazon. Price of Quadro P6000. Retrived from https://www.amazon.com/

PNY-Quadro-P6000-Graphic-Card/dp/B01M0S2FKR?keywords=Quadro+
P6000&qid=1539599742&s=Electronics&sr=1-2&ref=sr_1_2. Accessed: 2018,
October 6.

[3] Anderson, E., Bai, Z., Bischof, C., Blackford, L. S., Demmel, J., Dongarra, J.,
Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., et al. LAPACK
Users’ guide. 1999.

[4] Beamer, S., Asanović, K., and Patterson, D. Direction-optimizing breadth-first
search. SC (2013).

[5] Ben-Nun, T., Sutton, M., Pai, S., and Pingali, K. Groute: An asynchronous
multi-gpu programming model for irregular computations. In PPoPP (2017),
ACM.

[6] Bhattarai, B., Liu, H., and Huang, H. H. Ceci: Compact embedding cluster
index for scalable subgraph matching. In SIGMOD (2019).

[7] Blelloch, G. E., Gu, Y., Shun, J., and Sun, Y. Parallelism in randomized incre-
mental algorithms. In SPAA (2016).

[8] Buluç, A., and Madduri, K. Parallel breadth-first search on distributed memory
systems. In SC (2011).

[9] Collection, T. K. N. http://konect.uni-koblenz.de/networks/.
[10] Dongarra, J. J., Bunch, J. R., Moler, C. B., and Stewart, G. W. LINPACK users’

guide, vol. 8. Siam, 1979.
[11] Graph500. http://www.graph500.org/.
[12] Han, W., Mawhirter, D., Wu, B., and Buland, M. Graphie: Large-scale asyn-

chronous graph traversals on just a gpu. In PACT (2017), IEEE.
[13] Harris, M. Parallel prefix sum (scan) with cuda.
[14] Hong, S., Kim, S. K., Oguntebi, T., and Olukotun, K. Accelerating cuda graph

algorithms at maximum warp. In PPoPP (2011), vol. 46, ACM, pp. 267–276.
[15] Hong, S., Oguntebi, T., and Olukotun, K. Efficient parallel graph exploration

on multi-core cpu and gpu. In PACT (2011).
[16] Hu, Y., Liu, H., and Huang, H. H. High-performance triangle counting on gpus.

In HPEC (2018).
[17] Hu, Y., Liu, H., and Huang, H. H. Tricore: Parallel triangle counting on gpus. In

SC (2018).
[18] Intel. Price of Intel Xeon Platinum 8158 Proces-

sor. Retrived from https://ark.intel.com/products/120500/
Intel-Xeon-Platinum-8158-Processor-24-75M-Cache-3-00-GHz-. Accessed:
2018, October 6.

[19] Ji, Y., Liu, H., and Huang, H. H. ispan: Parallel identification of strongly con-
nected components with spanning trees. In SC (2018).

[20] Khorasani, F., Gupta, R., and Bhuyan, L. N. Scalable simd-efficient graph
processing on gpus. In PACT (2015).

[21] Khorasani, F., Vora, K., Gupta, R., and Bhuyan, L. N. Cusha: vertex-centric
graph processing on gpus. In HPDC (2014).

[22] Li, D., and Becchi, M. Deploying graph algorithms on gpus: An adaptive solution.
In IPDPS (2013).

[23] Lin, Y., and Grover, V. Using CUDA Warp-Level Primitives. Retrived from
https://devblogs.nvidia.com/using-cuda-warp-level-primitives/. Accessed: 2019,
April 3.

[24] Liu, H., and Huang, H. H. Enterprise: Breadth-first graph traversal on gpus. In
SC (2015).

[25] Liu, H., and Huang, H. H. Graphene: fine-grained io management for graph
computing. In USENIX FAST (2017).

[26] Liu, H., and Huang, H. H. Simd-x: Programming and processing of graph
algorithms on gpus. arXiv preprint arXiv:1812.04070 (2018).

[27] Liu, H., Huang, H. H., and Hu, Y. ibfs: Concurrent breadth-first search on gpus.
In SIGMOD (2016), ACM, pp. 403–416.

[28] Luo, L., Wong, M., and Hwu, W.-m. An effective gpu implementation of breadth-
first search. In DAC (2010), ACM, pp. 52–55.

[29] McLaughlin, A., and Bader, D. A. Scalable and high performance betweenness
centrality on the gpu. In SC (2014), IEEE Press, pp. 572–583.

[30] Merrill, D., Garland, M., and Grimshaw, A. Scalable gpu graph traversal. In
PPoPP (2012).

