
This paper is included in the Proceedings of the
2019 USENIX Annual Technical Conference.

July 10–12, 2019 • Renton, WA, USA

ISBN 978-1-939133-03-8

Open access to the Proceedings of the
2019 USENIX Annual Technical Conference

is sponsored by USENIX.

simd-x: Programming and Processing
of Graph Algorithms on GPUs

Hang Liu, University of Massachusetts Lowell; H. Howie Huang,
George Washington University

https://www.usenix.org/conference/atc19/presentation/liu-hang

SIMD-X: Programming and Processing of Graph Algorithms on GPUs

Hang Liu
University of Massachusetts Lowell

H. Howie Huang
The George Washington University

Abstract

With high computation power and memory bandwidth,
graphics processing units (GPUs) lend themselves to ac-
celerate data-intensive analytics, especially when such
applications fit the single instruction multiple data
(SIMD) model. However, graph algorithms such as
breadth-first search and k-core, often fail to take full ad-
vantage of GPUs, due to irregularity in memory access
and control flow. To address this challenge, we have
developed SIMD-X, for programming and processing
of single instruction multiple, complex, data on GPUs.
Specifically, the new Active-Compute-Combine (ACC)
model not only provides ease of programming to pro-
grammers, but more importantly creates opportunities
for system-level optimizations. To this end, SIMD-X
utilizes just-in-time task management which filters out
inactive vertices at runtime and intelligently maps var-
ious tasks to different amount of GPU cores in pursuit
of workload balancing. In addition, SIMD-X leverages
push-pull based kernel fusion that, with the help of a
new deadlock-free global barrier, reduces a large num-
ber of computation kernels to very few. Using SIMD-X,
a user can program a graph algorithm in tens of lines of
code, while achieving 3×, 6×, 24×, 3× speedup over
Gunrock, Galois, CuSha, and Ligra, respectively.

1 Introduction

The advent of big data [40, 27, 35, 36, 37, 5, 25, 26,
28, 14, 83] exacerbates the need of extracting useful
knowledge within an acceptable time envelope. For per-
formance acceleration, many applications utilize graph-
ics processing units (GPUs) whose huge success comes
from exploiting the data-level parallelism in these appli-
cations. Implicitly, the traditional single instruction
multiple data (SIMD) model of GPUs assumes regular
programming and processing, that is, not only the same
instruction is executed but also the same amount of work

is expected to perform on each piece of data. Unfortu-
nately, neither assumption holds true for many emerging
irregular applications, especially graph analytics which
is the focus of this work. That is, such applications do
not conform to the SIMD model, where different amount
of work, or worse, completely different work, need to be
performed on the data in parallel.

To enable graph computation on GPUs, this work ad-
vocates a new parallel framework, SIMD-X, for the pro-
gramming and processing of single instruction multiple,
complex, data on GPUs. At the heart of SIMD-X is
the decoupling of programming and processing, that is,
SIMD-X utilizes the data-parallel model for ease of ex-
pressing of graph applications, while enabling system-
level optimizations at run time to deal with the task-
parallel complexity on GPUs. With SIMD-X, a program-
mer simply needs to define what to do on which data,
without worrying about the issues arisen from irregular
memory access and control flow, both of which prevent
GPUs from achieve massive parallelism.

SIMD-X consists of three major components: First,
SIMD-X utilizes a new Active-Compute-Combine (ACC)
programming model that asks a program to define three
data-parallel functions: the condition for determining an
active vertex, computation to be performed on an associ-
ated edge, and combining the updates from edge compute
to vertex state. As we will show later, ACC is able to sup-
port a large variety of graph algorithms from breadth-first
search, k-core, to belief propagation. While ACC adopts
the Bulk Synchronous Parallel (BSP) model [49], it dif-
fers from traditional CPU-based graph abstractions such
as edge- or vertex-centric models in that ACC avoids
atomic operation, enables collaborative early termination
(for BFS) and fine-grained task management on GPUs.

Second, SIMD-X relies on just-in-time (JIT) task man-
agement to balance parallel workloads across different
GPU cores with minimal overhead. A good task list can
increase not only parallelism, but also sequential mem-
ory access for the computation of next iteration, both

USENIX Association 2019 USENIX Annual Technical Conference 411

0
a b c d e f g h i

Distance array
Vertex

b

f

ca

ed

g h i

1

5

1
2

1

1
2

3 4 6

b

f

ca

ed

g h i

b

f

ca

ed

g h i

0 5 6 1 3
a b c d e f g h i

b

f

ca

ed

g h i

b

f

ca

ed

g h i

0 4 6 1 3 4 6 7 9
a b c d e f g h i

0 4 5 1 3 4 6 7 9
a b c d e f g h i

b

f

ca

ed

g h i

0 4 5 1 3 4 6 7 9
a b c d e f g h i

0 5 1
a b c d e f g h i

(a) Initialization (c) Iteration 2 (d) Iteration 3 (e) Iteration 4 (f) Iteration 5(b) Iteration 1

Updated vertex

Active vertex

1

5

1
2

1

1
2

3 4 6

1

5

1
2

1

1
2

3 4 6

1

5

1
2

1

1
2

3 4 6

1

5

1
2

1

1
2

3 4 6

1

5

1
2

1

1
2

3 4 6

Figure 1: SSSP on a graph, with nine vertices {a, b, c, d, e, f, g, h, i} and ten undirected edges (with weights). SSSP iteratively
computes on the graph and generates the distance array. Particularly, heavy and light shadows represent active and most recently
updated vertices, respectively.

of which are crucial for high-performance computing on
GPUs. To this end, we have designed a set of new task
management mechanisms, that is, online and ballot fil-
ters, each of which excels at the complementary sce-
narios, i.e., the former favors a small amount of tasks
while the latter larger tasks. At runtime, SIMD-X judi-
ciously selects the more suitable filter to assemble the
active work list for the next iteration. Our JIT task man-
agement can largely reduce the memory consumption,
thereby accommodate the graphs much larger than prior
work [50, 77]. Moreover, SIMD-X delivers 16×, on av-
erage, speedup across various algorithms and graphs.

Third, SIMD-X designs a new technique of push-pull
based kernel fusion which aims to further accelerate
graph computing by reducing kernel invocation overhead
and global memory traffic. SIMD-X addresses the dead-
lock issue which occurs in existing software global bar-
rier [79] that is adopted by Gunrock [77]. Besides, in-
stead of aggressively fusing the algorithm into one gi-
ant kernel, SIMD-X fuses the kernels around the pull and
push stages within each computation to minimize both
register consumption and kernel relaunching. The evalu-
ation shows that the new fusion technique can reduce the
register consumption by half and thus double the con-
figurable thread count, leading to 42% and 25% perfor-
mance improvement over non-fused and aggressive fu-
sion, respectively.

SIMD-X is different from prior work in several aspects.
First, despite an array of graph frameworks has surged,
majority of them are for CPU systems while SIMD-X
is for GPU accelerators that come with mounting pro-
gramming challenges. In order to use GPUs efficiently,
a programmer needs to possess an in-depth knowledge
of GPU architecture [16, 1], e.g., Gunrock requires ex-
plicit management of GPU threads and memory [76],
and B40C [50] and Enterprise [41] need thousands of
lines of CUDA code for BFS specific optimizations. One
of the goals of this work is to provide a simple pro-
gramming model and delegate the responsibility of task
management to SIMD-X. Second, current systems ei-
ther ignore workload imbalance as in [33, 91], or re-
solve it reactively as in [76, 72], both of which result in
undesired system performance. Lastly, because GPUs

lack support for global synchronization, existing sys-
tems [73, 76, 41, 43, 69] either rely on the multi-kernel
design or runtime tunning, both of which come with con-
siderable overhead, especially for graph algorithms with
high iteration count. SIMD-X addresses these challenges
with new filters, and a deadlock-free software barrier.

2 SIMD-X Challenges and Architecture
2.1 Graph Computing on GPUs
Generally speaking, regular applications present uniform
workload distribution across the data set. As a result,
such applications lend themselves to the data-parallel
GPU architecture. For development and evaluation, this
work mainly uses NVIDIA GPUs, which have tens of
streaming processors and in total thousands of Compute
Unified Device Architecture (CUDA) cores [1, 56]. Typ-
ically, a warp of 32 threads execute the same instruction
in parallel on consecutive data.

On the other hand, task management for irregular ap-
plications is challenging on GPUs. In this work, we fo-
cus on a number of graph algorithms such as breadth-first
search, k-core, and belief propagation. Here we use one
algorithm – Single Source Shortest Path (SSSP) – to il-
lustrates the challenges. Simply put, a graph algorithm
computes on a graph G = (V , E, w), where V , E and w
are the sets of vertices, edges, and edge weights. The
computation updates the algorithmic metadata which are
the states of vertices or edges in an iterative manner. A
typical workflow of SSSP is shown in Figure 1. Initially,
SSSP assigns the infinite distance to each vertex in the
distance array, which is represented as blank in the fig-
ure. Assuming the source vertex is a, the algorithm as-
signs 0 as its initial distance, and now vertex a becomes
active. Next, SSSP computes on this vertex, that is, cal-
culating the updates for all the neighbors of vertex a. In
this case, vertices {b, d} have their distances updated
to 5 and 1 in the distance array. At the next iteration,
the vertices with newly updated distances become active
and perform the same computation again. This process
continues until no vertex gets updated. Different from
breadth-first search, SSSP may update the distances of
some vertices across multiple iterations, e.g., vertex b is
updated in iteration 1 and 3.

