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ABSTRACT
Breadth-First Search (BFS) is a key graph algorithm with
many important applications. In this work, we focus on a
special class of graph traversal algorithm - concurrent BFS
- where multiple breadth-first traversals are performed si-
multaneously on the same graph. We have designed and
developed a new approach called iBFS that is able to run i
concurrent BFSes from i distinct source vertices, very effi-
ciently on Graphics Processing Units (GPUs). iBFS consists
of three novel designs. First, iBFS develops a single GPU
kernel for joint traversal of concurrent BFS to take advan-
tage of shared frontiers across different instances. Second,
outdegree-based GroupBy rules enables iBFS to selectively
run a group of BFS instances which further maximizes the
frontier sharing within such a group. Third, iBFS brings ad-
ditional performance benefit by utilizing highly optimized
bitwise operations on GPUs, which allows a single GPU
thread to inspect a vertex for concurrent BFS instances. The
evaluation on a wide spectrum of graph benchmarks shows
that iBFS on one GPU runs up to 30× faster than executing
BFS instances sequentially, and on 112 GPUs achieves near
linear speedup with the maximum performance of 57,267
billion traversed edges per second (TEPS).

1. INTRODUCTION
Graph-based representations are ubiquitous in many ap-

plications such as social networks [1–3], metabolic networks [4],
and computer networking [5]. As a result, graph algorithms
have been an vital research topic in the era of big data,
among which Breadth-First Search (BFS) draws a signifi-
cant amount of interests due to its importance.

In this work, we focus on a special class of BFS algorithm -
concurrent BFS - where multiple breadth-first traversals are
performed simultaneously on the same graph. We refer to
our solution to this problem as iBFS that is able to perform
i multiple breadth-first traversals in parallel on GPUs, each
from a distinct source vertex. Here i is between 1 and |V |,
i.e., the total number of vertices in the graph.
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Depending on the value of i , iBFS actually becomes a
number of different problems. Formally, in a graph with |V |
vertices, iBFS is

• single source shortest path (SSSP) if i = 1 [6];

• multi-source shortest path (MSSP) if i ∈ (1, |V |) [7,8];

• all-pairs shortest path (APSP) if i = |V | [9, 10].

Moreover, iBFS can be utilized in many other graph algo-
rithms such as betweenness centrality [11, 12] and closeness
centrality [13]. For example, one can leverage iBFS to con-
struct the index for answering graph reachability queries,
that is, whether there exists a path from vertex s to t with
the number of edges in-between less than k [14–16]. We will
show in this paper this step can be an order of magnitude
faster with iBFS. In all, a wide variety of applications, e.g.,
network routing [17–19], network attack detection [20], route
planning [21–23], web crawling [24,25], etc., can benefit from
high-performance iBFS.

This work proposes a new approach for running iBFS on
GPUs that consists of three novel techniques: joint traver-
sal, GroupBy, and bitwise optimization. Prior work has pro-
posed to combine the execution of different BFS instances
mostly on multi-core CPUs [26–28]. The performance im-
provement, however, is limited. For one, none of early projects
has attempted to group the BFS instances to improve the
frontier sharing during the traversal. Further, bottom-up
BFS provides new additional challenges. For example, while
MS-BFS [26] supports bottom-up, it does not provide early
termination which iBFS leverages for faster traversal. In
essence, BFS is a memory-intensive workload that matches
well with thousands of lightweight threads provided by GPUs.
Prior work such as [6,29–31] has shown great success of using
GPUs for single-source BFS. To the best of our knowledge,
this is the first work that supports concurrent BFS on GPUs.

The first technique of iBFS is motivated by the observa-
tion that a naive implementation that simply runs multi-
ple BFS instances sequentially or in parallel would not be
able to achieve high parallelism on GPUs. To address this
challenge, iBFS proposes the technique of joint traversal to
leverage the shared frontiers among different concurrent BFS
instances, as they can account for as high as 48.6% of the
vertices in some of the graphs we have evaluated. In partic-
ular, iBFS executes different traversals within a single GPU
kernel. That is, all concurrent BFS instances share a joint
frontier queue and a joint status array.

Second, to achieve the maximum benefit of joint traversal,
iBFS shall execute all BFS instances together. However, this
is impossible due to limited hardware resources, e.g., global
memory size and thread count, on GPUs. Fortunately, we
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Figure 1: (a) An example graph used throughout this paper (b) Four valid BFS traversal trees from different source vertices, i.e.,
BFS-0, BFS-1, BFS-2, and BFS-3 starting from vertices 0, 3, 6, and 8, respectively. (c), (d), (e) and (f) are two levels traversal of the
corresponding four valid trees, where the top half represents top-down traversal and the bottom half bottom-up. In all examples, FQ and
SA stand for frontier queue and status array, respectively. The frontier queue stores frontiers while the status array indicates the status
of each frontier in the current level where ”F”, ”U” and numbers represent ”Frontier”, ”Unvisited” and its depth (visited), respectively.
The dotted circles indicate the updated depth for each frontier.

discover that grouping BFS instances can be optimized to
ensure a high ratio of frontier sharing among different in-
stances. Guided by a theorem on inter-group sharing ratio,
iBFS develops the second technique of GroupBy that selec-
tively combines BFS instances into optimized batches, which
results in 2× speedup of the overall performance.

A typical BFS algorithm starts from the source vertex in
a top-down fashion, inspects the frontiers at each level, and
switches to bottom-up to avoid inspect too many edges un-
necessarily. GroupBy improves iBFS performance in both
top-down and bottom-up, although in different fashions. In
top-down, higher sharing ratio directly reduces the number
of memory access for inspection and expansion. In contrast,
through sharing, GroupBy allows bottom-up traversals to
complete in approximately the same amount of time, mini-
mizing workload imbalance across multiple BFSes.

Third, iBFS would need to inspect a considerable amount
of frontiers at multiple levels, in some case, upto 15× more
than a single BFS. Although for each individual BFS not
every vertex is a frontier at every level, concurrent BFS sig-
nificantly increases the number of frontiers at each level.
While GPUs offer thousands of hardware threads, travers-
ing millions of the vertices of large graphs in parallel remains
challenging. To this end, iBFS utilizes a bitwise status array
that uses one bit to represent the status of the vertex for
each BFS instance. This reduces the size of data fetched
during inspection, and more importantly through bitwise
operations reduces the number of threads needed for inspec-
tion, together accelerating the graph traversal by 11×.

In summary, the contributions of this paper are:

• iBFS combines joint traversal and GroupBy to allow
both top-down and bottom-up BFS to run very effi-
ciently within each group. This is achieved via uti-
lizing a set of outdegree-based GroupBy rules to form
good groups of concurrent BFS instances that are able
to enjoy a high sharing ratio of frontiers among them.
A theoretical study on frontier sharing and GroupBy
is also presented.

• iBFS also develops bitwise-operations based inspection
and frontier identification, which further simplifies the
traversal on GPUs and delivers another key benefit of
allowing early termination for bottom-up BFS. As a
result, iBFS achieves up to 2.6× speedup compared to
the state of the art [26].

