
ISPAN: Parallel Identification of Strongly Connected
Components with Spanning Trees

Yuede Ji
George Washington University

yuedeji@gwu.edu

Hang Liu*

University of Massachusetts, Lowell

Hang Liu@uml.edu

H. Howie Huang
George Washington University

howie@gwu.edu

Abstract—Detecting strongly connected components (SCCs)
in a directed graph is crucial for understanding the structure
of graphs. Most real-world graphs have one large SCC that
contains the majority of the vertices, as well as many small SCCs
whose sizes are reversely proportional to the frequency of their
occurrences. For both types of SCCs, current approaches that
rely on depth or breadth first search (DFS and BFS) face the
challenges of both strict synchronization requirement and high
computation cost. In this paper, we advocate a new paradigm of
identifying SCCs with simple spanning trees, since SCC detection
requires only the knowledge of connectivity among the vertices.
We have developed a prototype called ISPAN, which consists of
parallel, relaxed synchronization construction of spanning trees
for detecting the large and small SCCs, combined with fast trims
for small SCCs. We further scale ISPAN to distributed memory
system by applying different distribution strategies to the data
and task parallel jobs. The evaluations show that ISPAN is able to
significantly outperform current state-of-the-art DFS and BFS-
based methods by average 18× and 4×, respectively.

I. INTRODUCTION

In a directed graph, a strongly connected component (SCC)

is a maximal subset of vertices such that every vertex has

at least one directed path to all other vertices. Detecting all

the SCCs in a graph is a fundamental problem for graph

analytics [66]. A closely related problem is finding weakly

connected component (WCC), which is a maximal subset of

vertices such that every vertex can reach each other when

changing all directed edges to undirected [58]. SCC has been

used in many areas, including model verification [27], pattern

matching [21], and graph understanding [65], [67]. In addition,

SCC is a basic component for the widely used topological

sort [52], [42] and reachability queries [18], [66], [65].

Traditional SCC algorithms are based on depth-first search

(DFS) [60], [2]. However, DFS is hard to be parallelized [51].

New parallel algorithms, such as forward-backward (FW-

BW) [23] and color propagation [49], are proposed. To further

improve the performance, trim techniques which fast reduce

the large number of trivial SCCs (e.g., with one or two vertices,

called trim-1 and trim-2, respectively) are introduced by [28].

State-of-the-art methods combine the power of trim and FW-

BW to detect SCC [55], [28]. Particularly, this approach first

eliminates trivial SCCs which contain one or two veritces.

Afterwards, FW-BW performs BFS in both directions on the

remaining graph, that is, starting from a selected pivot, it first

*Work was, in part, done at the George Washington University.

performs a forward BFS to identify the vertex set that the

pivot can reach, followed by a backward BFS to identify the

set that can reach the pivot. The intersection between both sets

is the SCC that contains the pivot [23].

This work is particularly interested in accelerating the FW-

BW step of SCC detection stemming from the observation

that Multistep [55] and FW-BW BFS [28], two state-of-the-

art projects, spend on average 79% and 78%, respectively of

the time on FW-BW step for fourteen graphs (Table II).

To accelerate FW-BW step, we adopt the idea that any

spanning tree, not necessarily a BFS tree, is sufficient for FW-

BW approach to detect SCC [66]. By definition, a spanning

tree with the root vertex v is defined as a subgraph that uses

the minimum edges to cover all the vertices that are connected

with v. We admit BFS provides a satisfied spanning tree.

However, BFS introduces extra overhead because spanning

trees only need the connectivity information, while BFS also

provides the correct levels. To make the levels correct, BFS

has to satisfy the stringent requirements on which vertices

shall be visited at each level. This leads to a significant, yet

completely unnecessary synchronization bottleneck in existing

SCC methods.

This paper introduces a new synchronization paradigm –

relaxed synchronization (Rsync) – to take advantage of the

spanning tree based SCC detection idea because neither syn-

chronous (Sync) nor asynchronous (Async) traversal strategies

can satisfy our requirements. Particularly, Sync, which is used

in existing BFS methods, can provide better workload balance,

but introduces the overhead of level synchronizations. Async

can completely eliminate the synchronization overhead, but

can easily cause workload imbalance. In contrast, Rsync is

able to achieve not only reduced level synchronizations but

also balanced workload. By judiciously applying Sync, Async,

and Rsync strategies to direction-optimizing BFS, we build

a novel spanning tree construction algorithm. We devise a

fast SCC detection algorithm, ISPAN, by combining with the

optimized usage on trim and an extended trim-3 technique.

Further, we successfully scale ISPAN to distributed memory

system with judiciously selected communication strategies

towards data parallel and task parallel jobs.

Our main contributions are three fold:

First, we propose a relaxed synchronization strategy, Rsync
(Section IV), which enables an earlier termination for con-

ventional bottom-up traversal. Particularly, in lieu of only

SC18, November 11-16, 2018, Dallas, Texas, USA
978-1-5386-8384-2/18/$31.00 c©2018 IEEE

terminating the neighbor checking after a parent neighboring

vertex is found, Rsync terminates the inspection when a visited

neighboring vertex is found. Rsync makes the termination

earlier, potentially resulting in fewer neighbor checking and

traversal iterations. Our evaluation demonstrates that Rsync

achieves 2.7× speedup over Sync bottom-up on average.

Second, we introduce a fast spanning tree construction
algorithm (Section V) by judiciously applying synchronous,

asynchronous, and our novel relaxed synchronous strategies to

direction-optimizing BFS, that is, starting with synchronous

top-down, switching to relaxed synchronous bottom-up, and

finishing with asynchronous top-down. Such a method is able

to accelerate SCC detection by upto 6.1×.

Third, we have implemented both the multi-threaded (shared

memory) and the distributed versions of ISPAN with the fast

spanning tree algorithm, optimized usage on trim and our

newly designed trim-3 technique for fast pruning size-3 SCCs.

Our evaluation on twelve real-world and two synthetic graphs

(Section VII) shows that ISPAN significantly outperforms

current DFS and BFS-based methods, i.e., on average, 18×
and 4×, respectively. Not limited there, we further evaluate

ISPAN with billion-vertex graphs and demonstrate that ISPAN

is able to achieve 1.7× speedup over the state-of-the-art. Our

distributed version can achieve up to 10.7× speedup with 32

nodes.

The rest of this paper is organized as follows: Section II

introduces the background. Section III overviews ISPAN. Sec-

tion IV presents the relaxed synchronization strategy, Rsync.

Section V presents the fast spanning tree construction method.

Section VI describes the distributed design of ISPAN. Sec-

tion VII describes the experimental setup and results. Sec-

tion VIII presents the related work. Section IX concludes.

II. BACKGROUND

In this paper, we use G = (V,E) to denote a directed graph,

where V is the set of vertices and E is the set of edges. |V |
and |E| represent the number of vertices and edges in the

original graph, |Vr| and |Er| the vertex and edge count for

the remaining graph after removing the large SCC. Existing

parallel SCC works use BFS which has top-down and bottom-

up methods [7]. Throughout this paper, we use the term expand
to refer to loading the neighbors and inspect for checking the

statuses of them.

A. Graph Property

Interestingly, real-world graphs demonstrate SCC features

which resemble power-law property [28]. A single large SCC

takes majority of the vertices which is in the same order of

graph size. And the rest are small SCCs which are smaller in

several orders of magnitude to the large SCC. For the Flickr

graph [47] shown in Figure 1, the large SCC has 69.7% of

the vertices, while half a million of small SCCs account for

the remaining 30.3% of vertices. Interestingly, except the large

SCC, this graph does not have other SCCs which has more

than 1,000 vertices.

 0

 0.2

 0.4

 0.6

 0.8

 1

1 10 102 103 104 105 106 107

C
D

F

SCC size

SCC Vertex

Fig. 1: Cumulative distribution function of SCC size in Flickr.

B. Trim and FW-BW SCC Detection

Trim aims to quickly identify trivial SCCs to greatly reduce

the graph size. Trim-1 is for a vertex that is a SCC by

itself [45]. The rule is simple: if a vertex has zero in-edges

or out-edges, it is a size-1 SCC. In Figure 2(b), vertex 23 is

trimmed due to 0 out-degree. Trim-1 will repeat since new

size-1 SCCs may appear after trimming, e.g., 22. A recent

work studies trim-2 [28]. The trim-2 pattern is that two vertices

mutually point to each other, and except the two edges, may

have other incoming or outgoing edges, but never both, which

guarantees that they cannot belong to other SCCs. In this

paper, we call this rule “single direction rule”. Vertices 19,

20 are trimmed as size-2 SCC in Figure 2(b).