412 2019 USENIX Annual Technical Conference USENIX Association

GPU

BFS BP k-Core

ACC programming model

Deadlock-free software global barrier

JIT control

Selective
kernel
fusion

Ballot filterOnline filter

Just-In-Time task management

Push-Pull based kernel fusion

PageRank SpMV SSSP

SIMD-X

…
Graph algorithm

Figure 2: SIMD-X architecture

In this example, not every vertex is active at all time,
and vertices with different degrees (number of edges)
yield varying amounts of workloads. For instance, at it-
eration 3 of Figure 1(d), one thread working on vertex c
computes two neighbors, while another thread on vertex
e four neighbors.

2.2 Architecture

SIMD-X is motivated to achieve two goals simultane-
ously: providing ease of programming for a large vari-
ety of graph algorithms, whereas enabling fine-grained
optimization of GPU resources at the runtime. Figure 2
presents an overview of SIMD-X architecture. To achieve
the first goal, SIMD-X utilizes a simple yet powerful
Active-Compute-Combine (ACC) model. This data-
parallel API allows a programmer to implement graph
algorithms with tens of lines of code (LOC). Prior work
requires significant programming effort [50, 41, 76], or
runs the risk of poor performance [33].

In SIMD-X, high-performance graph processing on
GPUs is achieved through the development of two com-
ponents: (1) JIT task management, which is responsi-
ble for translating data-parallel code to parallel tasks on
GPUs. Essentially, SIMD-X “filters” the inactive tasks
and groups similar ones to run on the underlying SIMD
architecture. In particular, SIMD-X develops online and
ballot filters for handling different types of tasks, and dy-
namically selects the better filter during the execution of
the algorithm. And (2) Pull-push based kernel fusion.
Graph applications are iterative in nature and thus require
synchronizations. Fusing kernels across iterations would
yield indispensable benefits, because kernel launching at
each iteration incurs non-trivial overhead. In SIMD-X,
we observe that with aggressive kernel fusion, register
consumption would increase dramatically, lowering the
occupancy and thus performance. To this end, SIMD-
X deploys kernel fusion around pull and push stages of
each graph computation, seeking a sweet spot that not
only maximizes the range of each kernel fusion but also
minimizes the register consumption. It is worthy noting
that we also address the deadlock issue faced by software
global barrier in SIMD-X.

3 ACC Programming Model

The novelty of SIMD-X lies at achieving both ease of pro-
gramming and efficient workload scheduling, which is
especially hard on GPUs. When it comes to graph com-
puting, there are two main programming models: vertex-
centric vs. edge-centric. Vertex-centric model, also re-
ferred to as “Think like a vertex” [49, 90] focuses on
active vertices in a graph, whereas the latter one [61, 60]
iterates on edges and simplifies programming.

3.1 Motivation
Graph programming converges to either vertex-centric
or edge-centric models. In particular, the vertex-centric
model contains two functions: vertex scatter defines
what operations should be done on this vertex, and
vertex gather applies the updates on the vertex. This
model has been adopted by a number of existing projects,
e.g., Pregel [49], GraphLab [45], PowerGraph [18],
GraphChi [39], FlashGraph [90], Mosaic [47], and Grid-
Graph [92], as well as GPU-based implementation such
as CuSha [33] and Gunrock [76]. On the other hand,
the edge-centric model is initially introduced by the
external-memory graph engine X-stream [61] to improve
IO performance. It requires a programmer to define
two functions needed on each edge, edge scatter and
edge gather. As such, this model schedules threads by
the edge count. Particularly, one thread needs to send the
information of the source vertex and the outbound edge
to the destination vertex (edge scatter), which atomi-
cally applies the new updates in edge gather.

In this work, we believe the many-threaded nature of
GPU architecture demands a new abstraction. We in-
tend to exploit various thread scheduling options to bet-
ter tackle workload imbalance [41, 77], while minimiz-
ing the overhead with regards to atomic operations on
GPUs [46]. Table 1 summarizes the designs of recent
GPU-based graph analytics systems. To avoid wasting
the threads to compute on inactive vertices, task filter-
ing is essential in generating a list of active vertices.
Once task lists are ready, workload imbalance caused by
skewed degree distribution in many graphs becomes the
next concern. Since handling this issue in a vertex cen-
tric model involves nontrivial programming efforts [41],
edge-based computing presents a desirable alternative.
However, traditional edge-centric approach would result
in atomic updates at the destination vertex, thus a proper
schedule before applying the update is essential to avoid
atomic operation. It is also important to note that com-
pressed sparse row (CSR) is a preferable graph format
which can save around 50% of the space over edge list
format, as contemporary GPUs only feature tens of GB
memory [1]. The proposed ACC framework is designed
to address these three challenges.

USENIX Association 2019 USENIX Annual Technical Conference 413

Table 1: Comparison between ACC and relevant GPU-based programming models. denotes desirable feature.
StagesAbstraction Related Work Task filtering Workload balancing Avoid atomic operation Graph format

ICU CuSha [33], Lux [30] Init/Compute (Edge) Update Edge list
ICRU WS [32] Init/Compute (Edge) Reduce/IsUpdate CSR
AFC Gunrock [77] Advance/Filter Compute (Vertex, with atomic update) CSR
GAS GTS [34], GraphReduce [62] Gather (Edge) Apply/Scatter Edge list

ACC SIMD-X Active Compute (Edge) Combine CSR

3.2 ACC Model
The new ACC model contains three functions: Active,
Compute, and Combine. ACC supports a wide range of
graph algorithms and requires much fewer lines of code
compared to prior work. In this following, we will dis-
cuss the three functions.
Active allows a programmer to specify the condition
whether a vertex is active. Formally it can be defined:

∃v← active(Mv,v)

where v is the vertex ID and Mv represents its metadata.
Depending on the algorithm, the Active function may
vary. Belief propagation (BP) is simple which treats all
vertices as active. In comparison, SSSP, as shown in Fig-
ure 3(a), considers the vertices active when their current
metadata differs from the prior iteration.

Simply put, SIMD-X distinguishes active vertices from
inactive ones, and focuses on the calculation needed for
each vertex. This is different from the vertex-centric
model which deals with not only the active vertex but
also its neighbors. Because two vertices may have dif-
ferent numbers of neighbors, existing systems [49, 18]
likely suffer from workload imbalance. To this end,
SIMD-X leverages a classification technique, similar to
Enterprise [41], to group the active vertices depending
on the expected workload.
Compute defines the computation that happens on each
edge. In particular, it specifies the operations on the
metadata of edge (v, u) and two vertices v and u, which
can be written as follows:

updatev→u← compute(Mv,M(v,u),Mu)

where the return value of updatev→u will be used by the
Combine function. For example, SSSP can be defined as
shown in Figure 3(a).
Combine merges all the updates, once the computations
are completed. It can be represented:

updateu← ⊕
v∈Nbr[u]

updatev→u

where ⊕ must be commutative and associative, e.g., sum
and minimum, and is being applied to all the neighbors
of vertex u. Figure 3(a) presents the Combine examples
of SSSP. Particularly, BP summarizes all updates, where
SSSP combines all updates from compute by selecting
the minimum.

SIMD-X optimizes two types of combine operations,
i.e., aggregation and voting. Particularly, aggregation
cannot tolerate overwrites, that is, all updates are needed
to arrive at the correct results. PageRank, SSSP and k-
Core are representative examples of such operation. In
contrast, voting relaxes this condition, that is, the algo-
rithm is correct as long as one update is received because
all updates are identical. For instance, BFS is valid once
one parent vertex successfully visited the child vertex.
Other algorithms, such as, weakly connected component
and strongly connected component algorithms [67] also
fall into this category.

3.3 Processing with ACC
This section uses SSSP an example to illustrate how the
SIMD-X framework works. SSSP computes the short-
est paths between the source vertex and the remaining
vertices of the graph. Although similar to Breadth-First
Search (BFS), SSSP is more challenging as only one ver-
tex with the shortest distance should be computed at one
time. To improve the parallelism, we adopt the delta-
step [51] algorithm which permits us to simultaneously
compute a collection of the vertices whose distances are
relatively shorter. We assume positive edge weights.

As shown in line 12 - 21 of Figure 3(b), SIMD-X struc-
tures graph computation as a loop. Similar to popular
GPU-based frameworks [77, 33, 32], ACC follows BSP
model, that is, synchronization is required at the end of
each iteration. As we will discuss in the next section,
SIMD-X employ three kernels to balance the workload,
Thread, Warp and CTA kernels working on small list,
med list and large list, respectively. During computing,
the online filter (Section 4) attempts to track the active
vertices with the thread bins (i.e., small bin, med bin and
large bin). Note that each active vertex is stored in one of
these three bins based upon its degree. After a deadlock
free software global barrier (Section 5), SIMD-X checks
whether an overflow happens in any of the thread bins,
which leads to either a ballot filter-based active lists gen-
eration or a simple prefix-scan based concatenation of all
thread bins to produce the active lists (line 17-21).