• We have implemented and evaluated iBFS on a wide
range of graphs, as well as on both a single GPU and a

cluster. To the best of our knowledge, this is the first in
both running GPU-based concurrent BFS on joint data
structures, i.e., joint frontier queue and bitwise status
array, and scaling toO(100) GPUs with unprecedented
traversal rate, i.e., delivering 57,267 billion traversed
edges per second (TEPS) on 112 GPUs.

The rest of the paper is organized as follows: Section 2 in-
troduces the background on BFS, concurrent BFS, and the
motivations. Section 4 presents the design of single-kernel
and joint traversal. Section 5 discusses our GroupBy tech-
nique. Section 6 presents the bitwise optimization. Section 8
presents the evaluations on our iBFS system. Section 9 dis-
cusses the related work and Section 10 concludes.

2. BACKGROUND
BFS typically starts the traversal in top-down and switches
to bottom-up in a later stage [32, 33]. Both directions per-
form three tasks at each level, namely, expansion, inspection,
and frontier queue generation. To start, frontier queue (FQ)
is initialized with the source vertex and will always contain
the vertices (frontiers) to be expanded from at the next level.
From the frontiers, expansion explores their edges to the ad-
jacent vertices, and inspection updates the statuses of those
neighbors in the status array (SA) which maintains a record
(unvisited, frontier, or visited) for each vertex.

In top-down BFS, expansion and inspection aim to iden-
tify unvisited neighbors of each frontier. Figure 1 presents an
example of breadth-first traversal. Given the graph in Fig-
ure 1(a), at level 3, a top-down BFS shown in the top half of
Figure 1(c) (BFS-0 starting from vertex 0) will expand from
the queue {1, 4} and mark their unvisited neighbors{2, 3,
5} as frontiers in the status array. Although vertices {0, 1,
4} have been visited before, they will still be inspected at
this level, but their statuses will not be updated.

In contrast, bottom-up BFS tries to find a parent for un-
visited vertices in expansion and inspection, and in this case,
stores unvisited vertices in the frontier queue. In the bottom
half of Figure 1(c), BFS-0 at level 4, {6, 7, 8} are unvisited
vertices, i.e., treated as frontiers here. For vertex 6, since
its first neighbor 3 is visited, bottom-up BFS will mark the
depth of vertex 6 as 4, and there is no need to check ad-
ditional neighbors. This is what we refer to as early ter-
mination in bottom-up BFS, which can potentially lead to
significant performance gains. The newly proposed bitwise
optimization in iBFS can further expedite this process for
concurrent traversals and lead to even higher performance.
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Figure 2: Average frontier sharing percentage between two differ-
ent BFS instances.

Among three tasks at each level, inspecting adjacent ver-
tices of the frontiers involves a lot of random memory ac-
cesses (pointer-chasing), accounting for most of the runtime.
This can be observed on four BFS traversals for both top-
down and bottom-up in Figure 1.
Concurrent BFS executes multiple BFS instances from
different source vertices. Using the example in Figure 1, four
BFS instances start from vertex 0, 3, 6, and 8, respectively.
A naive implementation of concurrent BFS will run all BFS
instances separately and keep its own private frontier queue
and status array. On a GPU device, each individual subrou-
tine is defined as a Kernel. Therefore, in the aforementioned
example, four kernels will run four BFS instances in parallel
from four source vertices. NVIDIA Kepler provides Hyper-Q
to support concurrent execution of multiple kernels, which
dramatically increases the GPU utilization especially when
a single kernel cannot fully utilize the GPU [34].

Unfortunately, this naive implementation of concurrent
BFS takes approximately the same amount of time as run-
ning these BFS instances sequentially, as we will show later
in Section 8. For example, for all the graphs evaluated
in this paper, sequential and naive implementation of con-
current BFS take average 52 ms and 48 ms, respectively,
with a difference in traversal rate of 500 million TEPS. The
main reason for such a small benefit is because simply run-
ning multiple BFS instances in parallel would overwhelm the
GPU, especially at the direction-switching level when a BFS
goes from top-down to bottom-up. At that moment each
individual BFS would require a large number of threads for
their workloads. As a result, such a naive implementation
may even underperform a sequential execution of all BFS
instances.
Opportunity of Frontier Sharing: iBFS aims to address
this problem by leveraging the existence of frontiers shared
among different BFS instances. Figure 2 presents the av-
erage percentage of shared frontiers per level between two
instances. The graphs used in this paper are presented in
Section 8. Top-down levels have smaller number of shared
frontiers (close to 4% on average) whereas bottom-up levels
have much more as high as 48.6%. This is because bottom-
up traversals often start from a large number of unvisited
vertices (frontiers in this case) and search for their parents.
The proposed GroupBy technique can improve the sharing
for both directions to 10× and 1.7×, respectively.

Potentially, the shared frontiers can yield three benefits in
concurrent BFS: (1). These frontiers need to be enqueued
only once into the frontier queue. (2). The neighbors of
shared frontiers need to be loaded in-core only once during
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Figure 3: The flow charts of (a) BFS, (b) iBFS.

expansion. (3). Memory accesses to the statuses of those
neighbors for different BFSes can be coalesced. It is impor-
tant to note that each BFS still has to inspect the statuses
independently, because not all BFSes will have the same sta-
tuses for their neighbors. In other words, shared frontiers
do not reduce the overall workload. Nevertheless, this work
proposes that shared frontiers can be utilized to offer faster
data access and saving in memory usage, both of which are
critical on GPUs. This is achieved through a combination
of bitwise, joint traversals and GroupBy rules that guide the
selection of groups of BFSes for parallel execution.

3. iBFS OVERVIEW
In a nutshell, iBFS as shown in Figure 3, consists of three

unique techniques, namely, joint traversal, GroupBy, and
bitwise optimization, which will be discussed in Section 4,
5, and 6, respectively.

Ideally the best performance for iBFS would be achieved
by running all i BFS instances together without GroupBy.
Unfortunately, ever-growing graph sizes, combined with lim-
ited GPU hardware resources, puts a cap on the number of
concurrent BFS instances. In particular, we have found that
GPU global memory is the dominant factor, e.g., 12GB on
K40 GPUs compared to many TB-scale graphs.

Let M be GPU memory size and N the maximum number
of concurrent BFS instances in one group (i.e., the group
size). If the whole graph requires S storage, a single BFS
instance needs |SA| to store its data structures (e.g., the
status array for all the vertices), and for a joint traversal
each group requires at least |JFQ| for joint data structures

(e.g., the joint frontier queue), then N 6 M−S−|JFQ|
|SA| . In

most cases N satisfies 1 < N � i 6 |V |. In this paper, we
use a value of 128 for N by default.