Existing methods [23], [28], [55] rely on a FW-BW al-

gorithm that leverages BFS to detect SCCs. Starting from

the pivot vertex v, the FW-BW algorithm first produces the

forward vertex set, FW(v), that represents the vertices that

can be traversed using the out-edges. As a result, this will

yield a BFS tree shown in Figure 2(c). Next, it will create the

backward vertex set, BW(v), that consists of vertices that can

be traversed using the in-edges shown in Figure 2(d). Then, it

calculates the intersection of FW(v) and BW(v), which is the

detected SCC as shown in Figure 2(e).

Inspired by the graph property, state-of-the-art works apply

different methodologies to large and small SCCs as shown

in Figure 2(a) [28], [55]. Both of the works are using

BFS-based FW-BW algorithm to detect the large SCC. For

small SCCs, [28] uses trim-1 and new trim-2 to fast reduce

graph size, followed by the same BFS-based FW-BW algo-

rithm working on each weakly connected component (WCC).

While [55] uses trim-1 for size-1 SCCs, and color propagation

and serial Tarjan’s algorithm for the remaining small SCCs.

III. OVERVIEW

This section first overviews the framework of ISPAN, then

shows the correctness of using spanning tree for SCC.

A. The Framework of ISPAN

We will present our new SCC detection framework, ISPAN,

following the flow charts in Figure 3(b).

Large SCC. ISPAN uses our newly proposed fast spanning

tree construction method to accelerate the FW-BW algorithm

for the large SCC. For pivot selection, ISPAN follows the same

heuristic with [55], which selects the vertex that has the largest

product of its in-degree and out-degree. Although this rule

does not guarantee that the pivot is indeed from the large

7

8 21

6 4 5

3

(c) Forward BFS Tree

9

0

7

2

1

6

4

5

133 12

8

5

3

6

4

14

10

21

8

11

7

(d) Backward BFS Tree (e) FW-BW SCC(b) Trim-1 and Trim-2

10 14 9 0 7

17 11 8 21

16 15 6 4 5

21 13 3121820

19

22

23

(a) A Sample Graph

10 14 9 0 7

17 11 8 21

16 15 6 4 5

21 13 3121820

19

22

23

Fig. 2: (a) A toy graph running through the paper, (b) Trim-1 and trim-2 (shaded vertices). For vertex 8 (pivot), (c) shows the

forward BFS tree, (d) shows the backward one, (e) shows the detected SCC.

BFS FW-BW

Large SCC

BFS FW-BW

Small SCC
Trim-1/2

Spanning Tree FW-BW

Large SCC

Spanning Tree FW-BW

Small SCC

(a) State-of-the-art SCC detection

Trim-1/2 Trim-3

(b) iSpan-based SCC detection

Fig. 3: SCC detection methods, (a) state-of-the-art [28], (b)

ISPAN (the differences are shaded).

SCC, it works well for most real-world graphs. We will leave

other pivot selection rules to future works.

Small SCCs. ISPAN uses trim techniques for fast detection

of the SCCs and spanning tree based FW-BW to detect the

remaining small SCCs. In particular, trim is used at two

places, before and after large SCC detection. Before large

SCC detection, ISPAN only uses trim-1 due to the cost of

other trims being higher than the benefits. After the large SCC

is detected, ISPAN trims again, including trim-1, trim-2, and

our new extension of trim-3, before detecting small SCCs.

For the remaining small SCCs, ISPAN divides the graph into

WCCs using color propagation algorithm [55], and runs the

fast spanning tree FW-BW algorithm on each WCC. Since a

SCC is a subset of a WCC, ideally one can select the number

of pivots (equal to WCC count) to run FW-BW in parallel.

A

B C
Pattern 1

A

B C
Pattern 2

A

B C
Pattern 3

A

B C
Pattern 4

A

B C
Pattern 5

Fig. 4: The internal patterns of trim-3.

Trim-3 aims to quickly detect size-3 SCCs. In particular, we

detect the five patterns of size-3 SCCs as shown in Figure 4.

At the same time, the outside edges between a vertex from the

size-3 SCC and the remaining graph must follow the single

direction rule. It is possible to trim even larger SCCs beyond

size-3, although at the risk of diminishing returns.

B. Using Spanning Tree for SCC Detection

We will show that any spanning tree is sufficient for FW-

BW SCC detection, which serves as the theoretical guidance

for our implementation.

The idea of using spanning tree to detect SCC is also

investigated in [66]. That work mainly focuses on the I/O

efficiency of semi-external SCC detection, which still uses

sequential DFS to construct a spanning tree. Different from

that, we improve the parallel FW-BW algorithm with spanning

tree and devise a new framework for the fast construction of

a spanning tree in parallel.

In an undirected graph, a spanning tree with the root vertex

v is defined as a subgraph using the minimum number of edges

to cover all the vertices that are connected with v. Given a root,

one can generate many different valid spanning trees, including

BFS and DFS trees. In a directed graph, for a root vertex v,

there are two distinct types of spanning trees, forward and

backward spanning trees. Covering all the vertices that root v
reaches with outgoing edges forms the forward spanning tree,

and incoming edges the backward spanning tree.

Any valid spanning tree construction method, including BFS

and DFS, can produce valid forward or backward traversal.

Which means, they can deliver the correct results for forward

and backward traversal. Therefore, spanning tree based FW-

BW algorithm can deliver the correct SCCs.

This observation can be summarized as follows:

Lemma 1: For vertex v in a graph G, the SCC containing
v, SCC(v), can be obtained by the intersection of any pair of
valid forward and backward spanning trees. That is, SCC(v)
= FST(v) ∩ BST(v).

Proof 1: For vertex v, a valid forward spanning tree FST(v)

contains all the vertices that can be reached from v. Similarly,

a valid backward spanning tree BST(v) covers the vertices

that can reach v. That is, FST(v) equals to FW(v) and so does

BST(v) to BW(v). By definition, the SCC for vertex v will

contain the vertices shared in both sets.

IV. RSYNC: RELAXED SYNCHRONIZATION STRATEGY

This section will discuss the new relaxed synchronization

strategy and its benefits.

A. Rsync: Relaxed Synchronization

Rsync relaxes the level-by-level inspection imposed by

conventional synchronization (Sync) traversal but still syn-

chronizes to avoid workload imbalance in Async. Algorithm 1

presents the pseudocode of bottom-up Rsync method.

Bottom-up Rsync can terminate as long as finding a visited

parent or sibling. However, in conventional bottom-up BFS

where a vertex can only be terminated by the visited parent

vertex from the previous level. That is, for conventional BFS

Algorithm 1: rsyncBotUp(sa, beg pos, adj list)

1 foreach unvisited vertex u in parallel do
2 foreach vertex w ∈ InNeighbor(u) do
3 if sa[w] is visited then
4 sa[u] = visited;
5 break;

6 barrier(); // synchronization point

3 4

Expand

Sync

Inspect*
Iteration 0

Iteration 1

Iteration 2

9

0

1

4

65

8

2

37 12 13

T1

T4

1 5 78 1 2 3 2 3 48

Frontier Queue at Iteration 1

T0

T2

T3

Early
Termination

1 2 4 5 6 …

In-neighbors

Fig. 5: Rsync bottom-up example (Shaded areas represent the

workload of each thread).

at the level i, the inspection is limited to the neighbors of the

vertices that belong to level (i − 1). In contrast, at the i-th
level, Rsync allows to inspect and expand to the neighbors of

all visited vertices, regardless of at which level the vertices

have been visited. Rsync is also different from DFS because

it only checks one hop of neighbor vertices.

The benefits of Rsync come from the new early termination
condition, which allows further reduction of needed computa-

tion. That is, the flexibility increases the possibility of early

termination, and reduces the amount of edges that need to be

inspected in the bottom-up traversal, which can be seen in the

two following cases.

Case 1: A vertex can be early terminated by newly inspected
vertices. The conventional BFS tree of Figure 2(b) is shown

in Figure 2(c). Vertex 4 needs to traverse 4 edges (increasing

order, 1, 2, 3, 8) so that it can be visited. However, in Rsync

bottom-up, assume the workload is distributed as shaded in

Figure 5, the (fast-running) thread 0 has already visited vertex

1 earlier at iteration 1. The (slow-running) thread 2 is able to

visit vertex 4 by checking only 1 edge. In this example, Rsync

reduces the traversed edge number by 3.

Case 2: The vertex that should be inspected at later level
can be inspected earlier. Rsync also allows the inspection

of the vertices which would not be allowed in conventional

BFS, e.g., vertices 2, 5, 6 in Figure 5. Rsync can work on all

unvisited vertices, unlike conventional BFS that only works on

the unvisited ones belong to the current depth. This method

introduces more parallelisms and better workload balance.

Rsync essentially eliminates the inter-level constraint in

BFS, and synchronizes when the threads complete processing

(at the end of an iteration) as shown in line 6 of Algorithm 1. It

can generate the correct spanning tree because a vertex which

can be visited in conventional BFS will be guaranteed to be

visited in Rsync bottom-up. Therefore, Rsync bottom-up can

be used to detect SCC.

