
An Efficient Parallel Algorithm for Dominator Detection
Daniel Giger

University of Massachusetts Lowell
Hang Liu (Advisor)

Stevens Institute of Technology

ABSTRACT
In graph theory, a vertex v dominates a vertex u if all the paths
from the entry vertex to u must go through vertex v. This algo-
rithm, called dominator detection, has many applications, including
compiler design, circuit testing, and social network analysis. This
work introduces an efficient dominator detection algorithm that is
massively parallel.
ACM Reference format:
Daniel Giger and Hang Liu (Advisor). 2019. An Efficient Parallel Algorithm
for Dominator Detection. In Proceedings of SC19: The International Conference
for High Performance Computing, Networking, Storage, and Analysis, Colorado,
Co, November 17 - 22, 2019 (SC ’19), 2 pages.
https://doi.org/

1 INTRODUCTION
Assuming we enter a graph from vertex s , a vertex v dominates
a vertex u if all paths from s to u go through v. This algorithm
finds a wide range of applications. Particularly, compilers use this
algorithm to conduct register assignment and memory analyzers
use it to detect memory leakage [10]. Recently, this algorithm finds
application in epidemic prediction in social networks [9].

Current dominator detection algorithms use an intermediate
step called semidominators to determine the potential dominators
for each vertex before finding the dominators [1, 3, 5]. One of the
fastest existing algorithms using this approach is SEMI-NCA. This
algorithm runs in O(|V |2) time. This algorithm is typically single
threaded because it is difficult to parallelize.

2 BFS-BASED DOMINATOR DETECTION
ABFS algorithm [2, 7, 8] splits a graph into levels, making it possible
to determine what each vertex in a given level can reach using one
modified BFS for each vertex.

Our key insight is that vertices can only dominate other ver-
tices from later levels. Thus it is only necessary to look at later
levels when determining what they dominate. If two vertices in the
same level can reach the same vertex without going through each
other, nothing in that level can dominate that vertex. If only one
vertex from that level can reach it, then it dominates it. This is the
basis of the proposed algorithm.

The proposed algorithm does one traditional BFS to determine
which vertices are in each level, and then one modified BFS for

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SC ’19, November 17 - 22, 2019, Colorado, Co
© 2019 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/

��

�����

����

�����

����

�����

��������� ������ ������ �������� ����������� ������ ����� ��������

�
��
�

�
�
�
�
�
�
�
�
���
�

�
��
�
�
�
�
�
�

������������
��������

Figure 1: Performance comparison between our approach
and the SEMI-NCA approach.

each level. One of the primary modifications to the BFS is that it
keeps track of what a vertex is reached by first. This is necessary
to determine which vertex is the dominator. The other difference
is that each vertex can be activated up to twice. A vertex can be
activated for a second time if it is reached by a new vertex during a
later iteration.

Although vertices can be activated twice in all but the first BFS,
the later searches are much faster than a traditional BFS. In later
searches, most of the edges do not need to be examined because it
is already known when each vertex will be reached. This makes a
bottom-up BFS efficient and means that the number of operations
needed for each of the searches (besides the first) tends to be closer
to O(n) than O(m).

3 EVALUATION
This algorithm was implemented using OpenMP. We study the
performance of our approach and SEMI-NCA on eight datasets
from SNAP [6] andKonect [4]: Amazonweb, Flickr, Github, Gnutella,
Livejournal, Moreno, Orkut and YahooAds with 1,870 - 3,072,441
vertices and 2,277 - and 117,185,083 edges, respectively.

Figure 1 presents the performance difference of our approach
and the SEMI-NCA. In general, our approach performs better than
SEMI-NCA for large graphs, but falls short on small graphs. The
biggest gain of our approach is on the Orkut graph with 4.75×
speedup.

4 PROOF OF CORRECTNESS
Since any vertex that dominates another vertex v is on all paths
from the source to v , it must also be on the shortest path to it.
Thus all vertices which dominate v are on the shortest path to it.
The Shortest path to v can only go through one vertex in each
prior level; if it goes through more than one vertex in the same
level, it fails to be the shortest path. Thus v can only be dominated
by one vertex in each depth level. The only remaining problem is
determining which one. Suppose a path starts at vertex A and goes
through vertex B in the same level before reaching more vertices
in later levels. Any of these vertices could be dominated by B, but

https://doi.org/
https://doi.org/

SC ’19, November 17 - 22, 2019, Colorado, Co Daniel Giger and Hang Liu (Advisor)

not A. This information can already be determined by examining
the paths starting at B, so examining the longer path accomplishes
nothing. Thus all paths containing more than one vertex in the
starting level can be ignored.

The proposed algorithm takes inspiration from vertex-removal.
Vertex-removal finds dominators by determining which vertices
cannot be reached without a given vertex. The proposed algorithm
does this more efficiently. Since all paths to a vertexmust go through
all previous levels, paths to later vertices must go through the
starting level. Checking whether vertices can be reached without a
given vertex is equivalent to checking if there are other paths to
other vertices. Because of this and the fact that paths through more
than one vertex in the starting level can be ignored, it is sufficient
to check whether or not later vertices can be reached by more than
one vertex in the starting level.

REFERENCES
[1] K. D. Cooper, T. J. Harvey, and K. Kennedy. A simple, fast dominance algorithm.

Technical report, 2006.
[2] A. Gaihre, Z. Wu, F. Yao, and H. Liu. Xbfs: exploring runtime optimizations for

breadth-first search on gpus. In Proceedings of the 28th International Symposium
on High-Performance Parallel and Distributed Computing, pages 121–131. ACM,
2019.

[3] L. Georgiadis, R. F.Werneck, R. E. Tarjan, S. Triantafyllis, and D. I. August. Finding
dominators in practice. In European Symposium on Algorithms, pages 677–688.
Springer, 2004.

[4] J. Kunegis. Konect: the koblenz network collection. In Proceedings of the 22nd
International Conference on World Wide Web, pages 1343–1350. ACM, 2013.

[5] T. Lengauer and R. E. Tarjan. A fast algorithm for finding dominators in a
flowgraph. ACM Transactions on Programming Languages and Systems (TOPLAS),
1(1):121–141, 1979.

[6] J. Leskovec and A. Krevl. Snap datasets: Stanford large network dataset collection
(2014). URL http://snap. stanford. edu/data, page 49, 2016.

[7] H. Liu and H. H. Huang. Enterprise: breadth-first graph traversal on gpus. In
SC’15: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–12. IEEE, 2015.

[8] H. Liu, H. H. Huang, and Y. Hu. ibfs: Concurrent breadth-first search on gpus. In
Proceedings of the 2016 International Conference on Management of Data, pages
403–416. ACM, 2016.

[9] H. Shao, K. Hossain, H. Wu, M. Khan, A. Vullikanti, B. A. Prakash, M. Marathe,
and N. Ramakrishnan. Forecasting the flu: designing social network sensors for
epidemics. arXiv preprint arXiv:1602.06866, 2016.

[10] Wikipedia. Dominator (graph theory). Retrived from https://en.wikipedia.org/
wiki/Dominator_(graph_theory). Accessed: 2019, July 30.

https://en.wikipedia.org/wiki/Dominator_(graph_theory)
https://en.wikipedia.org/wiki/Dominator_(graph_theory)

	Abstract
	1 Introduction
	2 BFS-based Dominator Detection
	3 evaluation
	4 proof of correctness
	References