Unfortunately, randomly grouping N different BFS in-
stances is unlikely to produce the optimal performance. Care
has to be taken to ensure a good grouping strategy. To il-
lustrate this problem, for a group A with two BFS instances
BFS-s and BFS-t, let JFQA(k) be the joint frontier queue of
group A at level k, FQs(k) the individual frontier queue for
BFS-s, and FQt for BFS-t. Thus, |JFQA(k)| = |FQs(k)| ∪
|FQt(k)| − |FQs(k)| ∩ |FQt(k)|, where |FQs(k)| ∩ |FQt(k)|
represents the shared frontiers between two BFS instances.
Clearly, the more shared frontiers each group has, the higher
performance iBFS will be able to achieve. Before we describe
the GroupBy technique in Section 5 that aims to maximize
such sharing within each group, we will first introduce how
iBFS achieves joint traversal in the next section which makes
parallel execution possible.
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4. JOINT TRAVERSAL
In this work, we propose to implement iBFS in a single

GPU kernel, different from prior GPU-based work [35]. This
way, iBFS will be able to exploit the sharing across different
BFS instances, e.g., if two threads of the same kernel are
scheduled to work on a shared frontier, iBFS only needs
to load adjacent vertices from global memory once. This
benefit would be, otherwise, not possible on GPUs with a
multi-kernel implementation which would be used for the
aforementioned naive implementation.
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Figure 4: Generate joint frontier queue (JFQ3) from joint status
array (JSA2). Assuming we are executing the four BFS traversals
of Figure 1 in a single kernel.

The joint traversal of iBFS uses two joint data structures
for all concurrent BFS instances: (1) Joint Status Array
(JSA) is used to keep the status of each vertex for all in-
stances. For each vertex, iBFS puts its statuses for different
BFS instances sequentially. For example, in Figure 4, as
we run four concurrent BFSes, four bytes are used for each
vertex. For vertex 0, the first byte of 1 indicates that ver-
tex 0 has been visited with the depth of 1 in BFS-0, and
the next three bytes of U indicate that the same vertex 0
has yet been visited for all three other BFS instances. (2)
Joint Frontier Queue (JFQ) is a set of all the frontiers
from concurrent BFS instances, where any shared frontier
appears only once. Thus, this queue requires the maximum
size of |V | to store the frontiers for all i BFS instances. In
comparison, using a private frontier queue would require a
much bigger queue with the size of i×|V |.

A GPU uses single instruction multiple thread (SIMT)
model and schedules threads in a warp that consists of 32
threads [36]. Several warps can form a thread block called
Cooperative Thread Array (CTA). The threads within a block
can communicate with each other quickly with shared mem-
ory and built-in primitives.

To generate the JFQ, iBFS assigns one warp to scan the
status of each vertex as in Figure 4. If this vertex happens to
be a frontier for any BFS instance, iBFS needs to store it in
the joint frontier queue, e.g., vertex 1 is put in JFQ3 because
it is a frontier for BFS-0 at level 3. In contrast, vertex 0 is
not considered a frontier for all four BFS instances.

It is worthy to note that iBFS uses a CUDA vote instruc-
tion, i.e., __any(), to communicate among different threads
in the same warp and schedules one thread to enqueue the
frontier. Furthermore, iBFS uses another CUDA feature
__ballot(parameter) to generate a separate variable to in-
dicate which BFS instances share this frontier. This is im-
portant for shared frontiers, e.g., while vertex 7 is a fron-
tier in BFS-2 and BFS-3, it would appear once in the joint
frontier queue. Removing such redundant frontiers from
the queue substantially reduces the number of costly global
memory updates, which contributes partly to performance
gains obtained by iBFS.

iBFS’s joint traversal introduces two unique memory op-
timizations to reduce the number of expensive global mem-
ory transactions: (1) during expansion, iBFS uses a new
cache presented in Figure 5 to load the adjacent vertices of
a frontier from GPU’s global memory to its shared mem-
ory to feed all BFS instances. This way the neighbors from
each frontier will only be loaded from global memory once,
although numerous requests may come from multiple BFS
instances. This benefit is not limited just to shared fron-
tiers, rather every frontier in the queue. And (2) during
inspection, iBFS schedules multiple threads with contigu-
ous thread IDs to work on each frontier. Here the number
of threads is the same as the that of concurrently executed
BFS instances. This is because on GPUs one global mem-
ory transaction typically fetches 16 contiguous data entries
from an array and only continuous threads can share the
retrieved data. On the other hand, if continuous threads
write to the same memory block, such writes are coalesced
into one global memory transaction as well.

Now we will use an example to show how iBFS utilizes
these new structures in both top-down and bottom-up traver-
sal. Figure 5(a) exhibits the top-down traversal of vertex 7
which is a frontier in the proceeding level (i.e., level 2). Dur-
ing expansion, the neighbors {5, 6, 8} of vertex 7 are loaded
in the cache. During inspection, BFS instances that do not
have this frontier will not inspect the neighbors, specifically,
the first and second threads in this figure. On the other
hand, when the third and fourth threads access the statuses
of three neighbors, it is performed in a single global memory
transaction since these statuses are stored side by side and
accessed by contiguous threads. At this level, vertex 7 will
also have its status updated with the depth of 2.

The bottom-up traversal is performed in a different man-
ner as shown in Figure 5(b). For the frontier vertex 7, iBFS
will similarly load its adjacent vertices {5, 6, 8} into the
cache. The difference here is that iBFS will check if {5, 6,
8} are already visited, if so, mark the depth of 7 as 4.



Note that a vertex can be a frontier at both top-down
and bottom-up levels, for example, vertex 7 in Figure 5. In
Figure 5(a), vertex 7 is a frontier for top-down traversal of
the third and fourth BFSes, and in Figure 5(b) bottom-up
of the first BFS. Clearly, as long as one BFS considers a
vertex as a frontier at a particular level, this vertex shall be
enqueued in iBFS.

5. GROUPBY
In this section, we will introduce the concept of sharing

ratio, and propose several outdegree-based GroupBy rules.
We will first use top-down traversal for the discussion of
GroupBy and later present the impacts on bottom-up BFS.

5.1 Frontier Sharing Degree and Ratio
To a great extent, the performance of iBFS is determined

by how many frontiers are shared at each level during the
joint traversal of each group. This is because if multiple BFS
instances have a common frontier in one level, all its edges
will be checked only once, thus leading to overall perfor-
mance improvement. In this work we define for any group,
say group A with the size N, the Sharing Degree (SDA) as
the degree of sharing that exists in the joint frontier queue:

SDA =

∑
k

N∑
j=1

|FQj(k)|∑
k

|JFQA(k)| (1)

where j ∈ [1, N] and represents the j-th BFS instance in
the group A, and k represents the level (or depth) for the
traversal. In essence, SDA shows on average each joint fron-
tier is shared by how many BFS instances in a group. Thus,
the Sharing Ratio can be easily calculated as SD divided by
the total number of instances in the group.

Traditionally, the time complexity of a BFS is calculated
by the number of inspections performed, that is, the edge
count |E|. Thus the time of a sequential execution of group
A will be N · |E|.

In this work, We use TA(k) to represent the time of the
joint execution of group A at the level k, that is,

TA(k) =
∑

v∈JFQA(k)

outdegree(v)

where v stands for each frontier in the JFQ at the level k.
And the total runtime TA for group A can be calculated by
summarizing the runtime of each level, which is:

TA =
∑
k

TA(k) =
∑
k

∑
v∈JFQA(k)

outdegree(v) (2)

According to the Amdahl’s Law, the speedup SpeedupA
of joint traversal for group A over sequential execution is:

SpeedupA =
N · |E|
TA

(3)

Let d̄ be the average outdegree, we can obtain the ex-
pected value of SpeedupA using equations (2) and (3). Thus,

E[SpeedupA] = E[
N · d̄ · |V |

d̄ ·
∑
k
|JFQA(k)|

]

= E[
N · |V |∑

k

|JFQA(k)|
]

(4)

Lemma 1. For any BFS group, say group A, its sharing
ratio is equal to the expected value of SpeedupA , that is,

SDA = E[SpeedupA] (5)

Proof. Because for the j-th BFS every vertex will be-
come a frontier at one of the levels, the sum of |FQj(k)|
across all levels is equal to the total number of the vertices,
that is,

∑
k

|FQj(k)| = |V |.