B. Benefits of Rsync

Bottom-up BFS has been shown to be faster to traverse the

levels in the middle [7]. We will show that Rsync bottom-up

is faster than Sync under the same conditions.
Sync Bottom-Up. Let N denote the number of vertices

in a graph, d̄ the average in-degree, Nv(k) the number of
vertices visited in the k-th level, and Nu(k) the number of
vertices remaining unvisited in the k-th level. As a result, the
probability of an unvisited vertex will be visited at k-th level
is:

p =
Nv(k − 1)

N
(1)

At level k, for each unvisited vertex i, assuming it has di
in-neighbors, this vertex can either find no parent, which has
the probability of (1 − p)di , or a parent of the j-th neighbor,
which has a probability of (1 − p)j−1 · p. Thus, for vertex i,
the expected number of edges traversed at level k is:

E
i
k(p) = di · (1− p)di + p ·

di∑

j=1

j · (1− p)j−1
(2)

There is a geometric series in Equation 2. We can get Equa-
tion 3 by multiplying (1− p) on both parts.

(1− p)Ei
k(p) = di · (1− p)di+1 + p ·

di∑

j=1

j · (1− p)j (3)

By doing subtraction of Equation 2 and 3, we can get the final
expectation as Equation 4.

E
i
k(p) =

1− (1− p)di

p
(4)

Assuming di is an integer constant in range [0,∞) the first
derivative of Ei

k(p) against p is:

∂Ei
k(p)

∂p
=

dip(1− p)di−1 + (1− p)di − 1

p2
(5)

Assuming p is in the range (0, 1), we can transform Equa-
tion 5 to

∂Ei
k(p)

∂p
=

dip+ 1− p− (1− p)1−di

p2(1− p)1−di
(6)

The denominator is greater than 0 due to p ∈ (0, 1). Let g(p)
denote the numerator and its first derivative is:

∂g(p)

∂p
= (di − 1)

(1− p)di − 1

(1− p)di
(7)

∂g(p)
∂p is smaller than 0 when di ∈ (1,∞), is 0 when di is 0

or 1. When di ∈ (1,∞), g(p) is a nonincreasing function and

g(0) equals 0, thus g(p) is smaller than 0 when p ∈ (0, 1). That

means,
∂Ei

k(p)
∂p is smaller than 0, which denotes that Ei

k(p) is a

nonincreasing function when di ∈ (1,∞). When di is 0 or 1,

E
i
k(p) is 0 or 1, respectively. In conclusion, Ei

k(p) is either
a nonincreasing function (di ∈ (1,∞)) or a fixed number
(di is 0 or 1).

Rsync Bottom-Up.
Lemma 2: Assuming the same switching condition is

applied for both Sync and Rsync bottom-up, Rsync will check
less edges than Sync.

Proof 2: As shown in Algorithm 1, Rsync relaxes the early
termination condition by allowing the termination as long as
one neighbor is visited. As a result, the probability of visiting a

vertex for Rsync, previously shown in Equation 1, is changed
to:

pr =
λNv(k) +Nv(k − 1)

N
=

λNv(k)

N
+ p (8)

where λ is the portion of vertices that terminate based on
vertices just visited at the k-th iteration. This equation means
Rsync not only terminates the inspection when it finds a visited
neighbor, as Nv(k−1), but also when it meets a vertex that is
visited by level k as only a portion – λ of vertex can terminate
based on vertices belonging to level k. At level k, for all
unvisited vertices (total as Nu(k)), bottom-up BFS needs to
check the edges of

Tk =

Nu(k)∑

i=1

E
i
k(p) (9)

As a result, the difference between Sync and Rsync of checked
number of edges is

Δ =

Nu(k)∑

i=1

(Ei
k(p)− E

i
k(pr)) (10)

Since E
i
k(p) is nonincreasing and pr ≥ p, we can conclude

that Ei
k(p)− E

i
k(pr) ≤ 0. Therefore, the accumulated Δ ≤ 0,

which means, Rsync checks less edges than Sync bottom-up.

C. Actual Rsync Behaviors

To illustrate the performance benefit, we compare the visited

edges of Rsync and Sync bottom-up for detecting the large

SCC, under the same switch condition and configurations

(graphs are shown in Table II). The ratio is calculated by the

edge number of Sync over Rsync. On average, Sync traversed

2.66× and 3.17× more edges than Rsync for forward and

backward as shown in Figure 6.

0
3
6
9
12

RM FL HD WL TW RD PK BD WC FB DB WT LJ TM WE AVG

S
yn
c
ed
ge

ov
er
R
sy
nc FW

BW

Fig. 6: Traversed edge of Sync over Rsync bottom-up.

V. FAST SPANNING TREE CONSTRUCTION METHOD

The novelty of our fast spanning tree construction dwells

in our judicious choice of applying the most suitable syn-

chronization mechanisms for various traversal steps, despite,

similar to existing projects [28], [55], we adopt direction

optimizing BFS [7] for ISPAN. Figure 7 compares our IS-

PAN traversal (Figure 7(b)) against state-of-the-art direction-

optimizing approach (Figure 7(a)). Particularly, ISPAN starts

with a conventional synchronous top-down (Step I), switches

to our novel Rsync bottom-up (Step II), and finishes with

Async top-down (Step III). The pseudocode of our forward and

backward traversal is shown in Algorithm 2. This algorithm

is called twice, one for forward and another for backward

traversal. The graph is represented in compressed sparse row

(CSR) format [15], which is widely used in contemporary

graph systems [39], [11], [46]. The forward CSR is represented

by fw beg pos[|V |+1] and fw adj list[|E|] and the backward

CSR uses bw beg pos[|V |+ 1] and bw adj list[|E|].

(a) Direction-optimizing BFS (b) iSpan traversal

Sync Top-down

Async Top-down

Rsync Bottom-up

Sync Top-down

Sync Top-down

Sync Bottom-up

Step I

Step II

Step III

Fig. 7: The spanning tree construction method in (a) Direction-

optimizing BFS (a.k.a., state-of-the-art [28], [55] approach)

and our (b) ISPAN traversal.

Algorithm 2: iSpanTraversal(pivot, sa, fw beg pos,

fw adj list, bw beg pos, bw adj list)

1 isSyncTopDown = true;
2 isBottomUp = false;
3 isAsyncTopDown = false;
4 sa[pivot] = 1;
5 level = 1;
6 while frontier queue changes do
7 foreach thread t ∈ T in parallel do
8 if isSyncTopDown then
9 syncTopDown(sa, fw beg pos, fw adj list);

10 else if isBottomUp then
11 rsyncBotUp(sa, bw beg pos, bw adj list);

12 else if isAsyncTopDown then
13 asyncTopDown(sa, fw beg pos, fw adj list);

// Switch condition
14 if isSyncTopDown and Mf > (Mr/α) then
15 isSyncTopDown = false;
16 isBottomUp = true;

17 else if isBottomUp and Nf < (|V |/β) then
18 isBottomUp = false;
19 isAsyncTopDown = true;

20 barrier(); // synchronization point
21 level++;

A. Synchronization Strategy

Synchronous (Sync) method requires synchronization

across different threads at the end of every level. Later, the

workload will be redistributed to each thread to balance the

workloads. Applying this philosophy to top-down traversal,

as shown in Figure 8, each thread at each level identifies the

frontiers that will be expanded at the next level and stores them

in private frontier queues. For synchronization, all threads need

to combine all the frontiers into one global frontier queue. At

the next level, the threads will get equally distributed work

from the shared global queue. Thus, the workload of each

thread is balanced.

Expand

Sync

Inspect
Level 0

Level 1

Level 2

Level 3 9

0

7

2

1

6

4

5

133 12

8

T1 T3
Private FQ 0 2

1 4Global FQ

T0 T1 T2

5 6

0 2 5 6Global FQ

T0 T2

T3

T2T0

Sync

Fig. 8: Sync top-down example (shaded areas represent the

workload of each thread).

Inspect

Expand
9

0

7

2

1

6

4

5 13

3

12

8

T0 T1

Sync

Async Private FQ 1

1 4Global FQ

4T0 T1

0 2 6

Fig. 9: Async top-down example (shaded areas represent the

possible workload of each thread).

Asynchronous (Async) approach, in contrast, allows every

thread to work on its private frontier queue and does not im-

pose any synchronization. Still using top-down as an example,

as shown in Figure 9, after returning from bottom-up to top-

down, the global queue {1, 4} is divided into two private ones,

thread 0 has {1} and thread 1 has {4}. Then, each thread will

work on this private queue and stops when it becomes empty

without synchronizing with other threads. Thus, the workloads

of all the threads are easy to be imbalanced.