In Figure 3(b), Line 1 - 8 exemplifies the interactions
between ACC and SIMD-X. Firstly, SIMD-X will sched-
ule a warp of threads to work on the neighbors of one
active vertex from med list. Similarly, Thread and CTA
will schedule a thread and CTA to work on each active
vertex from small list and large list, respectively. During

414 2019 USENIX Annual Technical Conference USENIX Association

Init (src){
• dist_curr [src] = 0;
• large_list.insert (src);
}
Active (v){
• return dist_curr [v] != dist_prev [v];
}
Compute (edge, weight){
• old_dist = dist_curr [edge.dest];
• new_dist = dist_curr [edge.src] + w;
• return old_dist > new_dist ? new_dist: old_dist;
}
Combine (dist[]){
• return min (dist[]);
}

Warp (med_list, Compute, Combine, Active, overflow)
• for each active vertex v in med_list: //warp in parallel

• for each neighboring edge set edge[32] to vertex v:
• res [lane_id] = Compute (edge[lane_id]);

• final = Combine (res[0 - 31]);
• if lane_id == 0:

• metadata_curr[v] = final;
• small_bin, med_bin, large_bin =

online_filter (Active, v, overflow);

//Similar to Warp
Thread(){//One thread working on one active vertex}
CTA(){//One CTA working on one active vertex}

SSSP_main{
Init (src);
while conditions:

•Thread (small_list, Compute, Combine, Active, overflow);
•Warp (med_list, Compute, Combine, Active, overflow);
•CTA (large_list, Compute, Combine, Active, overflow);
•__software_global_barrier ();

•if (overflow):
• ballot_filer (small_list, med_list, large_list, Active);
•else:

small_list, med_list, large_list = concatenate
• (small_bin, med_bin, large_bin);
•__software_global_barrier ();

}

(a) SSSP in ACC

(b) ACC in SIMD-X

1:
2:

3:
4:
5:
6:
7:
8:

10:
11:
12:

13:
14:
15:
16:

17:
18:
19:
20:

21:

1:
2:
3:

4:
5:

6:
7:
8:
9:

10:
11:

//Intra-warp parallel reduction.
//Splitting compute and combine to avoid atomic operation.

//Thread assignment (Workload balancing step II)

//Task management (Workload balancing step I)

Figure 3: (a) SSSP in ACC model and (b) ACC abstraction and
task management within SIMD-X framework.

computation, each thread will conduct a local Compute
and Combine at line 4. Once finished, a cross Warp Com-
bine happens at line 5. Eventually, the first thread from
the Warp applies the final updates (without atomic oper-
ation) and store this vertex (if active) into corresponding
thread bins.

 0.9
 1

 1.1
 1.2
 1.3
 1.4

FB ER KR LJ OR PK RD RC RM UK TW Avg.

Sp
ee

du
p

Vote
Aggregation

Figure 4: Speedup of our ACC model over Gunrock. Note vote
and aggregation operations are materialized by BFS and SSSP
algorithms, respectively, and x-axis contains the graph datasets
which are defined in Table 3.

Comparison Figure 4 studies the performance impact of
ACC vs. Gunrock. The new ACC model follows a com-
putation then combine approach which pays the extra
overhead (i.e., assembling all updates residing in shared
memory from participating threads) in order to achieve
the benefits of atomic-free updates. Gunrock, in contrast,
directly applies the update to vertex status with atomic
operations, thereby avoids inter-thread communication
but experiences heavier overhead from atomic operation.
One can see that ACC is, on average, 12% and 9% faster
on vote and aggregation operations, respectively. For
vote, the speedup comes from that ACC can schedule all
threads to collaboratively determine early termination,
which is not possible in Gunrock. Aggregation gains the
performance from the elimination of atomic updates.

4 Just-In-Time Task Management

Workload balancing is essential for graph applications.
The key is to ensure each GPU core, regardless of
from which streaming processor, accounts for a simi-
lar amount of workload, which is often achieved with
the following twin steps. Particularly, in step I: task
management, the tasks are classified into various lists,
namely small list, med list and large list. In step II:
thread assignment, various granularity of GPU threads
are scheduled to work on different worklists. That is,
a single thread per small task, a warp per medium task
and a CTA per large task. Note, Figure 3(b) presents
the pseudo code of step II and the bottom part of Fig-
ure 6 paints the corresponding workflow. We refer the
readers to Enterprise [41] for more details regarding the
landscape of this attempt.

Unlike prior work [41, 77, 50] which places particular
efforts at step II, SIMD-X focuses on step I as we find it
to be the major culprit that offsets the benefits of work-
load balancing. In the following, we will first analyze the
drawback of existing batch filter method, then describe
two new filters, and JIT selection mechanism.
Drawback of batch filter. This approach [76, 50, 11]
first loads all the edges of the active vertices to construct
an active edge list. Still using the example of SSSP in

USENIX Association 2019 USENIX Annual Technical Conference 415

1101 100001

Current active list

Neighbor list b
d
d a c e b f a e b d f g h i e c e e e

0 4 6 1 3 4 6 7 9
a b c d e f g h i

Updated metadata

e e e e e e c c
b d f g h i b fActive edge list

Next active list

Thread bin

0 4 6 1 3 4 6 7 9
a b c d e f g h i

ballotballotballot ballotballot

(a) Batch filter (b) Ballot filter

0 5 6 1 3
a b c d e f g h i

b
d
d a c e b f a e b d f g h i e c e e e

(c) Online filter
e c

b
d
d a c e b f a e b d f g h i e c e e e

c e b d

b f h f g i

b f h f g

b f g h i

b f g h i

c e e

c e

Active vert

Thread 0
Thread 1

Updated vert

Update
vertex status

Batch edges

Adjacent scan,
ballot vote
result to 1 thread

Update
vertex status

Update
vertex status

Record updated
vertex

Record updated
vertex

Record updated
vertex

a1

a2

a3

b1

b2

b3

c1

c2

Sorted

Sorted

Unsorted

Unsorted,
Redundanti

Figure 5: Three task management methods. Particularly, batch filter and ballot filter work on Figure 1(d) to produce a task list for
next iteration. Online filter does that for Figure 1(c). Note, we assume the arrow flows of red and blue indicate the execution paths
of red and blue threads.

Figure 1(c), this step loads neighbors of vertex {e, c}
and constructs the active edge list in a1 of Figure 5 (a).
Next, batch filter checks these edges and updates vertex
metadata a2 , followed by recording the updated vertices
in thread bin at step a3 . Eventually, batch filter will con-
catenate these thread bins to arrive at a potentially un-
sorted and redundant next active list – {b, f , h, f , g, i}.
Note, thread private local storage – thread bin – is used
to avoid the expensive atomic operations, because mul-
tiple threads would need atomic operation to put active
vertices directly into next active list.

We observe several drawbacks when using the batch
filter for various graph algorithms. First, the active list
can consume up to 2·|E|memory space because majority
of the vertices in a graph can become active at one iter-
ation [4, 41], which is especially true for popular social
and web graphs. Considering GPU has very limited on-
board memory (e.g., 16 GB), this restriction makes large-
scale GPU-based graph computing intractable. Second,
batch filter produces a worklist with unsorted and redun-
dant active vertices, e.g., next active list – {b, f , h, f , g,
i} of Figure 5(a), which will lead to poor memory per-
formance for next iteration computation.

Ballot filter is designed to overcome all these shortcom-
ings. It first loads the neighbors of active vertices and im-
mediately updates vertex metadata. As shown at step b1

in Figure 5(b), the neighbors of {e, c} get updated imme-
diately. Afterwards, thread 0 and 1 (red and blue lines)
will exploit ballot scan to inspect the updated metadata
and record those updated vertices in local thread bin at
step b3 . The eventual step is similar to batch filter – we
concatenate these two thread bins to get the next active
list, whereas, with sorted nonredundant active vertices.

Ballot scan is the key to comprehend why we arrive at
a better next active list. In steps b2 and b3 of Figure 5(b),
threads 0 and 1 perform coalesced scan of vertex meta-

data, and with the CUDA ballot() primitive, return a
bit variable ‘01’ to the first thread. Here 1 means ac-
tive and 0 otherwise, in this case, vertex a is not active
while b is. Through collaboratively working on the en-
tire metadata array, the first thread eventually gets the bit
value ‘0100’ for the first four vertices, while the second
thread ‘011110’ for the remaining six vertices. Conse-
quently, this approach produces a sorted active list, that
is, {b, f , g, h, i} in b3 .

We intentionally schedule thread 0 and 1 to collabo-
ratively scan the metadata in order to achieve coalesced
memory access during scan, as well as, making thread
0 and 1 account for a continuous range of vertices, that
is, vertices a - d to thread 0 and e - i to thread 1. This
achieves the dual benefits: coalesced scan and sorted ac-
tive vertices in next active list. Last but not the least, this
scheduling lends ballot filter to be many-thread safe.

We also notice an unpublished parallel efforts from
Khorasani’s dissertation [31] which is closely related to
ballot filter. However, his design relies on atomic op-
eration to compute the offsets of active vertices from
each Warp in the next active list and subsequently as-
signs merely a single thread from the Warp to enqueue all
these active vertices. This design implies twin disadvan-
tages comparing to ours. First, atomic operation-based
offset computation cannot yield sorted active lists. Sec-
ond, single thread-based active vertices recording tends
to be slower than Warp-based one which is our design.

Ballot filter is not without its own issue, especially
when the amount of active vertices is low. In that case,
scanning the metadata array would account for the ma-
jority of the runtime. For instance, in ER and RC graphs,
99.23% and 96.67% of the time is spent on scanning
metadata in ballot filter alone solution, respectively.
Online filter is designed to accommodate the issue faced
by ballot filter. In the first step, this method loads the ac-

416 2019 USENIX Annual Technical Conference USENIX Association

Large_listMed_list

Online filter

Ballot filter

Small_list

I: JIT task
management

Overflow ? Yes

Thread Warp CTA

256 threads32 threads1 thread

No

II: Thread
assignment

Iteration ++

Figure 6: Workload balancing with the essential two steps: the
novel JIT task management from SIMD-X and the thread as-
signment.