SDA =

∑
k

N∑
j=1
|FQj(k)|∑

k
|JFQA(k)|

=

N∑
j=1
|V |∑

k
|JFQA(k)|

= E[SpeedupA]

(6)

Lemma 1 demonstrates that the sharing ratio reflects the
performance of the joint execution when it is compared to
the sequential execution of such a group. However, for any
group, since the size of JFQ at each level is not known until
runtime, we will not able to calculate a priori the sharing
ratio as well as the expected performance. Fortunately, we
discover that the sharing ratios at the first few levels can be
used as a good metric, and there also exists an important
correlation for sharing ratios at consecutive levels.

Theorem 1. Given any two BFS groups A and B with
the same number of BFS instances, if at the level k their
sharing ratios obeys SDA(k) > SDB(k), at the level k + 1
the following relationship, E[SDA(k+ 1)] > E[SDB(k+ 1)],
will hold.

Proof. Let us start with one group A. At the level k,
the j-th BFS performs two main tasks for a frontier vertex
v, i.e., expansion and inspection. In the first task, the j-th
BFS fetches the neighbor list of frontier v, and in the second
task, it checks all neighbors. The number of inspections is
equal to the outdegree of v.

We define null inspections as those that do not lead to an
increase in the size of the frontier queue at a particular level.
Note that as vertices are shared, null inspections do not nec-
essarily mean such inspections have not found a frontier at
the next level. There are three cases that render a neighbor
check as a null inspection. The first two cases are relevant
to a single BFS, while all three are applicable to iBFS. For
a neighbor w of the frontier v,

Case 1 : the neighbor w is visited.

Case 2 : the neighbor w has already been marked as a
new frontier by other inspections at the level k. This
check will be discarded, and will not increase the size
of the frontier queue. This happens because w may
have additional parents other than v.

Case 3 : the neighbor w has already been marked as a new
frontier by other concurrent BFS instances. Similarly,
in joint traversal, this check will be discarded, and will
not increase the size of the frontier queue, because w
may be shared by concurrent BFS instances.

We use three values to represent the occurring percentages
of three cases: α accounts for case 1 and 2 for a single BFS,
β for case 1 and 2 for iBFS, and γ for case 3 for iBFS alone.
Thus, the probability of the complement of case 1 and 2 for
a single BFS can be represented by (1− α), and so on.
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Figure 6: Sharing ratio trend of Facebook graph (FB).

Now for the level k+1, the size of JFQ is equal to the sum
of the number of frontiers shared by different BFS instances
within group A, from one to N instances. Thus, let sj(k)
be the number of vertices that are shared by exactly j BFS
instances, we have

SDA(k + 1) =

N∑
j=1
|FQj(k + 1)|

|JFQA(k + 1)|
=

N∑
j=1

j · sj(k + 1)

N∑
j=1

sj(k + 1)

=

N∑
j=1

j · sj(k) · dj · (1− αj)

N∑
j=1

sj(k) · dj · (1− βj − γj)

(7)

where dj denotes the average out-degree of these frontiers.
Since we do not know a priori the values for dj , αj , βj ,

and γj , if replacing them with average values d̄, ᾱ(k), β̄(k),
and γ̄(k), the expected value of SDA(k + 1) is

E[SDA(k + 1)] =

N∑
j=1

j · sj(k) · d̄ · (1− ᾱ(k))

N∑
j=1

sj(k) · d̄ · (1− (β̄(k))− γ̄(k))

(8)

We assume that each single BFS has the same probability
ᾱ(k), so for iBFS, we have β̄(k) = ᾱj(k), and

E[SDA(k + 1)] =

N∑
j=1

j · sj(k) · d̄ · (1− ᾱ(k))

N∑
j=1

sj(k) · d̄ · (1− (ᾱj(k))− γ̄(k))

≈ SDA(k) ·
1− ᾱ(k)

1− γ̄(k)

(9)

Now we consider two groups A and B. If SDA(k) >
SDB(k), as ᾱ(k) and γ̄(k) are independent of groups, we
get E[SDA(k + 1)] > E[SDB(k + 1)] from equation (9).

Figure 6 exhibits average sharing ratios for three different
groups. We start from the second level as no BFS instances
share the source vertices, and the maximum SD is equal to
N , that is, 128. Since group A has a higher SD at the
second level than group B, it always has higher ratios in
the following levels. Similarly, group B has higher ratios
than random. Clearly, as shown in Figure 6, sharing ratios
would not increase monotonically for a group, which tend
to peak at the first several bottom-up levels. Nevertheless,
Theorem 1 implies that a higher sharing ratio of the initial
levels can lead to a higher expected sharing ratio in later

Rule	  1	   Rule	  1	  

Source	  Vertex	  1	   Source	  Vertex	  2	  

Rule	  2	  

:	  Not	  shared	   :	  Shared	  

…	  

High	  	  
Outdegree	  	  
Vertex	  

Figure 7: An illustration of a power-law graph.

levels. Combining Lemma 1 and Theorem 1, we can see that
a GroupBy strategy can achieve good speedup by focusing
on the first several levels as described in Lemma 2.

Lemma 2. For two BFS groups A and B, for a small
number k, if their initial sharing ratios obey SDA(k) >
SDB(k) at the level k, the expected values for the speedups
will follow E[speedupA] > E[speedupB ].

5.2 Outdegree-based GroupBy Rules
Lemma 2 states that a good GroupBy rule can be obtained

by focusing on increasing the BFS sharing in the first several
levels. Fortunately, an easy analysis on the outdegrees of the
frontiers at these levels, coupled with a quick determination
on the connectivity to high-outdegree vertices, can lead to
two simple yet powerful outdegree-based rules:

Rule 1 The out-degrees of these two source vertices are less
than p.

Rule 2 Two source vertices connect to at least one common
vertex whose outdegree is greater than q.

Both rules are complementary to each other. Since the
first rule ensures small outdegrees of the source vertices,
other non-shared neighbors will not amortize the sharing
ratio contributed by the shared vertex with high outdegrees
from the second rule. With these two GroupBy rules, two
BFS instances will likely get high sharing ratio.

Figure 7 shows an example of a power-law graph which is
the focus of this work. In this example, many vertices are
connected to a high-outdegree vertex, and the source vertices
for different BFSes are not exception. When they share
a common high-outdegree vertex, high sharing ratio across
multiple BFSes can be easily achieved. It is not required
that the source vertex directly connects to a high-outdegree
vertex, as long as within the first several levels. Simply
put, for two BFSes, it is beneficial to group them together
if their source vertices have relatively small number of edges
and also connect to high-outdegree vertices.
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Selection of p and q. Figure 8 plots the GroupBy
performance for different q values. One can see that the



performance rises initially and reaches the peak, typically
around the range of 128 – 1024. The lower performance is
observed for both smaller and larger q. For smaller q, the
groups would likely have small sharing ratios. On the other
hand, for larger q, very few BFS instances would satisfy the
GroupBy rules. In this paper q is 128 by default. Once q is
decided, p is selected in the ascending order from a sequence
of numbers that are the power of 2. Here we select p from a
sequence of 4, 16, 64, and 128.