Async also faces race conditions when two threads access

the same vertex at the same time. Both threads will put the ver-

tex into their private queues. However, when the two threads

expand from this vertex, they will inspect the status before

expanding the neighbors. Since the probability of expanding

the same vertex at the same time again is rather low, it only

wastes the status inspection time of one thread for one vertex,

but the spanning tree is still correct.

Relaxed-Synchronization (Rsync). To fill the gap between

Sync and Async, we leverage our relaxed synchronization

strategey, Rsync. We should note that Rsync can reduce the

number of level synchronizations but cannot fully avoid, and

it cannot be used in top-down traversal.

In summary, Sync gains better workload balance but limited

by thread synchronization, Async avoids thread synchroniza-

tion but may run into workload imbalance, Rsync provides

better workload balance and reduces synchronization levels.

This comparison is summarized in Table I.

B. Direction-Aware Fast Spanning Tree Construction Method

Applying Sync Top-down to Step I: Sync instead of Async

is selected for this step for two reasons. First, this step needs

to switch to bottom-up at a certain level. Such a decision can

only be made when we know the global amount of workload

across all participating threads, which contradicts the design of

Async that is complete asynchronous traversal. Second, often,

step I only requires very few iterations before switching, which

makes level synchronization overhead negligible comparing to

its benefit of balancing the workload. Therefore, we use Sync

top-down to initialize our spanning tree construction.

α′: Our spanning tree method follows the same switch

condition as in [7], that is, when Mf > (Mu/α), where Mf

denotes the number of edges in the frontier, Mu the number

of unvisited edges, and α is a pre-defined threshold. Similarly,

we approximate Mf = Nf ∗ d, Mu = Nr ∗ d, where Nf

denotes the number of visited vertices, d denotes the average

degree, Nr denotes the remaining unvisited vertices [55]. A

TABLE I: Comparison of different traversal methods.

Top-down Bottom-up
Sync Rsync Async Sync Rsync Async

Reduced
synchronization

� – � � � –

Workload
balance

� – � � � –

larger α value will lead to an earlier switch, and as a result,

Rsync bottom-up can be leveraged to decrease the number of

traversed edges and provide better performance than Sync as

we will show later. Our current implementation leaves α as a

runtime parameter which can be tuned based on the application

need. In our evaluation, we set α to a fixed value of 30.
Applying Rsync Bottom-up to Step II: As the traversal

continues, the amount of edges that need to be expanded

and inspected climbs rapidly, leading to the switch from top-

down to bottom-up. Async bottom-up is not selected because

direction switching requires the collective information across

all threads which is not supported by Async. On the other

hand, we select Rsync instead of Sync bottom-up because

Rsync is proved to be faster under the same condition.
β′: As the frontier size becomes smaller, ISPAN needs

to switch back to top-down. For this, ISPAN uses another

condition Nf < (|V |/β), where Nf denotes the number of

vertices in the frontier, and β is a pre-defined parameter. The

larger the β value, the later the switching happens. We set

the β value much larger than [7] to fully utilize the power

of Rsync. In particular, we set β to 200 in our experiments

instead of 24 in [7].
Applying Async Top-down to Step III: We select Async

instead of Sync top-down to mainly cope with the long-

tail phenomena that is commonly presented in real-world

graphs [48]. Formally, long-tail is the situation that the traver-

sal lasts for large number of iterations with few vertices in a

frontier. Figure 10 demonstrates such a scenario in Wikipedia

graph (WL). At first, there exists a large number of frontiers,

more than millions at certain levels. However, after the 30-th

level, the frontier size becomes smaller than 10, and reduces

to 1 at the 425-th level till its termination at 1, 361 level.
In this case, the workload is extremely small from level 30

- 1,361 which suggests that even synchronizing the traversal

at each level cannot affect workload distribution. However, the

overhead of synchronization stays. Actually, synchronization

becomes the major time consumer during 30 - 1,361 levels

which motivates our design of Async. It is also important to

mention that Async top-down can provide comparable to, if

not better than, Sync top-down even without long-tail.

100

102

104

106

1 10 102 103

F
ro

n
tie

r
si

ze

 (
L

o
g

 s
ca

le
)

Level (Log scale)

Fig. 10: Long tail in the Wikipedia graph (WL).

VI. DISTRIBUTED ISPAN

This section scales ISPAN to distributed memory system

with OpenMPI. We partition the graph using row-wise 1-

d partitioning method [56], [16], [36]. This simple method

can produce graph partitions that are communication friendly

because the vertices in each partition are consecutive, and also

beneficial to bottom-up approach as shown in [8].

A. Data Parallel for the Large SCC

The large SCC detection is data parallel because all the

workers are working together to resolve one task. The

challenge in such a data parallel job is the high communication

cost – all the workers have to communicate vertex statuses at

the end of each iteration [7]. A naive communication strategy

will communicate the status array of size |V | at the end of

each iteration. To reduce the high communication cost, we

design a hybrid communication strategy that adaptively uses

bitwise compression and frontier queue only mechanisms.

Bitwise status compression. Bitwise status array has been

explored in distributed memory systems [53]. In particular,

[53] compresses the 4-byte status array into bitwise status

array in order to exchange the newly visited vertices. Note

that this method cannot directly use bitwise status array for

traversal because it has to differentiate the unvisited, and the

levels of visited vertices (more than two statuses). During

traversal, this approach has to update both the original and

bitwise status arrays. After communication, it also has to

use received bitwise status array to update the original status

array. However, in our case, because ISPAN eliminates the

needs of recording the level information, it simply uses a

bitwise array to record the status of each vertex. Therefore,

our communication is largely simplified. Although bottom-up

traversal only needs visited or unvisited information, it will

need the last level information when switching to top-down.

Thus, we need three statuses (2 bits) for a vertex, i.e., unvisited

(00), previously visited (01), and newly visited (10). If bottom-

up is used, every worker will scan the vertices in its partition

and change the status from newly visited to previously visited.

Then, it will traverse in the normal bottom-up manner. When

it switches to top-down, one can get the frontier queue by

extracting vertices with newly visited status.

Frontier queue. Chances are, at the beginning and end

iterations of large SCC detection, only a very small portion

of the status array will be updated [7]. This implies that

communicating the entire status array, albeit compressed,

is wasteful. We thus only communicate the frontiers. After

receiving the frontiers, we update the bitwise status array

correspondingly. This approach has been used in [16].

Hybrid. Clearly, the aforementioned two communication

mechanisms excel at complementary scenarios, that is, bitwise

status compression prefers large volume of updates while

the other is opposite. Our hybrid design chooses the best

communication strategy at each iteration based upon the

number of frontiers. We use node-to-node traffic to quantify

the communication cost. In particular, at each iteration, bitwise

status compression communicates
|V |
8 bytes for top-down

traversal and
|V |
4w bytes for bottom-up because each worker can

update the entire status array in top-down while only touches

its own partition in bottom-up, where w denotes the number

of workers. For the second design, assuming f j
i denotes the

frontier queue size of the j-th worker at the i-th iteration,

and we use 4-byte integer to represent each frontier, this

method will exchange the maximum frontier queue size among

all the workers, which is maxj∈w(4f
j
i) bytes. Therefore,

we choose the frontier queue approach if maxj∈w(4f
j
i) is

smaller and the bitwise status compression method otherwise.

In summary, the forward traversal needs to communicate∑tT
i=1 min(maxj∈w(4f

j
i),

|V |
8) +

∑tB
i=1 min(maxj∈w(4f

j
i) +|V |

4w) bytes of data, where tT , tB denote the number of

iterations in top-down and bottom-up traversals, respectively.

Assuming the frontier queues are equally distributed among

the workers and the forward traversal shares the same frontier

size and iteration number with the backward, the size of

communication packet will be 2 · ∑tT
i=1 min(4fiw , |V |8) + 2 ·

∑tB
i=1 min(4fiw , |V |4w) bytes since maxj∈w(4f

j
i) is simplified

to 4fi
w , where fi denotes the frontier queue size in the i-th

iteration.

B. Task Parallel for the Small SCCs
The small SCC detection, which is comprised of thou-

sands of tasks, is clearly task parallel because each task is

fulfilled by one worker exclusively. In trim-1, each worker

only needs to check the vertices in its local partition, which

is communication free. However, for the trim-2/3 and non-

trivial small SCCs, each worker may access the vertices

that are not in its local partition. If exploiting our designed

hybrid communication strategy, frequent communications will

introduce high overhead.
Instead, we compact the remaining graph into a smaller

subgraph and distribute one copy across all workers to avoid

communications stemming from the following two reasons:

First, we observe that the remaining subgraph only contains,

on average, 2.1% vertices and 0.5% edges of the original

graphs for the fourteen tested graphs. The largest percentages

are 11.8% and 3.2% for the vertex and edge, respectively.