BFS

FB
ER
KR
LJ
OR
PK
RD
RC
RM
UK
TW

k-Core

FB
ER
KR
LJ
OR
PK
RD
RC
RM
UK
TW

SSSP

FB
ER
KR
LJ
OR
PK
RD
RC
RM
UK
TW

Iteration

29

21

38
25
20

68

21

34

2,578

555

5,086

675

: Online filter : Ballot filter

Figure 7: Ballot filter activation patterns.

tive neighbors, updates the destination vertex, and simul-
taneously records the active vertices in the thread bin. In
the last step, it assembles all thread bins together as the
next active list. When the number of active vertices is
small, this approach turns out to be extremely fast. Here
we use the early stage of SSSP as an example to explain
its working process. As shown in Figure 5(c), {b, d} are
active vertices, this approach loads their neighbors for
computation (c1), and immediately records the destina-
tion vertices. Eventually, it generates {e, c} as the active
list for the next iteration as shown in c2 . It is also impor-
tant to note that for online filter, the vertices in the active
list may become redundant, and out of order.

In graph computing, it is possible that one GPU thread
may encounter exceeding amount of active vertices, e.g.,
our tests on Twitter graph shows one GPU thread can
reap more than 4,096 active vertices. Clearly, one can-
not afford such a large thread bin for all threads, thus
online filter will inevitably suffer from an overflow prob-
lem. Fortunately, ballot filter largely avoids this issue be-
cause it first updates the metadata of active vertices b2 ,
which, to some extent, averages out the active vertices
across threads in step b3 .

 0

 1

 2

 3

 4

 5

 4 16 64 256 1024 4096

Predefined threshold

Re
la

tiv
e

pe
rfo

rm
an

ce

Online filter threshold

FB
UK
TW
OR
PK

 0

 1

 2

 3

 4

 5

FB ER KR LJ OR PK RD RC RM UK TW

O
ve

rh
ea

d
(%

)

(a) Relative performance. (b) JIT Overhead

Figure 8: The (a) relative performance of JIT management with
respective to various online filter overflow thresholds on BFS
and (b) the overhead of JIT on SSSP.

Just-In-Time control adaptively exploits ballot and on-
line filters to retain the best performance. As shown in
Figure 6, SIMD-X always activates the online filter first.
Once a thread bin overflows, SIMD-X will switch on bal-
lot filter to generate the correct task list for the next iter-
ation. It is also worthy of mentioning that after JIT task
management, we assign various granularity of threads to
different lists in order to balance workload.

Interestingly, we find out that various algorithms and
graph datasets present different selection patterns which
tie closely to the amount of workload, that is, the higher
volume of workload often results in the activation of bal-
lot filter. As shown in Figure 7, BFS and SSSP typically
use the ballot filter in the middle of the computation and
online filter at the beginning and end. For high-diameter
graphs, BFS and SSSP avoid the use of ballot filter. For
instance, ER and RC always use the online filter along
2,578, 555, 5,086 and 675 iterations. k-Core activates the
ballot filter at the initial iterations, i.e., typically the first
two iterations except RC which only experiences one it-
eration because all its vertices have < 16 neighbors. At
the extreme, BP and PageRank need the ballot filter at
exactly the first iteration of computation.

Overflow thresholds for online filter. Clearly, this pa-
rameter directly determines when to switch on ballot fil-
ter, thereby affects the overall performance. Figure 8(a)
presents the normalized performance with respect to var-
ious thresholds. As expected, a too low or too high
threshold limits the performance because in either case,
SIMD-X is forced to switch to ballot filter either too early
or too late, leading to performance penalty. As such, in
this work we select 64 as the predefined overflow thresh-
old for all algorithms.

Overhead of online filter. After switching to ballot fil-
ter, JIT task management also executes the online fil-
ter in case it needs to switch back. Figure 8(b) studies
the overhead of this design. On average, there is 0.02%
slowdown, with the maximum of 2.1% observed for the
OR graph. The reason for the small overhead is because
online filter only tracks upto 64 (predefined threshold)
active vertices for the next iteration and this operation is
not on the critical path of the execution.

USENIX Association 2019 USENIX Annual Technical Conference 417

R

R

Holding

Worker CTA
…

Hardware resources

Monitor CTA
…

Update
lock array

Responsible for

R
Waiting

$

$

$

C

C

C

Figure 9: Deadlock in software global barrier, where ‘C’, ’$’,
and ‘R’ represent core, L1 cache and register, respectively.

5 Push-Pull Based Kernel Fusion

Kernel fusion [73], a common optimization for a collec-
tion of iterative GPU applications, such as graph com-
puting and deep learning [2, 58, 29, 10, 8], reduces ex-
pensive overhead of kernel invocation, as well as mini-
mizes the global memory traffic as the life time of regis-
ters and shared memory is limited in each kernel. How-
ever, traditional efforts, such as Gunrock [77] and Xiao
et al [79], fail to achieve cross the global barrier kernel
fusion. This section starts with our observation and anal-
ysis of potential deadlock in the mainstream global bar-
rier design [79, 82] and subsequently introduces a light-
weighted deadlock free solution which enables the global
thread synchronization within the fused kernel. How-
ever, aggressive kernel fusion requires a large amount
of the registers and thus supports fewer parallel warps
which could hurt the overall performance. To this end,
we introduce a push-pull based kernel fusion to minimize
the kernel invocation times and register consumption.

Software global barrier is needed to enable the bal-
anced kernel fusion. Generally speaking, this approach
uses an array – lock – to synchronize all GPU threads
upon arrival and departure. During the processing, it as-
sumes the thread CTA as the monitor while the remaining
threads as workers. At arrival, each worker CTA updates
its own status in lock. Once all worker CTAs have ar-
rived, the monitor changes the statuses of all CTAs to
departure, allowing all threads to proceed forward.

This approach, unfortunately, suffers from potential
deadlock [79], as illustrated in Figure 9. Specifically,
the worker thread CTAs may hold all GPU hardware
resources, such as streaming processors, registers and
shared memory, while waiting for the monitor to update
the lock array. In the meantime, the monitor cannot up-
date the lock array, due to lack of hardware resources
(e.g., thread over subscription).
Compiler-based deadlock free barrier. SIMD-X uti-
lizes the barrier in a way to ensure that every CTA,
regardless of a work or the monitor, can obtain hard-
ware resources when needed. This is achieved through
comparing the resources needed by the kernels, against
the total available resources. Based on the GPU ar-
chitecture, we can obtain the total amount of regis-

ters (#registerPerSMX) that can be provided by each
streaming processor, e.g., 65,536 registers of NVIDIA
K40 GPUs and 32,768 from K20 GPUs. On the
other hand, we can collect the register consumption
(#registerPerT hread) of each kernel at the compilation
stage. Putting together, SIMD-X is able to calculate the
appropriate thread configuration for kernels.

The number of CTA can be computed as follows:

#CTA = f loor(
#registersPerSMX

#registersPerT hread ·#threadsPerCTA
) ·#SMX (1)

where #threadsPerCTA is configured by a user, i.e.,
128 by default. For example, when deploying a ker-
nel, each thread consumes 110 registers, and on K40
that contains 15 SMXs, each of which contains 65,536
registers. If #threadsPerCTA is set to 128, one gets
#CTA = ceil(65536

110×128)× 15 = 60. As a result, we can
configure this kernel as CTA and thread count per CTA
as 60 and 128, respectively.

Notably, portable Inter-Block Barrier [69] is closely
relevant to our effort. However, this method pro-
poses extremely complicated thread block management
mechanism that requires to distinguish whether one
thread block will execute useful workloads or not dur-
ing runtime. This requires nontrivial programmer efforts
and scheduling overhead. In comparison, our method
achieves this deadlock-free configuration before runtime
and is completely transparent to the end users.

Push-Pull based kernel fusion. As shown in Table 2,
the register consumption (using the compilation flag -
Xptxas -v) increases from average 25 to 110, that is
a 4.4× difference. Note, consuming too many regis-
ters will curb the number of active threads (according
to equation 1). Unfortunately, majority of the graph al-
gorithms are data intensive, thus prefer a higher volume
of active threads because more active threads can better
hide the frequent memory access stalls caused by data in-
tensive applications. Consequently, we need a balanced
fusion strategy that keeps both register consumption and
kernel invocation low.

To this end, SIMD-X leverages the push-pull model
used in the graph algorithms. That is, such algorithms
often use push or pull based computing in several con-
secutive iterations. Lines 12 - 21 from Figure 3(b), for
example, discuss the pull model and we can fuse these
lines into a single GPU kernel. Similarly, push model can
also be fused into a single kernel. Section 6 details how
pull/push iterations occur in various graph algorithms.

SIMD-X adopts the pull-push model as in [66, 4, 41],
by controlling where (in/out edge) Compute happens and
how to Combine the results and apply (in atomic or
atomic free manner). Particularly, in the push model,
SIMD-X conducts Compute on the out neighbors of each
active vertex, and relies on atomic operations to apply the

418 2019 USENIX Annual Technical Conference USENIX Association

Table 2: Register consumption for various kernels.