[31] Nodehi Sabet, A. H., Qiu, J., and Zhao, Z. Tigr: Transforming irregular graphs
for gpu-friendly graph processing. In ASPLOS (2018).

[32] Nvidia. Nvidia tesla p100 architecture whitepaper. 2016.
[33] Pearce, R., Gokhale, M., and Amato, N. M. Multithreaded asynchronous graph

traversal for in-memory and semi-external memory. In SC (2010), IEEE, pp. 1–11.
[34] Sengupta, S., Harris, M., Zhang, Y., and Owens, J. D. Scan primitives for gpu

computing.
[35] Shun, J., and Blelloch, G. E. Ligra: a lightweight graph processing framework

for shared memory. In PPoPP (2013), ACM.
[36] SNAP: Stanford Large Network Dataset. http://snap.stanford.edu/data/.
[37] Springer, M. Breadth-first Search in CUDA. Retrived from https://m-sp.org/

downloads/titech_bfs_cuda.pdf. Accessed: 2019, April 4.
[38] Sun, J., Vandierendonck, H., and Nikolopoulos, D. S. Graphgrind: addressing

load imbalance of graph partitioning. In ICS (2017).
[39] Thampi, S. M., et al. Survey of search and replication schemes in unstructured

p2p networks. arXiv preprint arXiv:1008.1629 (2010).
[40] Tiskin, A. All-pairs shortest paths computation in the bsp model. In ICALP

(2001).
[41] Volta, I. The world’s most advanced data center gpu. https://devblogs.nvidia.

com/parallelforall/ inside-volta (2017).
[42] Wang, Y., Davidson, A., Pan, Y., Wu, Y., Riffel, A., and Owens, J. D. Gunrock:

A high-performance graph processing library on the gpu. In PPoPP (2016).
[43] Wikipedia. Graphics Processing Units. Retrived from https://en.wikipedia.org/

wiki/Graphics_processing_unit. Accessed: 2018/10/6.
[44] Zhu, X., Chen, W., Zheng, W., and Ma, X. Gemini: A computation-centric

distributed graph processing system. In OSDI (2016).

Scalable Graph Processing HPDC ’19, June 22–29, 2019, Phoenix, AZ, USA

131

https://www.amazon.com/PNY-Quadro-P6000-Graphic-Card/dp/B01M0S2FKR?keywords=Quadro+P6000&qid=1539599742&s=Electronics&sr=1-2&ref=sr_1_2
https://www.amazon.com/PNY-Quadro-P6000-Graphic-Card/dp/B01M0S2FKR?keywords=Quadro+P6000&qid=1539599742&s=Electronics&sr=1-2&ref=sr_1_2
https://www.amazon.com/PNY-Quadro-P6000-Graphic-Card/dp/B01M0S2FKR?keywords=Quadro+P6000&qid=1539599742&s=Electronics&sr=1-2&ref=sr_1_2
http://konect.uni-koblenz.de/networks/
https://ark.intel.com/products/120500/Intel-Xeon-Platinum-8158-Processor-24-75M-Cache-3-00-GHz-
https://ark.intel.com/products/120500/Intel-Xeon-Platinum-8158-Processor-24-75M-Cache-3-00-GHz-
https://devblogs.nvidia.com/using-cuda-warp-level-primitives/
http://snap.stanford.edu/data/
https://m-sp.org/downloads/titech_bfs_cuda.pdf
https://m-sp.org/downloads/titech_bfs_cuda.pdf
https://devblogs. nvidia. com/parallelforall/inside-volta
https://devblogs. nvidia. com/parallelforall/inside-volta
https://en.wikipedia.org/wiki/Graphics_processing_unit
https://en.wikipedia.org/wiki/Graphics_processing_unit

	Abstract
	1 Introduction
	1.1 Related Work and Challenges
	1.2 Contributions
	1.3 Paper Organization

	2 Background
	2.1 General-Purpose GPUs
	2.2 Direction-Optimizing BFS
	2.3 Graph Datasets

	3 Overview 
	4 Adaptive Frontier Queue Generation
	4.1 Top-Down Frontier Queue Generation
	4.2 Bottom-Up Frontier Queue Generation
	4.3 Runtime Management

	5 Runtime Optimized Bottom-Up Traversal
	5.1 Dynamic Bottom-Up Workload Balancing
	5.2 Asynchronous Bottom-Up Traversal

	6 Evaluation
	6.1 XBFS vs. State-of-the-art
	6.2 Performance Impacts of Different Techniques
	6.3 Study of Various Techniques
	6.4 XBFS Performance on Different GPUs

	7 Conclusion
	References