Such a small subgraph can be easily generated and stored

across all workers. Second, we can reorder the vertices during

graph compaction which can potentially bring better cache

locality [4], [62], [32].
Furthermore, we introduce graph compaction technique

in this distributed setting. Initially, every machine reads the

status array and builds the mapping from the original vertex

IDs to the new ones. Then, every machine scans its local

partition and gets the size of the remaining vertices and edges

in that partition. Subsequently, all the machines communicate

to get the size array of each partition and calculate their

global addresses in CSR. Afterwards, every node will rescan

its local partition and update their CSR. Finally, we rely on

MPI Allgatherv to construct the full view of the graph across

all machines. Let |V rj |, |Erj | denote the number of vertices

and edges in the j-th worker for the remaining graph, the

node-to-node communication consumption is 8 +maxj∈w(4 ·

|V rj |) + maxj∈w(4 · |Erj |) bytes, where the 8 bytes is for

the two size arrays. Thus, the graph compaction operation for

both the forward and backward CSR will communicate the

data of 16 + 2 · maxj∈w(4 · |V rj |) + 2 · maxj∈w(4 · |Erj |)
bytes. Assuming the vertices are equally distributed among

the workers, the communication can be further simplified to

8 · |V r|+|Er|
w + 16, where |V r| and |Er| denote the number

of vertices and edges for the remaining graph r, with the

analogous simplification process from Section VI-A.

C. Communication Complexity

In addition to the communications in the large SCC and

graph compaction, there are several other communications. In

particular, ISPAN needs to communicate the status array before

detecting the large SCC, which communicates
4|V |
w bytes of

data. With the compacted graph, the coloring-based WCC

computation communicates
∑tr

i=1
4fi
w data because ISPAN

uses bottom-up for color propagation which cannot use the

bitwise status compression, where tr denotes the number of

iterations of traversing the remaining graph. The later trim-2/3

and small SCC detection will only incur two synchronizations,

which will exchange
8|Vr|
w data. Thus, the total amount node-

to-node communication data will be
4|V |+16|V r|+8|Er|

w + 2 ·
∑tT

i=1 min(4fiw , |V |8)+2·∑tB
i=1 min(4fiw , |V |4w)+

∑tR
i=1

4fi
w +16,

where tT , tB denote the number of iterations of top-down and

bottom-up traversal for the original graph.

VII. EXPERIMENTS

The experiments are performed on a server with two Intel

Xeon E5-2683 (2.00 GHz) CPUs, each of which has 14 cores

and 28 hardware threads with 35 MB of last-level cache and

512 GB of main memory. The server runs CentOS Linux (7.2)

operating system. ISPAN is implemented in about 4, 900 lines

of C++ codes and compiled using g++ version 4.8.5 with the

-O3 option. We use OpenMP version 3.1 as the multithread

library. The results are reported with an average of ten runs.

A. Graph Benchmarks

We evaluate the performance of ISPAN on 12 real-world

graphs and 2 synthetic graphs shown in Table II. The real-

world graphs are collected from University of Koblenz-

Landau [35] and Stanford University [37]. They are classi-

fied into three categories: social networks, web graphs, and

communication networks as summarized in Table II.

B. Comparison of State-of-the-Art

This section compares the performance of ISPAN with

state-of-the-art approaches. Specifically, Tarjan stands for the

classical serial Tarjan’s algorithm [60], UFSCC is a DFS-

based on-the-fly SCC detection approach [13], BFS FW-BW
stands for a three-step FW-BW SCC detection approach [28],

and Multistep [55] is another three-step detection project. We

get the source codes of UFSCC, Hong’s BFS FW-BW and

Multistep from the authors, and Tarjan algorithm from Hong’s

implementation. We run their source codes on our server with

the same configurations. Note that BFS FW-BW sometimes

cannot select a pivot from the large SCC for graphs, like

TABLE II: Graph benchmarks specification.

Graph (Abbr.) # Nodes # Edges # SCC
Large # Small Size-1 Size-2 Size-3

SCC size SCC SCC SCC SCC

Baidu (BD) 2,141,301 17,794,839 1,503,004 609,905 1,503,003 1,480,722 18,688 2,473

Dbpedia (DB) 3,966,925 13,820,853 3,636,316 178,593 3,636,315 3,587,274 24,933 8,868

Facebook (FB) 96,079,682 679,728,426 93,892,292 2,186,877 93,892,291 93,891,890 322 54

Flickr (FL) 2,302,926 33,140,017 485,572 1,605,184 485,571 426,936 25,620 10,567

Hudong (HD) 2,452,716 18,854,882 2,189,120 185,668 2,189,119 2,153,858 24,832 4,786

LiveJournal (LJ) 4,847,572 68,475,391 971,233 3,828,682 971,232 947,777 16,875 3,280

Pokec (PK) 1,632,804 30,622,564 325,893 1,304,537 325,892 323,799 1,904 151

Twitter (TW) 41,652,231 1,468,365,182 8,044,729 33,479,734 8,044,728 7,947,098 80,112 12,198

Wiki-com (WC) 2,394,386 5,021,410 2,281,880 111,881 2,281,879 2,281,312 529 29

Wiki-en (WE) 18,268,993 172,183,984 14,459,547 3,796,073 14,459,546 14,450,686 7,201 1,107

Wiki-link (WL) 11,196,008 340,309,824 4,266,559 6,916,926 4,266,558 4,260,669 3,014 1,128

Wiki-talk (WT) 2,987,536 24,981,161 2,736,716 249,610 2,736,715 2,735,641 992 58

Random (RD) 4,000,001 256,000,000 2 4,000,000 1 1 0 0

R-MAT (RM) 3,999,984 256,000,000 2,105,950 1,894,035 2,105,949 2,105,948 0 0

DB and HD, which dramatically lowers its performance. For

these graphs, we choose to report their best performance from

multiple tests. Also, Multistep does not work for several graphs

including DB, WC, WT and HD, even after our attempts to

adjust configurations such as stack size in the code.

The total runtime is composed of the three steps (trim, large

SCC, small SCCs) and the pivot selection. Figure 11 shows

the speedup achieved by ISPAN over these methods. Corre-

spondingly, Table III presents the detailed time consumption of

each method on various graphs. For all the graphs, on average,

ISPAN can get 67.3×, 20.9×, 4.1×, and 3.6× speedup over

Tarjan, UFSCC, BFS FW-BW, and Multistep, respectively.

For DFS-based Tarjan and UFSCC, ISPAN obtains the largest

speedup from graph FB by 271.7× and 150.3×. The reason is

that for graph FB, the vertices in size-1 SCCs take the major

of about 97.72%. For this kind of graph, trim benefits a lot for

three-step detection approaches (e.g., BFS FW-BW, Multistep,

and ISPAN).

�1
�4

�16
�64

�256

BD DB FB FL HD LJ PK TW WC WE WL WT RD RM AVG

S
pe
ed
up

�
(L
og

�

sc
al
e)

Tarjan UFSCC BFS�FW-BW Multistep

Fig. 11: Speedup of ISPAN over state of the art (56 threads).

The x-axis shows graphs and the last one is average.

Compared to BFS FW-BW method, ISPAN achieves the

maximum and minimum speedup from FB and HD of 12.9×
and 1.7×. And with regard to the Multistep method, ISPAN

gets the maximum speedup by 7.8× on PK and minimum

speedup from TW by 1.6×.

C. Shared Memory Scalability

In this section, we will present three experiments, large

graphs, the speedup over Tarjan’s algorithm, and the scalability

over itself.

We test iSpan on several larger graphs as shown in Table IV,

specifically TM and FR graphs from [35], and a synthetic

graph KR generated from Graph500 generator. Note that while

iSpan is able to run all three graphs, current implementations

of BFS FW-BW [28] and Multistep [55] crash on billion vertex

graphs due to segmentation faults. We successfully modify the

codes in Multistep to support large graphs but fail for BFS

FW-BW. On the average of ten runs, iSpan achieves 1.7× and

TABLE III: Runtime (ms) (The speedup of Rsync over current best approach is shown in parentheses).

Graph BD DB FB FL HD LJ PK TW WC WE WL WT RD RM Avg

Tarjan 414 352 21,262 551 292 1,710 628 38,999 171 3,801 6,591 507 5,281 3,578 6,010
UFSCC 107 104 11,759 160 85 274 127 4,887 145 544 846 214 838 554 1,475
BFS FW-BW 81 191 1011 117 91 116 51 1450 29 220 302 92 124 62 281
Multistep 167 - 406 152 - 109 144 816 - 314 312 - 115 104 264
ISPAN 16 (5.1) 66 (1.6) 78 (5.2) 54 (2.2) 53 (1.6) 46 (2.4) 13 (3.9) 457(1.8) 5 (5.8) 91 (2.4) 104 (2.9) 14 (6.6) 40 (2.9) 24 (2.6) 76 (3.5)

TABLE IV: Runtime (seconds) on large graphs (- denotes

program crash caused by segmentation fault).