Kernel Push (no fusion) Pull (no fusion) Selective fusion All fusionThread Warp CTA Task mgt Thread Warp CTA Task mgt push pull
Register consumption 26 27 28 24 24 24 22 30 48 50 110

Kernel launching count up to 40,688 3 1

Begin

Push model: JIT task management

(a) All fusion (b) Selective fusion

End

Thread push Warp push

Pull model: JIT task management

CTA push

Thread pull Warp pull CTA pull

Multiple
iterations

Switch model

Multiple
iterations

Begin

Push model: JIT task management

End

Thread push Warp push

Pull model: JIT task management

CTA push

Thread pull Warp pull CTA pull

Multiple
iterations

Switch model

Multiple
iterations

Figure 10: Consecutive iterations from graph algorithms often
cluster to push and model computation separately: (a) all fu-
sion, (b) selective fusion.

updates to the destination vertices. In contrast, the pull
model schedules Compute on the in neighbors of active
vertices, and uses atomic-free strategy to Combine all up-
dates and apply to the destination vertices. As different
iterations favor one model over the other, we follow a
similar rule as in Ligra [66] to alternate between the push
and pull models. That is, when the workload on the push
model works on more than 30% of the edges, SIMD-X
will switch to pull model.

The idea of push-pull based kernel fusion is to fuse
kernels around the pull and push computing. In other
words, for the push-based iterations, SIMD-X fuses dif-
ferent compute kernels (for thread, warp, CTA), as well
as task management kernel, into one push kernel. The
kernel only terminates when the computation finishes or
it needs to switch to pull computing according to the cri-
terion discussed in Section 3.3. Similar optimizations are
done for the pull-based iterations.

Using the new push-pull based fusion, the register con-
sumption decreases to 48 and 55 thus increases the con-
figurable thread count by 50%. Table 2 presents the reg-
ister consumption and kernel invocation of different ker-
nel fusion techniques. By using the push-pull based ker-
nel fusion, the kernel relaunch is merely three while its
register consumption is cut by half.

6 Graph Algorithms and Datasets

In addition to SSSP that is discussed in Section 3.3, this
section further presents a variety of algorithms which are
implemented on SIMD-X to examine the expressiveness
of ACC programming model, and performance impacts
of task management and kernel fusion techniques.
BFS [41] traverses a graph level by level. At each level, it
loads all neighbors that are connected to vertices visited

Table 3: Graph Dataset.
Graph Name Abbrev. Vertex Count Edge Count
Facebook FB 16,777,215 775,824,943
Europe-osm ER 50,912,018 108,109,319
Kron24 KR 16,777,216 536,870,911
LiveJournal LJ 4,847,571 136,950,781
Orkut OR 3,072,626 234,370,165
Pokec PK 1,632,803 61,245,127
Random RD 4,000,000 511,999,999
RoadCA-net RC 1,971,281 5,533,213
R-MAT RM 3,999,983 511,999,999
UK-2002 UK 18,520,343 596,227,523
Twitter TW 25,165,811 787,169,139

in the preceding level, inspects their statuses (metadata),
and subsequently marks those unvisited neighbors as ac-
tive for the next iteration. Notably, BFS conducts syn-
chronizations at the end of each level, relies on vote to
combine the updates. During the entire process of traver-
sal, BFS typically experiences light workload at the be-
ginning and end of the computation while heavy work-
load in the middle.
Belief propagation (BP), also known as sum-product
message passing algorithm, infers the posterior probabil-
ity of each event based on the likelihoods and prior prob-
abilities of all related events. Once modeled as a graph
(Bayesian network or Markov random fields), each event
becomes a vertex with all incoming vertices and edges
as related events and corresponding likelihoods. In BP,
vertex possibility is the metadata.
k-Core (KC), which is widely used in graph visualiza-
tion application [42, 53], iteratively deletes the vertices
whose degree is less than k until all remaining vertices in
this graph possess more than k neighbors. k-Core experi-
ences large volume of workloads at initial iterations and
follows with light workloads. This work uses a default
value of k = 16.
PageRank (PR) [57] updates the rank value of one ver-
tex based on the contribution of all in-neighbors itera-
tively till all vertices have stable rank values. Because the
contributions of in neighbors are summarized to the des-
tination vertex, we start PageRank with the pull model
and agg sum as the merge operation. At the end of
PageRank, we switch to the push model because the ma-
jority of the vertices are stable [87]. The switch is de-
cided by a decision tree.
Graph Benchmarks. We evaluate on a wide range
of graphs as shown in Table 3, which falls into four
types, i.e., social networks, road maps, hyperlink web
and synthetic graphs. Particularly, Facebook [17], Live-
Journal [68], Orkut [68], Pokec [68], and Twitter [38]
are common social networks. Europe-osm [12] and

USENIX Association 2019 USENIX Annual Technical Conference 419

RoadCA-net [70] are two large roadmap graphs, and UK-
2002 [70] is a web graph. Furthermore, we use Graph500
generator to generate Kron24 [6], and GTgraph [19] for
R-MAT and random graphs. Europe-osm and RoadCA-
net are high diameter graphs, with 2570 and 555 as their
diameters, respectively. LiveJournal, Pokec, Twitter and
UK-2002 are medium diameter graphs, i.e., 10 - 30 as
their diameters. The diameters of the remaining graphs
are all smaller than 10. For graphs without edge weight,
we use a random generator to generate one weight for
each edge similar to Gunrock [76]. These graphs are
stored in compressed sparse row (CSR) format.

7 Experiments

We implement SIMD-X1 with 5,660 lines of CUDA and
C++ code. All the algorithms presented in Section 6 are
implemented with around 100 lines of C++ code. The
source code is compiled by GCC 4.8.5 and NVIDIA nvcc
7.5 with the optimization flag as O3. In this work, we
evaluate SIMD-X on a Linux workstation with two In-
tel Xeon E5-2683 CPUs (14 physical cores with 28 hy-
perthreads), and 512GB main memory. Throughout the
evaluation, we use uint32 as the vertex ID and uint64 as
index and evaluate our system on NVIDIA K40 GPUs
unless otherwise is specified. We also test SIMD-X on
earlier K20 and latest P100 GPUs. The timing is started
once the graph data is loaded in GPU global memory.
Each result is reported with an average of 64 runs.

7.1 Comparison with State-of-the-art
Table 4 summarizes the runtime of SIMD-X against Ga-
lois and Gunrock which are state-of-the-art CPU and
GPU graph processing systems, respectively, as well
as CuSha (GPU) and Ligra (CPU), two popular graph
frameworks. The take aways of this table are two folds.

First, SIMD-X is both space efficient and robust. As
one can see, since CuSha requires edge list as the in-
put for computation, it cannot accommodate large graphs
(e.g., FB and TW) across all algorithms. Besides, since
Gunrock requires large amount of space for batch filter, it
suffers out of memory (OOM) error for all larger graphs
in SSSP. Even CPU systems (Galois and Ligra) enjoys
affluent memory space (512 GB) from CPU, they can-
not converge to a result for high diameter graphs. That
is, Galois cannot converge for SSSP on ER while Ligra
fails to obtain result for BFS on UK graph.

Second, SIMD-X outperforms all graph processing
frameworks. In general, SIMD-X is 24×, 2.9×, 6.5× and
3.3× faster than CuSha, Gunrock, Galois and Ligra, re-
spectively. In BFS, SIMD-X bests CuSha, Gunrock, Ga-

1SIMD-X source https://github.com/asherliu/simd-x.

lois and Ligra by 9.6×, 4.8×, 2.1× and 2.4×, respec-
tively. We also notice that SIMD-X is slower than Ga-
lois on the RD graph because workload balancing brings
negligible benefits to uniform-degree graph (RD). Also,
SIMD-X is slightly worse than Ligra on RM graph since
this graph only has a diameter of four thus both JIT task
management and kernel fusion brings trivial benefits to
GPU based graph systems, as evident by much lower per-
formance on CuSha and Gunrock.

In PageRank, SIMD-X achieves 1.2×, 2.1×, 2.3× and
4× speedups over CuSha, Gunrock, Galois and Ligra,
respectively. Note, even CuSha cannot support all large
graphs due to large memory space consumption, it per-
forms roughly similar to SIMD-X with even outperform-
ing SIMD-X on LJ and OR. This is generally because
PageRank tends to be more computation intensive than
other graph algorithms and needs to compute all edges,
curbing the benefits of task management and kernel fu-
sion. However, edge list format (of CuSha) doubles
memory consumption, facing OOM for large graphs.

For SSSP, SIMD-X wins 21×, on average, over all four
projects. We project SIMD-X to better outperform all sys-
tems than observed for BFS algorithm because SSSP ex-
periences more iterations with larger volume of active
tasks, placing more favor towards ACC model, JIT task
management and push-pull based kernel fusion. How-
ever, because Gunrock fails to accommodate all large
graphs, our benefits cannot surface – ending with merely
1.8× speedup. Second, CuSha spends 519,674 ms on
the high diameter ER graph which is 480× slower than
SIMD-X because task management is absent from CuSha.
We also notice Galois performs better than SIMD-X in
RD, again, due to the uniform degree distribution.

For k-Core, where k = 32, SIMD-X wins Ligra by 20×.
Such a striking advantage comes from three parts. First,
as reflected by Figure 11(b), k-Core generates exten-
sive amount of workload variations thus benefits tremen-
dously from JIT task management. Second, k-Core’s
iterative nature also enjoys the benefits from push-pull
based kernel fusion, as shown in Figure 12(c). Lastly,
the flexibility of ACC allows innovative k-Core algo-
rithm designs – we will stop further subtracting the de-
gree of destination vertex once the destination vertex’s
degree goes below k – this reduces tremendous unneces-
sary updates. Note comparisons of Belief Propagation,
as well as other systems for k-Core are not included be-
cause those systems fail to support such algorithms.