The rules are applied as follows. First, iBFS selects all
groups that satisfy both rule 1 and 2 with pre-determined p
and q. iBFS will run such groups directly when their sizes
are larger than N , the maximum group size described in Sec-
tion 3. Otherwise, several small groups, likely using different
values of p, will be combined and run together. Second, iBFS
will try to combine the groups with different high-outdegree
vertices. Last, when no BFS satisfies both rules, iBFS will
group the remaining them in a random manner.

Sharing ratio improvement. Figure 9 plots the im-
provement on the sharing ratio using outdegree-based rules
for both top-down and bottom-up. Specifically, for top-
down, our GroupBy rules improves the sharing ratio by 10×,
which increases from average 3.9% to 39.3% for 128 BFS in-
stances. For bottom-up, although the relative improvement
is smaller, the sharing ratio is greatly improved to average
66.1% which we will discuss shortly.
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Figure 9: Frontier sharing ratio comparison between random and
GroupBy.

For random graph that has a relatively uniform outdegree
distribution, iBFS can adopt a slightly different rule. Since
Theorem 1 and Lemma 2 still apply, iBFS can select a group
of BFS instances if they share some common vertices from
the sources. Our evaluation shows that such a rule may ob-
tain 3.5× and 5% improvement in top-down and bottom-up
respectively on a random graph, albeit much smaller com-
pared to other graphs in our test suite.

5.3 GroupBy on Bottom-Up BFS
So far we have focused on GroupBy during the top-down

stage of BFS. Surprisingly, good GroupBy rules for top-down
will lend themselves to achieving great speedups during the
bottom-up stage. Together, GroupBy further accelerates
iBFS performance by increasing frontier sharing and more
importantly balancing the workload across various BFS in-
stances. These two effects can be best explained using an
example of two BFS instances, say BFS-s and BFS-t, within
a group. In Figure 10, Area I represents shared, visited ver-
tices between two BFSes whereas Area III shared, unvisited
vertices. When BFS-s and BFS-t share more frontiers at

I 

II 

III 

IV 

w 

y 
x z 

Figure 10: The circle represents all the ver-
tices in a graph. There are two instances
BFS-s and BFS-t. Area I and II repre-
sent the visited vertices for BFS-s (fron-
tiers at top-down), and Area III and IV the
unvisited vertices for BFS-s (frontiers at
bottom-up). Similarly, Area I and IV rep-
resent the visited vertices for BFS-t, and
Area II and III the unvisited vertices for
BFS-t.

top-down, that is, bigger Area I, they share more frontiers
at bottom-up, that is, bigger Area III. From Figure 9(b), one
can see that for bottom-up, all the graphs still achieve 66.1%
on average, close to 2 times improvement. This is significant
because in bottom-up frontier sharing ratio is already high
(38.7%) to begin with.

The most significant benefit of GroupBy when it comes to
bottom up lies on the fact that it helps balance the work-
load. For a shared vertex w in Area III shown in Figure 10,
depending on which BFS it belongs to and who is its par-
ent, it may need to search all three other areas. Again,
When BFS-s and BFS-t share more frontiers at top-down,
that is, bigger Area I, this also increases the likelihood that
both BFS instances discover the shared parent y in Area
I. As bottom-up inspection terminates as soon as a parent
is found, such sharing will further lead to similar runtimes
across different BFSes, that is, reducing the variance in run-
times. To demonstrate this, Figure 11 shows the standard
deviation for the number of inspections during bottom-up
before and after GroupBy. Since GroupBy combines the
BFS instances that would find their parent with a similar
runtime, it lowers the standard deviation by 13×. Among
all the graphs, it helps the TW graph the most – by 66×, re-
ducing the number of inspections from 744 to 11.3. Clearly,
GroupBy helps to transform a highly imbalanced workload
to a much more balanced one.
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Figure 11: Standard deviation of the distribution for number of
inspections during bottom-up before and after GroupBy.

6. GPU-BASED BITWISE OPERATIONS
Although joint status array removes random inspections

on shared frontiers, assigning a warp of threads to work on
each frontier is not feasible when a graph has millions of
frontiers. While modern GPUs like NVIDIA K40 provide
thousands of hardware threads, clearly we still need to find
a smart way to utilize threads effectively when dealing with
several millions of vertices in a graph. To this end, we pro-
pose a novel concept of Bitwise Status Array (BSA) in
iBFS that uses a single bit to represent the status of each
vertex for different BFS instances. And all bits of one vertex



Algorithm 1 Bitwise iBFS at Level k + 1

1: BSAk+1 ← BSAk

2: forall frontier f in parallel do

3: foreach neighbor v of f do

4: if Top-Down then

5: BSAk+1[v] = BSAk+1[v] ORatomic BSAk[f]

6: else // Bottom-up

7: if BSAk+1[f]==0xff...f then

8: break; // Early termination

9: end if

10: BSAk+1[f] = BSAk+1[f] OR BSAk[v]

11: end if

12: end for

13: end for

are kept in a single variable. If this vertex is visited, we set
it as 1, otherwise 0.

Figure 12 presents the mapping between joint and bitwise
status array. Here for any vertex, while JSA uses the first
four variables (3, U, 3, 2) to store the status for four BFS
instances, BSA only needs a single variable (1011).

JSA	  

BSA	  

Single	  variable	  

1 0 1 1	  

3	   U	   3	   2	  

Four	  variables	  

	  	  …	  	  	  

	  	  …	  	  	  

	  	  …	  	  	  

	  	  …	  	  	  

Figure 12: Mapping from joint status array (JSA) to bitwise sta-
tus array (BSA) for one vertex.

With the bitwise status array, iBFS only needs one ex-
pansion thread to fetch the statuses of each vertex for all
concurrent BFS. In addition, the inspection of concurrent
BFS that will be described shortly can be executed by a
single bitwise operation, which can be easily done with a
single thread. In summary, this design frees up a substan-
tial number of threads and further reduces the number of
global memory access.

Bitwise Inspection. At level k + 1, iBFS keeps a copy
of bitwise status array – BSAk. During traversal, the sta-
tuses for the most recently visited vertices are also marked
as 1 in BSAk+1. At the end of each level, the differences
between BSAk and BSAk+1 are used to identify the just
visited vertices. Algorithm 1 shows the pseudo-code.

For top-down traversal, iBFS assigns a single thread to
work on frontier f . This thread loads frontier’s status (i.e.,
BSAk[f]) from BSAk and subsequently sets all neighbors’
status in BSAk+1[v] via a bitwise OR operation. For each
neighbor, this OR operation only affects the bits for the cor-
responding BFS instances that share this frontier, because
only these bits in BSAk[f ] are recently updated as 1.