Graph |V | |E| BFS FW-BW Multistep iSpan (speedup)

Twitter MPI (TM) 52M 2.0B 1.8 1.2 0.7 (1.7×)

Friendster (FR) 68M 2.6B - 1.3 1.1 (1.2×)

Kron 30 (KR) 1.07B 17.2B - 62.7 46.7 (1.3×)

1.2× speedup on TM and FR. For a graph with billions of

vertices, iSpan takes tens of seconds to compute, specifically

46.7 seconds on KR, 1.3× speedup over Multstep.

ISPAN is a parallel solution that can scale to a large number

of threads. We compared the performance of ISPAN against

other approaches under different number of threads. We select

seven representative graphs covering social network graphs

(LJ, FL, TM, TM), web graph (WE, WL) and synthetic graph

(RD). Figure 12 presents the speedup over the serial Tarjan

algorithm as [28], [55] did in their experiments. For all the

graphs from Table II and TM from Table IV, Figure 12(h)

presents the average speedup. The other two graphs (FR and

KR) from Table IV are not included stemming from the failure

of the baseline method (Tarjan’s implementation from [28]).

One can see that ISPAN achieves the best performance with the

increase of threads on both real-world and synthetic graphs.

Taking LJ as an example, for 1 thread, ISPAN, Multistep, and

BFS FW-BW get 5.9×, 5.1×, 1.5× speedup, while UFSCC

is worse than Tarjan. As the thread increases, the speedups

of the four approaches also improve. When it reaches to 56
threads, ISPAN can get upto 37× speedup, while Multistep,

BFS FW-BW, and UFSCC get at most 16× speedup.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 2 4 8 16 32 56

(a) LJ

iSpan

BFS FW-BW

UFSCC

Multistep

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1 2 4 8 16 32 56

(b) WE

iSpan

BFS FW-BW

UFSCC

Multistep

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

 1 2 4 8 16 32 56

(c) FL

iSpan

BFS FW-BW

UFSCC

Multistep

 0

 20

 40

 60

 80

 100

 120

 140

 1 2 4 8 16 32 56

(d) RD

iSpan

BFS FW-BW

UFSCC

Multistep

 0

 10

 20

 30

 40

 50

 60

 70

 1 2 4 8 16 32 56

(e) WL

iSpan

BFS FW-BW

UFSCC

Multistep

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 1 2 4 8 16 32 56

(f) TW

iSpan

BFS FW-BW

UFSCC

Multistep

 0

 20

 40

 60

 80

 100

 120

 140

 1 2 4 8 16 32 56

(g) TM

iSpan

BFS FW-BW

UFSCC

Multistep

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 2 4 8 16 32 56

(h) AVG

iSpan

BFS FW-BW

UFSCC

Multistep

Fig. 12: The speedup over Tarjan’s serial algorithm (x-axis

shows the number of threads, y-axis shows the speedup).

Further, we show the scalability with regarding to the

increase of threads. Figure 13 presents the scalability of the

three largest graphs and the average on all the 17 graphs. While

ISPAN is able to run all the graphs, two related projects fail

on some graphs1. One can see that for all the graphs, ISPAN is

able to achieve 11× speedup on average. Particularly, ISPAN

can scale upto to 19× speedup on the largest graph KR, which

almost doubles the scalability of Multistep.

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 4 8 16 32 56

(a) TM

iSpan

Multistep

BFS FW-BW

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 8 16 32 56

(b) FR

iSpan

Multistep

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 1 2 4 8 16 32 56

(c) KR

iSpan

Multistep

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 1 2 4 8 16 32 56

(d) AVG

iSpan

Multistep

BFS FW-BW

Fig. 13: The scalability on the large graphs and average (x-axis

shows the number of threads, y-axis shows the speedup).

D. Distributed Scalability

We test the scalability of distributed ISPAN on a cluster. We

scale ISPAN to 32 nodes and use seven representative graphs

covering social network graphs (LJ, FL, TW, TM, FR), web

graph (WE), and synthetic graph (RD). Later, we will show in

Figure 16 the performance of ISPAN on additional 9 graphs2.

Figure 14 presents the scalability of each step and total

runtime for the seven graphs and the average. The time of

small SCC includes CSR compaction time, WCC computation

time, and remaining FW-BW computation time. For the total

runtime, ISPAN achieves 10.7×, 6.7×, 5.5×, 4.8×, 4.7×,

3.7×, and 3.5× speedups on RD, FR, TM, WE, FL, LJ, and

TW graphs, respectively. In particular, trim technique enjoys

good scalability for the 7 graphs and achieves upto 4.4×
speedup on FL, because it is a pure task parallel job which

is communication free. Large SCC scales well and reaches

upto 14.9× for RD. It is a computation intensive job in which

communication overhead is canceled out by computation time.

Large SCC detection dominates the distributed scalability

which is consistent with the results from the shared memory

tests. Small SCC can scale for FL, but does not scale for RD

because it has zero small SCCs. For other graphs, small SCC

do not scale well when the nodes are more than 8 due to the

large communication overhead. Overall, both the data and task

parallel jobs can scale well. The data parallel jobs can enjoy

the benefit of our hybrid communication strategy especially

when it dominates the runtime.

Furthermore, we compare to the state-of-the-art distributed

SCC implementation, named HPCGraph [56] as shown in

Figure 15. When it scales to 32 nodes, ISPAN achieves better

scalability for graph WE, FL, and RD. Particularly, ISPAN

1BFS FW-BW fails on the two largest graphs (FR, KR), and Multistep fails
on four graphs (DB, HD, WC, and WT)

2HPCGraph [56] fails on several graphs, e.g., FR, TW, TM, DB, HD, WC,
and WT.

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6
 2.8

 3

 1 2 4 8 16 32

(a) LJ

Trim-1/2/3

Large

Small

Total

 1

 2

 3

 4

 5

 6

 7

 1 2 4 8 16 32

(b) WE

Trim-1/2/3

Large

Small

Total

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 1 2 4 8 16 32

(c) FL

Trim-1/2/3

Large

Small

Total

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 4 8 16 32

(d) RD

Trim-1/2/3

Large

Small

Total

 1

 2

 3

 4

 5

 6

 7

 1 2 4 8 16 32

(e) TW

Trim-1/2/3

Large

Small

Total

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

 1 2 4 8 16 32

(f) TM

Trim-1/2/3

Large

Small

Total

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

 1 2 4 8 16 32

(g) FR

Trim-1/2/3

Large

Small

Total

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 1 2 4 8 16 32

(h) AVG

Trim-1/2/3

Large

Small

Total

Fig. 14: The scalability of ISPAN in distributed systems (x-axis

shows the number of nodes, y-axis shows the speedup).

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 4 8 16 32

(a) LJ

HPCGraph

iSpan

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 1 2 4 8 16 32

(b) WE

HPCGraph

iSpan

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 1 2 4 8 16 32

(c) FL

HPCGraph

iSpan

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

 1 2 4 8 16 32

(d) RD

HPCGraph

iSpan

Fig. 15: The distributed scalability comparison (x-axis shows

the number of nodes, y-axis shows the speedup).

can achieve 4.7×, 4.8×, and 10.7× compared to HPCGraph’s

3.8×, 3.5×, and 5.8×, respectively. ISPAN has lower scal-

ability for graph LJ 2.7× compared to HPCGraph’s 3.6×.

However, the runtime of our baseline (i.e, 1 node) is much

faster than the baseline of HPCGraph. Ours is able to achieve

8×, 1.9×, 3.3×, and 32.4× speedup over HPCGraph for graph

LJ, WE, FL, and RD, respectively. Therefore, ISPAN achieves

significant improvement for the distributed SCC detection.

We present the details of the execution and communication

time breakdown of the distributed ISPAN. Figure 16 presents

the breakdown of running with 32 nodes on the 16 graphs.

One can see that, the large SCC computation dominates most

graphs with, on average, 48.5% of the total time across all

the datasets. The communication time during computing the

large SCC takes the largest communication cost with 12.5%
on average.

 0
 20
 40
 60
 80

 100

LJ FL WE RD TW TM WT DB FB PK BD HD RM WL WC FR AVG

P
e
rc

e
n
ta

g
e
 (

%
) Trim-1

Trim-1 comm

Pivot

Large

Large comm

Compact

Compact comm

Trim-1/2/3

Small

Small comm

Fig. 16: Execution time breakdown of the distributed ISPAN.

VIII. RELATED WORK

This section discusses the related work landscape of ISPAN

from three categories, namely, DFS-based, FW-BW-based and

the other remaining endeavors.