7.2 Benefits of Various Techniques

This section studies the performance impacts brought by
JIT task management and push-pull based kernel fusion.
As we have presented in Section 4, JIT task manage-
ment only works for applications that experience work-

420 2019 USENIX Annual Technical Conference USENIX Association

Table 4: Runtime (ms) of SIMD-X and Gunrock, and Galois. A K40 GPU is used to test SIMD-X and Gunrock, and a CPU with 28
threads for Galois. The blank space indicates the test cannot complete for the given algorithm and graph.

Alg System FB ER KR LJ OR PK RD RC RM UK TW Avg. speedup
SIMD-X 198 400 130 59 40 20 82 15 47 308 210 -
CuSha 988 224 341 72 435 297 674 4298 9.6
Gunrock 685 849 677 71 225 44 647 146 506 312 697 4.8
Galois 482 1068 140 139 42 34 48 53 65 229 322 2.1

BFS

Ligra 1086 1426 176 89 51 31 88 48 40 496 2.4
SIMD-X 1553 346 1141 236 435 118 1105 13 800 637 1525 -
CuSha 1704 182 323 180 1402 15 886 1.2
Gunrock 3004 884 3129 275 927 166 2963 43 2208 784 3180 2.1
Galois 4552 603 3069 424 1061 218 3576 20 2067 842 4178 2.3

PR

Ligra 16780 1368 2000 1324 1786 310 809 35 1703 9360 4
SIMD-X 1816 1080 998 284 604 143 1505 223 478 703 1344 -
CuSha 519674 1663 692 1120 260 1610 438 1236 62
Gunrock 1206 1220 431 1259 336 5059 229 1.8
Galois 161596 8485 1785 1166 356 747 3440 5877 9081 1818 15

SSSP

Ligra 14067 3043 2893 1627 1567 605 3353 301 2783 1300 5217 3.7
SIMD-X 366 78 131 60 63 33 10 4 19 151 277 -k-Core Ligra 6337 1167 2813 1707 1700 654 27 36 235 6627 5783 20

 0

 0.5

 1

 1.5

 2

FB ER KR LJ OR PK RD RC RM UK TW

132 132 2.4 29 29 2.6

Sp
ee

du
p

Ballot
Online
JIT

 0

 0.5

 1

 1.5

 2

FB ER KR LJ OR PK RD RC RM UK TW

2.8 2.3 2.7 8 8 14 14 4 2.1

Sp
ee

du
p

Ballot
Online
JIT

 0

 0.5

 1

 1.5

 2

FB ER KR LJ OR PK RD RC RM UK TW

30 30 2.6 2.6

Sp
ee

du
p

Ballot
Online
JIT

(a) BFS (b) k-Core (c) SSSP

Figure 11: Benefit of just-in-time task management, normalized to the performance of the ballot filter.

load variations, that is, BFS, k-Core and SSSP. On the
other hand, push-pull based kernel fusion is applicable
for all five algorithms

On average, JIT task management presented in Fig-
ure 11, is 16×, 26× and 4.5× faster than the ballot fil-
ter for BFS, k-Core and SSSP. As expected, online fil-
ter alone cannot work for many graphs, particularly large
ones, e.g., Facebook, Twitter and UK2002 graphs in BFS
and SSSP. Without considering overflow problem (ER
and RC graphs), JIT task management adds a small 1-2%
overhead on top of the online filter on BFS and SSSP.

On k-Core, JIT task management is, on average,
28.5× and 5% faster than ballot and online filter, re-
spectively. We also observe that the ballot filter outper-
forms the online filter on ER and RC graphs by 3.4× and
1.7×, because k-Core removes a large volume of vertices
which favors the former to produce a non-redundant and
sorted work list.

Push-pull based kernel fusion brings, on average, 43%
and 25% improvement over non-fusion and all-fusion
across all algorithms and graphs. In particular, push-pull
based kernel fusion tops non-fusion by 74%, 11%, 85%,
10% and 66% on BFS, BP, k-Core, PageRank and SSSP.
BFS, k-Core and SSSP achieves more performance gains
because they are not computation intensive and tend to
run a higher number of iterations. For all fusion, our
new kernel fusion is 55%, 6%, 62%, 25% and 11% faster
on BFS, BP, k-Core, PageRank and SSSP. It is impor-
tant to note that all fusion is not always beneficial, i.e.,

all fuse option of PageRank is average 13% slower than
no fusion because all fusion limits the amount of config-
urable threads. However, for memory intensive applica-
tions, like BFS and SSSP on ER and RC, all fusion is on
average 2× better.

7.3 Performance on Different GPUs
We also evaluate SIMD-X, Gunrock and CuSha on var-
ious GPU models, such as K20 and P100 GPUs. It is
not surprising to see tht SIMD-X presents the biggest per-
formance gain on the latest GPUs. In detail, SIMD-X
on K40 and P100 performs 1.7× and 5.1× better than
K20 GPU. In contrast, Gunrock merely gets 1.1× and
1.7× performance improvement when moving from K20
to K40 and P100, respectively. Similarly for CuSha, its
performance on K40 and P100 are 1.2× and 3.5× better
than K20, respectively. The root cause of this dispar-
ity is that SIMD-X’s kernel fusion technique can dynami-
cally configure its GPU kernels to the fitting thread count
on the corresponding hardware so as to achieve the peak
performance. For instance, the thread count increases by
1.2× and 5.1× on K40 and P100 than on K20 for BFS.

8 Related Work

Recent advance in graph computing falls in algorithm in-
novation [51, 87, 15], framework developments [49, 18,
45, 39, 42, 90, 92, 22, 66, 63, 61, 23, 54, 60, 74, 7, 80, 84,
65, 88, 75, 55, 89, 86, 85, 3, 78, 52, 21, 9, 81] and accel-

USENIX Association 2019 USENIX Annual Technical Conference 421

 0

 0.5

 1

 1.5

 2

FB ER KR LJ OR PK RD RC RM UK TW

2.2 2.4 3.4 3.4 2.8
Sp

ee
du

p
Non-fusion
All-fusion
Push-pull fusion

(a) BFS

 0

 0.5

 1

 1.5

 2

FB ER KR LJ OR PK RD RC RM UK TW

Sp
ee

du
p

Non-fusion
All-fusion
Push-pull fusion

(b) BP

 0

 0.5

 1

 1.5

 2

FB ER KR LJ OR PK RD RC RM UK TW

2.7 2.9 2.7 2.2

Sp
ee

du
p

Non-fusion
All-fusion
Push-pull fusion

(c) k-Core

 0

 0.5

 1

 1.5

 2

FB ER KR LJ OR PK RD RC RM UK TW

Sp
ee

du
p

Non-fusion
All-fusion
Push-pull fusion

(d) PageRank

 0

 0.5

 1

 1.5

 2

FB ER KR LJ OR PK RD RC RM UK TW

2.9 3.7 29 29

Sp
ee

du
p

Non-fusion
All-fusion
Push-pull fusion

(e) SSSP

Figure 12: Benefit of push-pull based kernel fusion, normalized to the performance of no fusion.

erator optimizations [76, 41, 50, 33, 43, 59, 64, 13]. This
section covers relevant work from three aspects: pro-
gramming model, task management and kernel fusion.

Recently, we witness an array of graph analytical mod-
els. For instance, “think like a graph” [71] requires
each vertex to obtain the view of the entire partition on
one machine in order to minimize the communication
cost. Furthermore, domain specific programming lan-
guage systems, such as Galois [54], Green-Marl [23] and
Trinity [63], allow programmers to write single-threaded
source code while enjoying multi-threaded processing.
In comparison, SIMD-X decouples the goal of program-
ming simplicity and performance: with ACC, SIMD-X
ultimately designs a data-parallel abstraction for deploy-
ing irregular graph applications on GPU. With JIT task
management and push-pull based kernel fusion, SIMD-X
is an order of magnitude faster than state-of-the-art CPU
and GPU frameworks.

Task management is an important optimization for
GPU-based graph computing. Besides batch filter [76,
50], there also exist other task management approaches
– strided filter [41, 43] and atomic filter [46]. Particu-
larly, strided filter resembles ballot filter but the former
one experiences strided memory access when scanning
the metadata thus performs up to 16× worse than ballot
filter. Atomic filter relies is similar to online filter but
it relies on atomic operation to put active vertices into
global active list which suffers from orders of magnitude
slow down than online filter. Besides ballot and online
filter bests batch, stride and atomic filter, SIMD-X goes
further via introducing a JIT controller to adaptively use
online filter and ballot filter to further improve the per-
formance. We also find that JIT task management can be
exploited to help manage active lists for other applica-
tions such as warp segmentation [32] and CSR5 [44].

Kernel fusion affects applications far beyond graph
computations. SIMD-X is closely related to global soft-
ware barrier [79, 82]. However, previous work fails to
identify the deadlock issue in this global software bar-
rier problem, thus no solution towards this issue. In con-

trast, SIMD-X unveils, systematically analyzes, and re-
solves this problem. To avoid high register consumption,
SIMD-X further selectively fuse kernels via exploiting the
special kernel launching patterns of graph algorithms. It
is also important to mention existing work [73] that only
fuse kernels to barrier boundary. In comparison, SIMD-X
fuses kernels across barriers. Our design can also bene-
fit the popular Persistent Kernel [20] designs which have
been found suffer from deadlock issues when the occu-
pancy exceed an unknown bound [48, 24].

9 Conclusion

In this work, we propose SIMD-X, a parallel graph com-
puting framework that supports programming and pro-
cessing of single instruction multiple, complex, data
on GPUs. Specifically, the Active-Compute-Combine
(ACC) model provides ease of programming to program-
mers, while just-in-time task management and push-
pull based kernel fusion leverage the opportunities for
system-level optimization. Using SIMD-X, a user can
program a graph algorithm in tens of lines of code, while
achieving significant speedup over the state-of-the-art.