Using frontier 7 in Figure 13(a) as an example, vertex 7 is
a frontier shared by the third and fourth BFS instances in
Figure 1. During the inspection of vertex 7’s neighbor – {5,
6, 8}, iBFS uses the bitwise OR operation between 7’s status
and each neighbor’s status. Specifically, for vertex 5, it sets
the third bit in BSA3[5], and for vertex 6, the fourth bit in
BSA3[6]. One may also notice that, the OR operation does
not affect the already set bits, like the fourth bit of vertex 5
in BSA3[5]. The reason is that the fourth BFS instance has
already visited vertex 5 in prior levels.

Because multiple BFS instances may want to set different
bits of the same vertex in the bitwise status array concur-

Algorithm 2 Frontier Identification at Level k + 1

1: forall vertex v in parallel do

2: if Top-down then

3: if BSAk+1[v] XOR BSAk[v] then

4: JFQ.enqueue(v)

5: end if

6: else // Bottom-up

7: if NOT BSAk+1[v] then

8: JFQ.enqueue(v)

9: end if

10: end if

11: end for

rently, iBFS needs atomic operations to avoid overwrites of
the updates to BSAk+1, another difference from [26].

Bottom-up traversal, similarly assigns a single thread to
work on each frontier. However, the frontier’s status is
updated by the neighbors’ statuses, that is, iBFS uses OR

between BSAk+1[f] and BSAk[v] and stores the result into
BSAk+1[f]. Using frontier 7 of Figure 13(b) as an example,
its neighbors are {5, 6, 8}. iBFS executes OR between vertex
5’s and 7’s statuses and stores the result in BSA4[7].

Early Termination. During bottom-up traversal for
some frontiers, like frontier 7 in Figure 13(b), iBFS does
not necessarily need to check all its neighbors because it is
possible that some of its neighbors (e.g., vertex 5 for frontier
7) can set all bits of this frontier in the bitwise status array.
When this happens, iBFS will terminate the inspection on
this frontier, eliminating the need to further examine other
neighbors (e.g., vertices 6 and 8), which we call early termi-
nation in this work. This newly freed-up thread will then
be scheduled to work on other frontiers. This is not possi-
ble unless the bitwise operations already record all visited
vertices as ‘1’ in BSA, in this case before this level BSA4[7]
already has three bits set. In short, the early termination
allows a great reduction in the traversal time compared to
prior work such as [26].

Bitwise Frontier Identification. iBFS also needs a
different approach for frontier identification that works effi-
ciently with the bitwise status array. Algorithm 2 shows the
pseudocode for bitwise frontier identification.

Top-down traversal executes the XOR operation between
BSAk[v] and BSAk+1[v]. If true is returned, it means some
BFS instances have just changed the corresponding bit of
v and stored in BSAk+1[v]. Since top-down treats most re-
cently visited vertices as frontiers, iBFS hence stores the
identified frontiers in the joint frontier queue. In contrast,
bottom-up traversal, is much easier since it treats unvisited
vertices as frontiers. Therefore, iBFS simply performs a NOT

operation on BSAk+1[v]. If it is evaluated as true, that is,
some bits of BSAk+1[v] are not set, then this vertex is a
frontier and iBFS puts it in the joint frontier queue.

Vector data types on GPUs are also leveraged in iBFS.
Clearly, the number of bits in each variable affects the num-
ber of concurrent BFS, e.g., if BSA is implemented with int

type, one variable can represent the statuses for 32 BFS in-
stances. In CUDA, the basic data are char, int and long,
and on the other hand vector packs multiple basic types into
one, e.g., int4 contains four ints, similarly char4, long4

etc. Using the vector data type in iBFS can further reduce
the memory access time as it fetches four basic data elements
together at one time.

Summary. Our bit-wise approach is novel in a number of
ways, which leads to upto 2.6× speedup over [26]. First, [26]
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Figure 13: Traversing four BFS instances of the example graph from Figure 1 with bitwise status array: (a) Level 3 – Top-down traversal.
(b) Level 4 – Bottom-up traversal. Shadow bits stand for updated status.

resets the bitwise status array at each level and only records
the current level frontiers as 1. In comparison, iBFS records
every visited vertex as 1 regardless of which level it is vis-
ited. This way our bitwise status array remembers all visited
vertices, for which we also introduce a new frontier identi-
fication technique and early termination during bottom-up
traversal as described earlier. Second, [26] is based on sin-
gle thread BFS implementation, that is, each thread works
on one BFS instance. In contrast, iBFS supports multi-
threaded bitwise operation, that is, all available threads will
work on a group of BFS instances. Inter-thread synchro-
nization shall be carefully managed, because in iBFS mul-
tiple threads will need to update different bits of the same
vertex simultaneously. In top-down, iBFS uses (manually
controllable) shared memory on GPUs to cache and merge
the updates in the same CTA (typically 256 threads), which
avoids the overhead of atomic operations at this step. Next,
iBFS has to rely on atomic operations to push the combined
updates to the global memory. In bottom-up, iBFS performs
multi-step tree-based merging of the updates within threads
in a warp or CTA, again avoiding atomic operations.

7. iBFS ON CPUS
In principal iBFS can be implemented on CPUs. Specifi-

cally, joint traversal and GroupBy can follow the same de-
sign on GPUs. One notable difference is that iBFS would
need atomic operation on CPUs for the multi-thread bit-
wise operation. Note that [26] does not need atomic op-
erations because it is based on single-thread BFS. Gener-
ally speaking, concurrent BFS is an I/O intensive applica-
tion, as it always has many frontiers to be processed. As
modern CPUs provide tens of cores and thousands of regis-
ters [37,38], issuing a large number of CPU threads may im-
prove memory throughput but inevitably would incur high
overhead of context switches. On the other hand, GPUs not
only provide a large quantity of small cores coupled with
huge register files, e.g., 2,880 cores and 983,040 registers on
NVIDIA Kepler K40 GPUs, but also support zero-overhead
context switch [36]. As we will present shortly, compared to
the CPU-based implementation, GPU-based iBFS runs 2×
faster on average on various graphs.

8. EXPERIMENTS
iBFS is implemented in 4,000 lines of CUDA and C++

codes, extending a GPU-based high-performance BFS im-
plementation – Enterprise [33]. Since it supports both top-
down and bottom-up BFS, our iBFS can be easily config-
ured to support conventional top-down BFS and traverse
weighted graphs. iBFS is compiled using g++ 4.4.7, MPI
(MVAPICH2) and NVIDIA CUDA 6.0 with the -O3 flag.
Our system is evaluated on NVIDIA Kepler K40 GPUs on

our local cluster with Intel Xeon E5-2683 CPUs, and later
on the Stampede supercomputer on NSF Extreme Science
and Engineering Discovery Environment (XSEDE) program,
where iBFS runs from 1 to 112 machines each of which is
equipped with one NVIDIA Kepler K20 GPU.

We measure the execution time from when all the data are
loaded in GPU memory to the traversal is completed and the
results are stored in GPU memory. All the execution uses
uint64 data type. We use the metric of traversed edges per
second (TEPS) to measure the performance, which is calcu-
lated by the ratio of the number of directed edges traversed
by the search, counting any multiple edges and self-loops,
and the time elapsed during iBFS execution. In the tests,
iBFS performs breadth-first search from all the vertices.

