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Abstract

Latent Dirichlet Allocation (LDA) is a statistical approach for

topic modeling with a wide range of applications. In spite of

the significance, we observe very few attempts from system
track to improve LDA, let alone the algorithm and system

codesigned efforts. To this end, we propose eLDA with an

algorithm-system codesigned optimization. Particularly, we

introduce a novel three-branch sampling mechanism to tak-

ing advantage of the convergence heterogeneity of various

tokens in order to reduce redundant sampling task. Our eval-

uation shows that eLDA outperforms the state-of-the-arts.
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1 Introduction

Topic modeling is a type of statistical approach that reveals

the latent (i.e., unobserved) topics for a collection of docu-

ments (also referred to as corpus). LDA [1], which carefully
chooses the Dirichlet distribution as the statistical model

to formulate topic distributions, is one of the most popular

topic modeling approach that finds applications in not only

text analysis, but also computer vision [2], recommenda-

tion system[6] and network analysis [3] among many others.

While LDA is widely studied in machine learning and algo-

rithm community, very few researches have been done from
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system aspect, in part, due to the mathematical modeling

complexity in the original work [1]. Let alone the algorithm-

system codesigned efforts.

Related literature of LDA falls in the algorithm and sys-

tem directions.

First, on the algorithm track, there exist many algorithms

for fast LDA training. We summarize them into three basic

categories: Variation Inference [1], Expectation Maximiza-

tion [8] andMarkov Chain Monte-Carlo [5]. In this paper, we

make some algorithm improvements based on the Exponen-

tial Stochastic Cellular Automata (ESCA) method [11], which

is an algorithm extended from the Expectation Maximization

method. Compared with other LDA algorithms such as Col-

lapsed Variational Bayes and Expectation Propagation, ESCA

yields simpler expression, better parallelism and potentially

less computations, in part, due to the sparsity aware design.

Consequently, our work extends this direction.

Second, for GPU-based LDA, which is the interest of this

work, we witness much fewer efforts. To the best of our

knowledge, there only exists three such projects. Yan et

al. [10] implement Collapsed Gibbs Sampling and collapsed

Variational Bayesian on GPU. Afterwards, SaberLDA [7] ad-

vocates to store document-topic matrix in sparse format and

introduces index tree for fast sampling. Note, although both

document-topic and word-topic matrix are sparse, SaberLDA

fails to overcome the challenges of storing both data struc-

tures in sparsity aware format. Further, CuLDA_CGS [9]

scales LDA to multiple GPUs based on collapsed Gibbs sam-

pling with similar optimizations as SaberLDA on each GPU.

However, these methods can only support at most 10,000

topics because they have to store word-topic matrix in dense

format - larger topics will exhaust the limited memory space

of GPUs.

Contribution.This paper introduces eLDA, an algorithm-

system codesgined GPU-based LDA project that can train

LDA on PubMed dataset within 3,000 seconds while support-

ing the unprecedented 32,768 topics on one Nvidia Titan

Xp GPU. Particularly, we introduce the three-branch sam-

pling method which takes the advantage of the convergence
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Figure 1. Two-branch vs three-branch sampling.

heterogeneity of various tokens to reduce the redundant sam-

pling task. While the convergence heterogeneity is promis-

ing, the caveat is that one cannot simply avoid sampling a

token because its topic remains unchanged for a consecutive

number of iterations.

Inspired by our key observation thatmajority of the tokens

often fall in the most popular topic, we single out the most

popular topic as the third sampling branch in addition to

the traditional two branches (detailed in Figure 1). During

sampling, we introduce an algorithm to accurately estimate

whether this token will remain in the most popular topic,

thus avoid expensive sampling. Our evaluation shows three-

branch sampling can avoid sampling 85% of the tokens in

PubMed dataset.

2 Experiments

We implement eLDA with ∼4,000 lines of CUDA code and

compile the source code with Nvidia CUDA 9.2 toolkit and

-O3 optimization compilation flag. We use the Nvidia Titan

Xp GPU, which runs on an Alienware with 24 GB memory

and Intel(R) Core(TM) i7-8700 (3.20Hz) CPU to study the

performance of eLDA. We evaluates eLDA with two popular

datasets:

• NYTimes [4] : 299,752 documents, 101,636 uniquewords

and 100M tokens.

• PubMed [4] : 8,200,000 documents, 141,043 uniquewords

and 738M tokens.

eLDA vs. State-of-the-art Figure 2 further shows that

eLDA climbs to higher perplexity with less training time.

Note, at initial iterations, eLDA falls behind because the

three-branch sampling takes overhead but yield very few

benefits, given majority of the tokens have not converged at

initial iterations.

Figure 2. The convergence of eLDA and SaberLDA with

1,000 topics. Higher is better.

Three-branch sampling. Figure 3 shows the performance

of the three-branch sampling. We can see large percentage

of tokens are skipped by applying three-branch sampling

and this trend will be enhanced with iterations.

Figure 3. The percentage of tokens skipped by three-branch

sampling for #topics = 1,000

3 Conclusion

In this paper, we present eLDA, an efficient LDA project with

algorithm and system codesigned optimizations. Particularly,

we introduce the novel three-branch sampling for LDA that

yields superior performance over the state of the art projects.
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