Acknowledgment

The authors would like to thank the anonymous review-
ers and Shepherd Chris Rossbach for their feedback and
suggestions. Hang Liu did part of this work at the George
Washington University. This work was partially sup-
ported by National Science Foundation CAREER award
1350766 and grants 1618706 and 1717774 at George
Washington University and CRII Award No. 1850274 at
University of Massachusetts Lowell. We also would like
to gracefully acknowledge the support from XSEDE su-
percomputers and Amazon AWS, as well as the NVIDIA
Corporation for the donation of the Titan Xp and Quadro
P6000 GPUs to the University of Massachusetts Lowell.

422 2019 USENIX Annual Technical Conference USENIX Association

References

[1] Nvidia cuda c programming guide. NVIDIA Cor-
poration, 2011.

[2] Martı́n Abadi, Paul Barham, Jianmin Chen,
Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, et al. TensorFlow: A System
for Large-Scale Machine Learning. In OSDI,
volume 16, pages 265–283, 2016.

[3] Zhiyuan Ai, Mingxing Zhang, Yongwei Wu, Xue-
hai Qian, Kang Chen, and Weimin Zheng. Squeez-
ing out all the value of loaded data: An out-of-
core graph processing system with reduced disk
i/o. In 2017 USENIX Annual Technical Conference
(USENIX ATC 17), pages 125–137, 2017.

[4] S Beamer, K Asanovic, and D Patterson. Direction-
optimizing Breadth-First Search. In International
Conference for High Performance Computing, Net-
working, Storage and Analysis (SC), pages 1–10.
IEEE, 2012.

[5] Bibek Bhattarai, Hang Liu, and H Howie Huang.
CECI: Compact Embedding Cluster Index for Scal-
able Subgraph Matching. In Proceedings of the
2019 International Conference on Management of
Data, SIGMOD, volume 19, 2019.

[6] Deepayan Chakrabarti, Yiping Zhan, and Christos
Faloutsos. R-MAT: A Recursive Model for Graph
Mining. In SDM, 2004.

[7] Rong Chen, Xin Ding, Peng Wang, Haibo Chen,
Binyu Zang, and Haibing Guan. Computa-
tion and communication efficient graph process-
ing with distributed immutable view. In Proceed-
ings of the 23rd international symposium on High-
performance parallel and distributed computing,
pages 215–226. ACM, 2014.

[8] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan
Wang, Minjie Wang, Tianjun Xiao, Bing Xu,
Chiyuan Zhang, and Zheng Zhang. Mxnet: A
flexible and efficient machine learning library for
heterogeneous distributed systems. arXiv preprint
arXiv:1512.01274, 2015.

[9] Raymond Cheng, Ji Hong, Aapo Kyrola, Youshan
Miao, Xuetian Weng, Ming Wu, Fan Yang, Li-
dong Zhou, Feng Zhao, and Enhong Chen. Ki-
neograph: taking the pulse of a fast-changing and
connected world. In Proceedings of the 7th ACM
european conference on Computer Systems, pages
85–98. ACM, 2012.

[10] Sharan Chetlur, Cliff Woolley, Philippe Vandermer-
sch, Jonathan Cohen, John Tran, Bryan Catanzaro,
and Evan Shelhamer. cudnn: Efficient primitives
for deep learning. arXiv preprint arXiv:1410.0759,
2014.

[11] Andrew Davidson, Sean Baxter, Michael Garland,
and John D Owens. Work-efficient parallel GPU
methods for single-source shortest paths. In 28th
International Symposium on Parallel & Distributed
Processing (IPDPS), pages 349–359. IEEE, 2014.

[12] European Open Stream Map. http://download.
geofabrik.de/europe-latest.osm.bz2,.

[13] Eric Finnerty, Zachary Sherer, Hang Liu, and Yan
Luo. Dr. BFS: Data Centric Breadth-First Search
on FPGAs. In Proceedings of the 56th Annual De-
sign Automation Conference 2019, page 208. ACM,
2019.

[14] Anil Gaihre, Yan Luo, and Hang Liu. Do Bitcoin
Users Really Care About Anonymity? An Analysis
of the Bitcoin Transaction Graph. In 2018 IEEE
International Conference on Big Data (Big Data),
pages 1198–1207. IEEE, 2018.

[15] Anil Gaihre, Zhenlin Wu, Fan Yao, and Hang
Liu. XBFS: eXploring Runtime Optimizations for
Breadth-First Search on GPUs. In Proceedings of
the international symposium on High-performance
parallel and distributed computing (HPDC). ACM,
2019.

[16] Benedict R Gaster and Lee Howes. Can GPGPU
Programming Be Liberated from the Data-Parallel
Bottleneck? Computer, 2012.

[17] Minas Gjoka, Maciej Kurant, Carter T Butts, and
Athina Markopoulou. Practical Recommendations
on Crawling Online Social Networks. IEEE Jour-
nal on Selected Areas in Communications, 2011.

[18] Joseph E Gonzalez, Yucheng Low, Haijie Gu,
Danny Bickson, and Carlos Guestrin. PowerGraph:
Distributed Graph-Parallel Computation on Natural
Graphs. In OSDI, volume 12, page 2, 2012.

[19] GTgraph: A suite of synthetic random graph gen-
erators. http://www.cse.psu.edu/~madduri/
software/GTgraph/.

[20] Kshitij Gupta, Jeff A Stuart, and John D Owens.
A study of persistent threads style GPU program-
ming for GPGPU workloads. In Innovative Parallel
Computing (InPar), 2012, pages 1–14. IEEE, 2012.

USENIX Association 2019 USENIX Annual Technical Conference 423

[21] Wentao Han, Youshan Miao, Kaiwei Li, Ming
Wu, Fan Yang, Lidong Zhou, Vijayan Prabhakaran,
Wenguang Chen, and Enhong Chen. Chronos:
a graph engine for temporal graph analysis. In
Proceedings of the Ninth European Conference on
Computer Systems, page 1. ACM, 2014.

[22] Wook-Shin Han, Sangyeon Lee, Kyungyeol Park,
Jeong-Hoon Lee, Min-Soo Kim, Jinha Kim, and
Hwanjo Yu. TurboGraph: a fast parallel graph en-
gine handling billion-scale graphs in a single PC. In
Proceedings of international conference on Knowl-
edge discovery and data mining (SIGKDD), pages
77–85, 2013.

[23] Sungpack Hong, Hassan Chafi, Edic Sedlar, and
Kunle Olukotun. Green-Marl: a DSL for easy and
efficient graph analysis. In Proceedings of the sev-
enteenth international conference on Architectural
Support for Programming Languages and Operat-
ing Systems (ASPLOS), volume 40, pages 349–362,
2012.

[24] Derek R Hower, Blake A Hechtman, Bradford M
Beckmann, Benedict R Gaster, Mark D Hill,
Steven K Reinhardt, and David A Wood.
Heterogeneous-race-free memory models.
ACM SIGARCH Computer Architecture News,
42(1):427–440, 2014.

[25] Yang Hu, Hang Liu, and H Howie Huang. High-
Performance Triangle Counting on GPUs. In 2018
IEEE High Performance extreme Computing Con-
ference (HPEC), pages 1–5. IEEE, 2018.

[26] Yang Hu, Hang Liu, and H Howie Huang. Tricore:
Parallel triangle counting on gpus. In SC18: Inter-
national Conference for High Performance Com-
puting, Networking, Storage and Analysis, pages
171–182. IEEE, 2018.

[27] H Howie Huang and Hang Liu. Big data ma-
chine learning and graph analytics: Current state
and future challenges. In 2014 IEEE International
Conference on Big Data (Big Data), pages 16–17.
IEEE, 2014.

[28] Yuede Ji, Hang Liu, and H Howie Huang. iSpan:
Parallel Identification of Strongly Connected Com-
ponents with Spanning Trees. In SC18: Interna-
tional Conference for High Performance Comput-
ing, Networking, Storage and Analysis, pages 731–
742. IEEE, 2018.

[29] Yangqing Jia, Evan Shelhamer, Jeff Donahue,
Sergey Karayev, Jonathan Long, Ross Girshick,
Sergio Guadarrama, and Trevor Darrell. Caffe:

Convolutional architecture for fast feature embed-
ding. In Proceedings of the 22nd ACM interna-
tional conference on Multimedia, pages 675–678.
ACM, 2014.

[30] Zhihao Jia, Yongkee Kwon, Galen Shipman, Pat
McCormick, Mattan Erez, and Alex Aiken. A Dis-
tributed Multi-GPU System for Fast Graph Pro-
cessing. Proceedings of the VLDB Endowment,
11(3):297–310, 2017.

[31] Farzad Khorasani. High Performance Vertex-
Centric Graph Analytics on GPUs. PhD Disser-
tation: University of California, Riverside, 2016.

[32] Farzad Khorasani, Rajiv Gupta, and Laxmi N
Bhuyan. Scalable simd-efficient graph processing
on gpus. In Parallel Architecture and Compilation
(PACT), 2015 International Conference on, pages
39–50. IEEE, 2015.

[33] Farzad Khorasani, Keval Vora, Rajiv Gupta, and
Laxmi N Bhuyan. CuSha: vertex-centric graph pro-
cessing on GPUs. In Proceedings of the 23rd inter-
national symposium on High-performance parallel
and distributed computing, pages 239–252. ACM,
2014.