8.1 Graph Benchmarks
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Figure 14: Graph benchmarks.

In this work we use total 13 graph benchmarks to eval-
uate iBFS, which as summarized in Figure 14 have upto
17 million vertices and 1 billion edges. In particular, there
are seven real-world graphs of well-known online social net-
works. Facebook (FB) [39], a user to friend connection
graph, contains 16,777,216 vertices and 420,914,604 edges.
Twitter (TW) [40] is a follower connection graph, that is,
if user v follows user u, (v, u) is considered as an edge. It
also has 16,777,216 vertices and 196,427,854 different edges.
Wikipedia (WK) [41] is a inter-website hyper-link graph,
which consists of 3,566,908 vertices and 45,030,389 edges.
We also obtain four popular online social network graphs,
i.e., LiveJournal (LJ), Orkut (OR), Friendster (FR), and
Pokec (PK), from Stanford Large Network Dataset Collec-
tion [42]. Specifically, LJ contains 4,847,571 vertices and
137,987,546 edges. OR has 3,072,627 vertices with an aver-
age outdegree of 75.27. FR contains 16,777,212 vertices and
439,147,122 edges. PK is the smallest graph with 1,632,804
vertices and 30,622,564 edges.

In addition, we generate three types of synthetic graphs
with Graph 500 generator [43–45], namely, KG0, KG1 and
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Figure 15: Traversal rate comparison between Sequential BFS, Concurrent BFS, Joint Traversal, Bitwise Optimization, and GroupBy.

KG2. The default value of (A, B, C) parameter is (0.57,
0.19, 0.19) per the requirement of Graph 500 [44]. Specifi-
cally, KG0 stands for the high average outdegree graphs, i.e.,
its average outdegree is 1024 and vertex count is 1,048,576.
KG2 serves as the biggest graph in this paper, i.e., with
both biggest vertex and edge count – 16,777,216 vertices
and 1,073,741,824 edges. KG1 has 8,388,608 vertices and
603,979,776 edges. We also use the DIMACS graph gener-
ator [46] to generate the RM and RD graphs in this paper.
RM follows the same theory from Graph 500 [43–45] but
with a different (A, B, C) set of (0.45, 0.15, 0.15). RM has
2,097,152 vertices and 268,435,456 edges. RD [47] graph has
uniform outdegree distribution, i.e., each vertex has roughly
the same outdegree. RD contains 11,796,480 vertices and
188,743,680 edges.

All these graphs are stored in the Compressed Sparse Row
(CSR) format. For graphs that are provided in the edge list
format, we translate them into CSR while preserving the
edge sequence. For undirected graphs, each edge is consid-
ered as two directed edges. For directed graphs, we also
store the reversed edges to support the bottom-up traversal.
The size of these graph ranges from 478 MB (PK) to 8.2
GB (KG2) when using long integer (8 bytes) to represent
the vertex id.

8.2 iBFS Performance
We evaluate three techniques, joint traversal, bitwise op-

eration, and GroupBy, and compare against running all BFS
instances sequentially (sequential) or in parallel without any
optimization (naive), both of which are based on state-of-
the-art BFS implementation such as Enterprise [33]. In this
test, we run APSP on all the graphs. As shown in Figure 15,
sequential and naive implementation perform roughly the
same. On average, the later traverses 1.05× faster, but a
worse performance is observed in HW, KG1, KG2 and RM
graphs, with only 78% of sequential performance on KG1.

In iBFS, joint traversal delivers 1.4× speedup compared
to sequential implementation. The biggest performance gain
of 2.6× speedup comes for RD, from 4.4 to 11.3 billion
TEPS while the smallest is 1.03× speedup for PK . For
other graphs, the performance improvement is more than
10%. On the other hand, bitwise iBFS, on average speedup
the traversal by 11×. While the smallest improvement is
6.4× on HW from 11.7 to 75 billion TEPS, the biggest im-
provement is observed on RM – 18 × speedup from 36 to
640 billion TEPS. Astoundingly, Groupby improves iBFS
by additional 2× on average beyond bitwise optimization,
with the highest traversal rate of 832 billion TEPS on RM.

In this test, iBFS greatly reduces the run time of APSP
on all graphs from average 123 hours of sequential traversal

to 5.5 hours, where joint traversal helps to reduce to 87.8
hours, bitwise optimization 11.2 hours, and GroupBy the
rest. GroupBy incurs a minimal processing time of less than
0.1 second on average.
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Figure 16: Traversal performance when running different number
of BFS groups on HW.

We further evaluate the traversal performance of iBFS as
the number of i varies, that is, running MSSP with varied
number of source vertices. We observe similar performance
on all the graph benchmarks. Figure 16 presents the TEPS
when running different number of BFS groups on the HW
graph, where the total number of BFS instances equals to
the multiply of the number of groups and the group size.
Clearly, as there are more BFS instances to run, the ben-
efit of GroupBy – the gap between GroupBy and random
grouping – increases because better groups can be formed.
Specifically, with randomly formed groups, the traversal rate
fluctuates in the range of 75 and 90 billion TEPS, which is
raised to 288 billion TEPS with the help of GroupBy.

8.3 iBFS Scalability
In this test, we aim to evaluate the scalability of iBFS on

a large number of distributed GPUs on the Stampede su-
percomputer at TACC. Clearly, as long as different GPUs
work on independent BFSes, there is no need for inter-GPU
communication. Therefore, the key challenge here is achiev-
ing workload balance on GPUs, especially when each indi-
vidual BFS may inspect different number of edges during
bottom-up. The longest time consumption of all the GPUs
is reported in this test.

For the five graphs tested, iBFS achieves good speedup
from 1 to 112 GPUs (the total number of GPUs on Stam-
pede)1. As shown in Figure 17, from one to two GPUs, the
biggest speedup, as expected, is from RD of 1.97× because
RD graph has the most balanced workload. And even the

1As it took all the GPUs on Stampede, we were only given
a small time window to conduct this test.
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Figure 17: Scalability of bitwise iBFS from 1 to 112 GPUs.

smallest speedup from OR is 1.9×. From one to four GPUs,
the average speedup is 3.8× with the smallest speedup from
OR of 3.6× while the biggest from RD graph – 3.9×. As the
GPU count increases, workload imbalance slowly emerges
and begins to negatively affect the performance. Specifically,
iBFS achieves an average of 85× speedup for 112 GPUs.
Again, RD gets the biggest speedup, i.e., 108×.

In all, iBFS achieves the average traversal rate of 16,509
billion TEPS across all the tested graphs with the maximum
57,267 billion TEPS on RM.

8.4 Joint Traversal and GroupBy
This section uses the NVIDIA profiler [48] to measure

the impact of joint traversal and GroupBy on memory ac-
cesses. Having a joint frontier queue with only one copy
of shared frontiers reduces the potentially large number of
global memory writes, compared to having private frontier
queues for each BFS instance. Figure 18 shows the number
of global store transactions during the frontier queue gener-
ation of 1,024 BFS instances. Using private frontier queue,
i.e., private FQ, executes 4 billion transactions on average
across all the graphs, while joint frontier queue with random
groups, i.e. random FQ, only needs one fourth transactions.
The biggest reduction of over 11× is observed in the KG2
graph, from 8.3 billion to 700 million, the smallest saving is
1.2× on HW, i.e., 720 million to 580 million. With GroupBy,
iBFS further saves the global stores by 2.6× with the largest
from HW of 4×.
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Figure 18: Global store transaction count during the generation of
private frontier queue, random joint frontier queue and GroupBy
joint frontier queue.