DFS-based SCC detection. SCC detection originates from

a DFS-based work [60]. Another work [2] conducts two DFS

computations, the first on the original graph, the other on the

transposed graph to improve the parallelism. A recent DFS

work devises an on-the-fly SCC detection method [13]. DFS

can be parallelized, but with a number of drawbacks [20], [1].

A closely related DFS work is a serial semi-external SCC

detection method [66], which uses spanning tree with weak

order DFS to reduce the edge number for I/O efficiency. In

contrast, ISPAN completely removes the constraint of the order,

delivering very fast construction of spanning trees. Specifi-

cally, ISPAN devises a BFS-based parallel method, which can

be orders of magnitude faster. For example, [66] takes about

20s to process a graph with 34M edges, while ISPAN needs

only 54ms for a similar size graph (FL).

FW-BW-based SCC detection. The FW-BW algorithm

paves the road for parallel SCC detection. Fleischer et al. [23]

first introduces FW-BW algorithm, divide-and-conquer strong

components method, to improve the parallelism. Later, Mclen-

don et al. [45] extends FW-BW algorithm by adding trim.

Recently, a BFS-based FW-BW algorithm [28] designs a

three step FW-BW-Trim approach for small-world graphs.

Multistep [55] goes further by combining the power of FW-

BW, color propagation, and Tarjan’s DFS to detect SCC.

Both [28] and [55] follow the original FW-BW algorithm

to detect the large SCC. For detecting small SCCs, [28] intro-

duces trim-2 and WCC-based FW-BW algorithm, while [55]

uses color propagation algorithm. Different from them, ISPAN

improves the FW-BW algorithm by using the spanning trees,

and design a new relaxed synchronization technique. Com-

bined with trim-3, ISPAN is able to deliver about 4× speedup.

Others. Color propagation algorithm is also proposed to de-

tect SCC in parallel [49], while it suffers from load imbalance

caused by large components. ISPAN is also related to the graph

traversal and connected component detection works [6], [63],

[19], [61], [54], [59], [24], [22], [26], [25], [33], [34], [40].

We will explore ISPAN in future works from three directions,

better distributed scalability [14], [5], [29], [57], [44], [50], [3],

[12], Graphics Processing Units (GPUs) [9], [41], and more

applications [30], [17], [31], [58], [43], [10], [38], [64].

IX. CONCLUSION

This work designs ISPAN, a new spanning tree-based SCC

detection method that leverages a novel fast spanning tree con-

struction method by judiciously applying synchronous, asyn-

chronous, and relaxed synchronization strategy to direction-

optimizing BFS to achieve better workload balance and re-

duced level synchronization. As a result, ISPAN can signifi-

cantly outperform state-of-the-art DFS and BFS-based meth-

ods by average 18× and 4×, respectively. ISPAN is able to

achieve 1.7× speedup on three large graphs (upto billion

vertex) and upto 10.7× speedup when scaling to 32 nodes.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their helpful sugges-

tions. This work was supported in part by National Science

Foundation CAREER award 1350766 and grants 1618706 and

1717774.

REFERENCES

[1] U. A. Acar, A. Charguéraud, and M. Rainey. A work-efficient algorithm
for parallel unordered -first search. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis (SC), page 67. ACM, 2015.

[2] A. V. Aho, J. D. Ullman, and J. E. Hopcroft. Data structures and
algorithms. 1983.

[3] M. J. Anderson, N. Sundaram, N. Satish, M. M. A. Patwary, T. L.
Willke, and P. Dubey. Graphpad: Optimized graph primitives for
parallel and distributed platforms. In Parallel and Distributed Processing
Symposium, 2016 IEEE International, pages 313–322. IEEE, 2016.

[4] J. Arai, H. Shiokawa, T. Yamamuro, M. Onizuka, and S. Iwamura.
Rabbit order: Just-in-time parallel reordering for fast graph analysis.
In Parallel and Distributed Processing Symposium, 2016 IEEE Interna-
tional, pages 22–31. IEEE, 2016.

[5] A. Azad and A. Buluc. Towards a graphblas library in chapel. In
Parallel and Distributed Processing Symposium Workshops (IPDPSW),
2017 IEEE International, pages 1095–1104. IEEE, 2017.

[6] L. Barrière and et al. Connected graph searching. Information and
Computation, 2012.

[7] S. Beamer, K. Asanovic, and D. Patterson. Direction-optimizing breadth-
first search. In International Conference for High Performance Comput-
ing, Networking, Storage and Analysis (SC), pages 1–10. IEEE, 2012.

[8] S. Beamer, A. Buluc, K. Asanovic, and D. Patterson. Distributed
memory breadth-first search revisited: Enabling bottom-up search. In
Parallel and Distributed Processing Symposium Workshops & PhD
Forum (IPDPSW), 2013 IEEE 27th International, pages 1618–1627.
IEEE, 2013.

[9] O. Beaumont, B. Becker, A. Deflumere, L. Eyraud-Dubois, T. Lambert,
and A. Lastovetsky. Recent advances in matrix partitioning for parallel
computing on heterogeneous platforms. 2017.

[10] J. Berry, M. Oster, C. A. Phillips, S. Plimpton, and T. M. Shead.
Maintaining connected components for infinite graph streams. In
Proceedings of the 2nd International Workshop on Big Data, Streams
and Heterogeneous Source Mining: Algorithms, Systems, Programming
Models and Applications, pages 95–102. ACM, 2013.

[11] M. Besta, F. Marending, E. Solomonik, and T. Hoefler. Slimsell: A
vectorizable graph representation for breadth-first search. In IPDPS’17.

[12] M. Besta, M. Podstawski, L. Groner, E. Solomonik, and T. Hoefler.
To push or to pull: On reducing communication and synchronization in
graph computations. In Proceedings of the 26th International Symposium
on High-Performance Parallel and Distributed Computing, pages 93–
104. ACM, 2017.

[13] V. Bloemen, A. Laarman, and J. van de Pol. Multi-core on-the-fly scc
decomposition. In Proceedings of the 21st ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP), page 8.
ACM, 2016.

[14] A. Buluc, S. Beamer, K. Madduri, K. Asanovic, and D. Patterson.
Distributed-memory breadth-first search on massive graphs. arXiv
preprint arXiv:1705.04590, 2017.

[15] A. Buluç, J. T. Fineman, M. Frigo, J. R. Gilbert, and C. E. Leiserson.
Parallel sparse matrix-vector and matrix-transpose-vector multiplication
using compressed sparse blocks. In Proceedings of the twenty-first an-
nual symposium on Parallelism in algorithms and architectures (SPAA),
pages 233–244. ACM, 2009.

[16] A. Buluç and K. Madduri. Parallel breadth-first search on distributed
memory systems. In Proceedings of 2011 International Conference
for High Performance Computing, Networking, Storage and Analysis,
page 65. ACM, 2011.

[17] J. Cao, Q. Li, Y. Ji, Y. He, and D. Guo. Detection of forwarding-
based malicious urls in online social networks. International Journal of
Parallel Programming, 44(1):163–180, 2016.

[18] J. Cheng, S. Huang, H. Wu, and A. W.-C. Fu. Tf-label: a topological-
folding labeling scheme for reachability querying in a large graph. In
Proceedings of the 2013 ACM SIGMOD International Conference on
Management of Data (SIGMOD), pages 193–204. ACM, 2013.

[19] G. Cong and K. Makarychev. Optimizing large-scale graph analysis on
multithreaded, multicore platforms. In Proc. of IPDPS’12, 2012.

[20] J. A. Edwards and U. Vishkin. Better speedups using simpler parallel
programming for graph connectivity and biconnectivity. In Proceedings
of the 2012 International Workshop on Programming Models and
Applications for Multicores and Manycores, pages 103–114. ACM,
2012.

[21] W. Fan, J. Li, S. Ma, H. Wang, and Y. Wu. Graph homomorphism
revisited for graph matching. Proceedings of the VLDB Endowment,
3(1-2):1161–1172, 2010.

[22] J. S. Firoz, M. Zalewski, and A. Lumsdaine. A scalable distance-1
vertex coloring algorithm for power-law graphs. In Proceedings of the
23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 391–392. ACM, 2018.

[23] L. K. Fleischer, B. Hendrickson, and A. Pınar. On identifying strongly
connected components in parallel. In International Parallel and Dis-
tributed Processing Symposium (IPDPS), pages 505–511. Springer,
2000.

[24] P. Flick, C. Jain, T. Pan, and S. Aluru. A parallel connectivity algorithm
for de bruijn graphs in metagenomic applications. In Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, page 15. ACM, 2015.

[25] O. Green, M. Dukhan, and R. Vuduc. Branch-avoiding graph algorithms.
In Proceedings of the 27th ACM symposium on Parallelism in Algorithms
and Architectures, pages 212–223. ACM, 2015.