Combining joint status array with careful thread schedul-
ing introduces significant performance benefits, as iBFS min-
imizes costly memory operations. Figure 19 exhibits global
load transactions per request during traversal before and af-
ter this optimization. Note that global store transactions
per request exhibits similar trend. Since joint status array
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Figure 19: Load transaction count per request.

of iBFS always coalesces the inspections and updates from
contiguous threads into a single global memory transaction,
our tests across 1,024 BFS instances show that we are able
to reduce on average from four loads to a single load. The
benefits add up quickly considering a large number of mem-
ory operations in concurrent BFS. On average each BFS
instance executes 50 million of global load transactions.

8.5 Bitwise Operation
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Figure 20: The speedup of our bitwise operation.

We implement the bitwise operation as in [26] and use it
as baseline running all the benchmarks in our paper. Fig-
ure 20 plots the speedup of our bitwise operation. Even with
random groups, we achieve 40% speedup, and our bitwise
operation enjoys a better speedup with the outdegree-based
GroupBy rules, i.e., 2.6×. Specifically, in random grouping,
the maximum and minimum speedup is 2.5× of KG2 and 2%
of FR. In comparison, the maximum and minimum speedup
in GroupBy is 5.5× of KG1 and 15% of RD graph. Addi-
tional improvement from Groupby comes from the combined
effect of high sharing ratio across grouped BFS instances and
early termination enabled by bitwise traversal, which as a
result allows concurrent instances to complete together and
as early as possible.

In addition, we evaluate the impacts on the total number
of global load transactions by bitwise traversal. Because bit-
wise status array consolidates the statuses of multiple (128
in our case) vertices into a single variable, we reduce the
global load transactions of 1,024 BFS instances by 40%, i.e.,
from 53 to 38 million on average presented in Figure 21.

8.6 Comparison of State of the Art
We have implemented two CPU-based concurrent BFS,

namely MS-BFS [26] and our own iBFS, both of which run
64 threads in total. In addition, we compare our GPU-based
iBFS with B40C [29] and SpMM-BC [27]. B40C runs a single
BFS instance on GPUs and has similar performance as the
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Figure 21: Total number of load transactions.

sequential or naive implementation presented in Figure 15,
and SpMM-BC uses a simple GPU-based concurrent BFS
to calculate betweenness centrality. Figure 22 presents the
performance of all five implementations when running APSP
on six different graphs.

CPU-based iBFS is significantly faster than MS-BFS thanks
to the techniques such as GroupBy and early termination.
The biggest speedup is achieved for the KG0 graph, where
MS-BFS obtains 120 billion TEPS while our CPU-based
iBFS reaches 397 billion TEPS. iBFS also achieves an av-
erage improvement of 45% on other five graphs. On GPUs,
iBFS traverses on average 2× faster than SpMM-BC, and
19.3× than B40C. For graphs KG0 and HW, iBFS delivers
about 700 and 300 TEPS respectively, greatly outperform-
ing the other two implementations. Compared to the CPU-
based implementation, GPU-based iBFS runs 2× faster on
average across six different graphs.
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Figure 22: Comparison of CPU and GPU implementations.

8.7 Application: Reachability Index
To illustrate the broader application of iBFS on graph

algorithms, in this paper we evaluate the benefits of using
iBFS to construct the index for answering graph reachabil-
ity queries, which computes the first k levels BFS for a large
amount of selected vertices. Table 1 lists the runtimes of var-
ious implementations for constructing the index for 3-hop
reachability. Clearly, GPU-based iBFS outperforms other
concurrent BFS systems on four different graphs. Specifi-
cally, it is 21×, 3.3× and 2.2× faster than B40C, MS-BFS
and CPU-based iBFS, respectively.

Dataset
CPU GPU

MS-BFS CPU-iBFS B40C GPU-iBFS

FB 19.2 16.5 302.8 14.3

KG0 1.85 0.56 2.9 0.31

OR 4.1 3.22 25.3 1.1

TW 2.1 2.7 27.8 0.9

Table 1: Runtime (hours) of 3-hop reachability index.

9. RELATED WORK
Our iBFS is closely related to CPU-based MS-BFS [26],

which runs concurrent BFS by extending a single-threaded
BFS, and compared to iBFS, underperforms on large graphs,
e.g., it only achieves 10 billion TEPS on a graph with a
billion of edges. In contrast, iBFS achieves more than 500
billion TEPS on a graph with billions of edges. Furthermore,
the bitwise operation from MS-BFS cannot support early
termination due to that it requires to reset the status array
at each level, which leads to a much slower performance.
Most notably, iBFS introduces a novel GroupBy strategy
that improves the frontier sharing ratio dramatically and
increases the benefit of concurrent traversal by another 2×.

Recent work has demonstrated that GPUs have great po-
tentials in delivering high-performance breadth-first graph
traversal [29,49]. One project SpMM-BC on regularized cen-
trality [27] also extends the GPU-based BFS to concurrent
BFS, but it does not support bottom-up BFS. On the other
hand, the work [35] executes concurrent BFS to calculate
the betweenness centrality [11] of a graph. However, each
GPU in this work only executes a single BFS which is simi-
lar to the naive implementation in our work. In comparison,
iBFS runs hundreds of BFS instances with one kernel and
achieves on average 22× speedup compared to executing a
single BFS on one GPU. Also, iBFS supports O(100) GPUs
and achieves around 200 billion TEPS for graphs such as LJ
and OR, significantly outperforming prior work [27,35].

In addition, our work is related to three types of short-
est path algorithms [50–56], namely, Dijkstra, Bellman-Ford
and Floyd-Warshall. The first two algorithms focus on SSSP
while the later APSP. Specifically, Dijkstra [57] applies to
weighted graph where weight must be positive, with the
complexity of O(|E| + |V | log |V |). Bellman-Ford [58] ex-
tends Dijkstra by allowing negative weighted edges but non-
negative cycles. Floyd-Warshall [59] works for APSP [60]
with the same constraint as Bellman-Ford algorithm. In
contrast, our iBFS applies to all types of shortest path prob-
lems on a unweighted graph with the time complexity of
O(i|V |) ∼ O(i|E|).

PHAST [61] runs multiple SSSP on GPU concurrently.
However, this work only applies to road network graphs and
suffers from small-world graphs which do not have good sep-
arators as mentioned in [62]. Two MSSP algorithms [63,64]
mainly focus on special graphs, i.e., planar and embedded
graphs, respectively. In contrast, our iBFS applies to both
small-world and random graphs, and leverages the opportu-
nity of frontier sharing to accelerate concurrent BFS.

10. CONCLUSION
In this work, we present iBFS, a new GPU-based concur-

rent BFS system which leverages a novel GroupBy strategy,
combined with joint frontier queue and bitwise operations,
to achieve high-performance concurrent breadth-first traver-
sals. iBFS achieves unprecedented performance of over 57,000
billion TEPS on over 100 GPUs. As part of future work, we
plan to explore additional optimizations for iBFS and study
its application on a wide range of domains.
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