[26] W. Hasenplaugh, T. Kaler, T. B. Schardl, and C. E. Leiserson. Ordering
heuristics for parallel graph coloring. In Proceedings of the 26th ACM
symposium on Parallelism in algorithms and architectures, pages 166–
177. ACM, 2014.

[27] R. Hojati, R. K. Brayton, and R. P. Kurshan. Bdd-based debugging of
designs using language containment and fair ctl. In International Con-
ference on Computer Aided Verification (CAV), pages 41–58. Springer,
1993.

[28] S. Hong, N. C. Rodia, and K. Olukotun. On fast parallel detection of
strongly connected components (scc) in small-world graphs.

[29] J. Iverson, C. Kamath, and G. Karypis. Evaluation of connected-
component labeling algorithms for distributed-memory systems. Parallel
Computing, 44:53–68, 2015.

[30] Y. Ji, Y. He, X. Jiang, J. Cao, and Q. Li. Combating the evasion
mechanisms of social bots. computers & security, 58:230–249, 2016.

[31] Y. Ji, Y. He, D. Zhu, Q. Li, and D. Guo. A mulitiprocess mechanism
of evading behavior-based bot detection approaches. In ISPEC.

[32] K. I. Karantasis, A. Lenharth, D. Nguyen, M. J. Garzarán, and K. Pingali.
Parallelization of reordering algorithms for bandwidth and wavefront
reduction. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, pages 921–
932. IEEE Press, 2014.

[33] P. Kumar and H. H. Huang. G-store: high-performance graph store for
trillion-edge processing. In High Performance Computing, Networking,
Storage and Analysis, SC16: International Conference for, pages 830–
841. IEEE, 2016.

[34] P. Kumar and H. H. Huang. Falcon: Scaling io performance in multissd
volumes. In Usenix ATC, 2017.

[35] J. Kunegis. Konect: the koblenz network collection. In Proceedings of
the 22nd International Conference on World Wide Web (WWW), pages
1343–1350. ACM, 2013.

[36] D. LaSalle, M. M. A. Patwary, N. Satish, N. Sundaram, P. Dubey,
and G. Karypis. Improving graph partitioning for modern graphs
and architectures. In Proceedings of the 5th Workshop on Irregular
Applications: Architectures and Algorithms, page 14. ACM, 2015.

[37] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network
dataset collection. http://snap.stanford.edu/data, June 2014.

[38] C. Liu, M. Xu, and S. Subramaniam. A reconfigurable high-performance
optical data center architecture. In Global Communications Conference
(GLOBECOM), 2016 IEEE, pages 1–6. IEEE, 2016.

[39] H. Liu and H. H. Huang. Enterprise: breadth-first graph traversal on
gpus. In Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis (SC), page 68.
ACM, 2015.

[40] H. Liu and H. H. Huang. Graphene: Fine-grained io management for
graph computing. In FAST, 2017.

[41] H. Liu, H. H. Huang, and Y. Hu. ibfs: Concurrent breadth-first search
on gpus. In Proceedings of the 2016 International Conference on
Management of Data (SIGMOD), pages 403–416. ACM, 2016.

[42] X. Luo, J. Gao, C. Zhou, and J. X. Yu. Uniwalk: Unidirectional random
walk based scalable simrank computation over large graph. In Data
Engineering (ICDE), 2017 IEEE 33rd International Conference on,
pages 325–336. IEEE, 2017.

[43] A. Magner, A. Grama, J. Sreedharan, and W. Szpankowski. Recovery
of vertex orderings in dynamic graphs. In Information Theory (ISIT),
2017 IEEE International Symposium on, pages 1563–1567. IEEE, 2017.

[44] S. Maleki, D. Nguyen, A. Lenharth, M. Garzarán, D. Padua, and
K. Pingali. Dsmr: a shared and distributed memory algorithm for single-
source shortest path problem. ACM SIGPLAN Notices, 51(8):39, 2016.

[45] W. Mclendon Iii, B. Hendrickson, S. J. Plimpton, and L. Rauchwerger.
Finding strongly connected components in distributed graphs. Journal
of Parallel and Distributed Computing, 65(8):901–910, 2005.

[46] D. Merrill, M. Garland, and A. Grimshaw. Scalable gpu graph traversal.
In ACM SIGPLAN Notices, volume 47, pages 117–128. ACM, 2012.

[47] A. Mislove, H. S. Koppula, K. P. Gummadi, P. Druschel, and B. Bhat-
tacharjee. Growth of the Flickr social network. In Proc. Workshop on
Online Social Networks, pages 25–30, 2008.

[48] M. E. Newman. The structure and function of complex networks. SIAM
review, 2003.

[49] S. M. Orzan. On distributed verification and verified distribution. Ph.D.
dissertation, 2004.

[50] K. Raffenetti, A. Amer, L. Oden, C. Archer, W. Bland, H. Fujita,
Y. Guo, T. Janjusic, D. Durnov, M. Blocksome, et al. Why is mpi
so slow?: analyzing the fundamental limits in implementing mpi-3.1.
In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, page 62. ACM, 2017.

[51] J. H. Reif. Depth-first search is inherently sequential. Information
Processing Letters, 20(5):229–234, 1985.

[52] D. Sacharidis, S. Papadopoulos, and D. Papadias. Topologically sorted
skylines for partially ordered domains. In Data Engineering, 2009.
ICDE’09. IEEE 25th International Conference on, pages 1072–1083.
IEEE, 2009.

[53] N. Satish, C. Kim, J. Chhugani, and P. Dubey. Large-scale energy-
efficient graph traversal: a path to efficient data-intensive supercomput-
ing. In High Performance Computing, Networking, Storage and Analysis
(SC), 2012 International Conference for, pages 1–11. IEEE, 2012.

[54] Y. Shiloach and U. Vishkin. An o (logn) parallel connectivity algorithm.
Journal of Algorithms, 1982.

[55] G. M. Slota, S. Rajamanickam, and K. Madduri. Bfs and coloring-based
parallel algorithms for strongly connected components and related prob-
lems. In International Parallel and Distributed Processing Symposium
(IPDPS), pages 550–559. IEEE, 2014.

[56] G. M. Slota, S. Rajamanickam, and K. Madduri. A case study of

complex graph analysis in distributed memory: Implementation and
optimization. In Parallel and Distributed Processing Symposium, 2016
IEEE International, pages 293–302. IEEE, 2016.

[57] F. Song, H. Ltaief, B. Hadri, and J. Dongarra. Scalable tile
communication-avoiding qr factorization on multicore cluster systems.
In High Performance Computing, Networking, Storage and Analysis
(SC), 2010 International Conference for, pages 1–11. IEEE, 2010.

[58] S. Srinivasan and et al. Application of graph sparsification in developing
parallel algorithms for updating connected components. In IPDPSW’16.

[59] G. Tan, D. Fan, J. Zhang, A. Russo, and G. R. Gao. Experience on
optimizing irregular computation for memory hierarchy in manycore
architecture. In Proceedings of the 13th ACM SIGPLAN Symposium on
Principles and practice of parallel programming, pages 279–280. ACM,
2008.

[60] R. Tarjan. Depth-first search and linear graph algorithms. SIAM journal
on computing, 1(2):146–160, 1972.

[61] R. E. Tarjan and U. Vishkin. An efficient parallel biconnectivity
algorithm. SIAM Journal on Computing, 1985.

[62] H. Wei, J. X. Yu, C. Lu, and X. Lin. Speedup graph processing by
graph ordering. In Proceedings of the 2016 International Conference
on Management of Data (SIGMOD), pages 1813–1828. ACM, 2016.

[63] B. West and et al. A hybrid approach to processing big data graphs on
memory-restricted systems. In Proc. of IPDPS’15, 2015.

[64] M. Xu, C. Liu, and S. Subramaniam. Podca: A passive optical data
center architecture. In Communications (ICC), 2016 IEEE International
Conference on, pages 1–6. IEEE, 2016.

[65] D. Yan, J. Cheng, K. Xing, Y. Lu, W. Ng, and Y. Bu. Pregel algo-
rithms for graph connectivity problems with performance guarantees.
Proceedings of the VLDB Endowment, 7(14):1821–1832, 2014.

[66] Z. Zhang, J. X. Yu, L. Qin, L. Chang, and X. Lin. I/o efficient:
computing sccs in massive graphs. In Proceedings of the 2013 ACM
SIGMOD International Conference on Management of Data, pages 181–
192. ACM, 2013.

[67] A. D. Zhu, W. Lin, S. Wang, and X. Xiao. Reachability queries on
large dynamic graphs: a total order approach. In Proceedings of the
2014 ACM SIGMOD international conference on Management of data
(SIGMOD), pages 1323–1334. ACM, 2014.