[34] Min-Soo Kim, Kyuhyeon An, Himchan Park,
Hyunseok Seo, and Jinwook Kim. GTS: A fast and
scalable graph processing method based on stream-
ing topology to GPUs. In Proceedings of the 2016
International Conference on Management of Data,
pages 447–461. ACM, 2016.

[35] Pradeep Kumar and H Howie Huang. G-store:
high-performance graph store for trillion-edge pro-
cessing. In Proceedings of the International Con-
ference for High Performance Computing, Net-
working, Storage and Analysis, page 71. IEEE
Press, 2016.

[36] Pradeep Kumar and H Howie Huang. Falcon: scal-
ing IO performance in multi-SSD volumes. In
Proceedings of the 2017 USENIX Conference on
Usenix Annual Technical Conference, pages 41–53.
USENIX Association, 2017.

[37] Pradeep Kumar and H Howie Huang. GraphOne:
A Data Store for Real-time Analytics on Evolving
Graphs. In 17th USENIX Conference on File and
Storage Technologies (FAST 19), pages 249–263,
2019.

[38] Haewoon Kwak, Changhyun Lee, Hosung Park,
and Sue Moon. What is Twitter, a social network
or a news media? In WWW, 2010.

424 2019 USENIX Annual Technical Conference USENIX Association

[39] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin.
GraphChi: large-scale graph computation on just a
PC. In Proceedings of the 10th USENIX conference
on Operating Systems Design and Implementation,
pages 31–46. USENIX Association, 2012.

[40] Hang Liu and H Howie Huang. Graphene: Fine-
Grained IO Management for Graph Computing.
In 15th USENIX Conference on File and Storage
Technologies (FAST 17), pages 285–300. USENIX
Association.

[41] Hang Liu and H. Howie Huang. Enterprise:
Breadth-First Graph Traversal on GPU Servers.
In International Conference for High Performance
Computing, Networking, Storage and Analysis
(SC), 2015.

[42] Hang Liu and H. Howie Huang. Graphene: Fine-
Grained IO Management for Graph Computing. In
Proceedings of the 15th USENIX Conference on
File and Storage Technologies. USENIX Associa-
tion, 2017.

[43] Hang Liu, H Howie Huang, and Yang Hu. iBFS:
Concurrent Breadth-First Search on GPUs. In Pro-
ceedings of the 2016 International Conference on
Management of Data (SIGMOD), 2016.

[44] Weifeng Liu and Brian Vinter. CSR5: An efficient
storage format for cross-platform sparse matrix-
vector multiplication. In Proceedings of the 29th
ACM on International Conference on Supercom-
puting, pages 339–350. ACM, 2015.

[45] Yucheng Low, Joseph Gonzalez, Aapo Kyrola,
Danny Bickson, Carlos Guestrin, and Joseph M
Hellerstein. Graphlab: A new framework for paral-
lel machine learning. 2010.

[46] Lijuan Luo, Martin Wong, and Wen-mei Hwu.
An effective GPU implementation of breadth-first
search. In Proceedings of the 47th design automa-
tion conference, pages 52–55. ACM, 2010.

[47] Steffen Maass, Changwoo Min, Sanidhya Kashyap,
Woonhak Kang, Mohan Kumar, and Taesoo Kim.
Mosaic: Processing a trillion-edge graph on a sin-
gle machine. In Proceedings of the Twelfth Euro-
pean Conference on Computer Systems, pages 527–
543. ACM, 2017.

[48] Sepideh Maleki, Annie Yang, and Martin
Burtscher. Higher-order and tuple-based
massively-parallel prefix sums, volume 51.
ACM, 2016.

[49] Grzegorz Malewicz, Matthew H Austern, Aart JC
Bik, James C Dehnert, Ilan Horn, Naty Leiser, and
Grzegorz Czajkowski. Pregel: a system for large-
scale graph processing. In Proceedings of the 2010
ACM SIGMOD International Conference on Man-
agement of data, pages 135–146. ACM, 2010.

[50] Duane Merrill, Michael Garland, and Andrew
Grimshaw. Scalable GPU graph traversal. In
PPoPP, 2012.

[51] Ulrich Meyer and Peter Sanders. ∆-Stepping: A
Parallel Single Source Shortest Path Algorithm. Al-
gorithms—ESA’98, 1998.

[52] Youshan Miao, Wentao Han, Kaiwei Li, Ming Wu,
Fan Yang, Lidong Zhou, Vijayan Prabhakaran, En-
hong Chen, and Wenguang Chen. Immortalgraph:
A system for storage and analysis of temporal
graphs. ACM Transactions on Storage (TOS), 2015.

[53] Alberto Montresor, Francesco De Pellegrini, and
Daniele Miorandi. Distributed k-Core Decompo-
sition. IEEE Transactions on Parallel and Dis-
tributed Systems, 2013.

[54] Donald Nguyen, Andrew Lenharth, and Keshav
Pingali. A lightweight infrastructure for graph
analytics. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles
(SOSP), pages 456–471. ACM, 2013.

[55] Amir Hossein Nodehi Sabet, Junqiao Qiu, and Zhi-
jia Zhao. Tigr: Transforming Irregular Graphs
for GPU-Friendly Graph Processing. In Proceed-
ings of the Twenty-Third International Conference
on Architectural Support for Programming Lan-
guages and Operating Systems, pages 622–636.
ACM, 2018.

[56] Nvidia. NVIDIA Kepler GK110 Architecture
Whitepaper. 2013.

[57] Lawrence Page, Sergey Brin, Rajeev Motwani, and
Terry Winograd. The PageRank Citation Ranking:
Bringing Order to the Web. Technical report, Stan-
ford InfoLab, 1999.

[58] Adam Paszke, Sam Gross, Soumith Chintala, Gre-
gory Chanan, Edward Yang, Zachary DeVito, Zem-
ing Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. Automatic differentiation in PyTorch. 2017.

[59] Vijayan Prabhakaran, Ming Wu, Xuetian Weng,
Frank McSherry, Lidong Zhou, and Maya Hari-
dasan. Managing large graphs on multi-cores with
graph awareness. In Proceedings of USENIX con-
ference on Annual Technical Conference. USENIX
Association, 2012.

USENIX Association 2019 USENIX Annual Technical Conference 425

[60] Amitabha Roy, Laurent Bindschaedler, Jasmina
Malicevic, and Willy Zwaenepoel. Chaos: Scale-
out Graph Processing from Secondary Storage. In
Proceedings of the 25th Symposium on Operating
Systems Principles, pages 410–424. ACM, 2015.

[61] Amitabha Roy, Ivo Mihailovic, and Willy
Zwaenepoel. X-stream: Edge-centric graph pro-
cessing using streaming partitions. In Proceedings
of the Twenty-Fourth ACM Symposium on Oper-
ating Systems Principles, pages 472–488. ACM,
2013.

[62] Dipanjan Sengupta, Shuaiwen Leon Song, Kapil
Agarwal, and Karsten Schwan. GraphReduce:
processing large-scale graphs on accelerator-based
systems. In High Performance Computing,
Networking, Storage and Analysis, 2015 SC-
International Conference for, pages 1–12. IEEE,
2015.

[63] Bin Shao, Haixun Wang, and Yatao Li. Trinity: A
distributed graph engine on a memory cloud. In
Proceedings of International Conference on Man-
agement of Data (SIGMOD), pages 505–516, 2013.

[64] Zachary Sherer, Eric Finnerty, Yan Luo, and Hang
Liu. Software Hardware Co-Optimized BFS on
FPGAs. In Proceedings of the 2019 ACM/SIGDA
International Symposium on Field-Programmable
Gate Arrays, pages 190–190. ACM, 2019.

[65] Jiaxin Shi, Youyang Yao, Rong Chen, Haibo Chen,
and Feifei Li. Fast and Concurrent RDF Queries
with RDMA-Based Distributed Graph Exploration.
In 12th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI) 16), pages
317–332.

[66] Julian Shun and Guy E Blelloch. Ligra: a
lightweight graph processing framework for shared
memory. In PPoPP, 2013.

[67] George M Slota, Sivasankaran Rajamanickam, and
Kamesh Madduri. BFS and Coloring-based Parallel
Algorithms for Strongly Connected Components
and Related Problems. In International Parallel
and Distributed Processing Symposium (IPDPS),
2014.

[68] SNAP: Stanford Large Network Dataset Collection.
http://snap.stanford.edu/data/.

[69] Tyler Sorensen, Alastair F Donaldson, Mark Batty,
Ganesh Gopalakrishnan, and Zvonimir Rakamarić.
Portable inter-workgroup barrier synchronisation
for GPUs. In ACM SIGPLAN Notices, volume 51,
pages 39–58. ACM, 2016.

[70] The University of Florida: Sparse Matrix Collec-
tion. http://www.cise.ufl.edu/research/
sparse/matrices/.

[71] Yuanyuan Tian, Andrey Balmin, Severin Andreas
Corsten, Shirish Tatikonda, and John McPherson.
From Think Like a Vertex to Think Like a Graph.
Proceedings of the VLDB Endowment, 2013.

[72] Stanley Tzeng, Anjul Patney, and John D Owens.
Task Management for Irregular-Parallel Workloads
on the GPU. In Proceedings of the Conference on
High Performance Graphics. Eurographics Associ-
ation, 2010.

[73] Mohamed Wahib and Naoya Maruyama. Scalable
Kernel Fusion for Memory-bound GPU applica-
tions. In Proceedings of the International Confer-
ence for High Performance Computing, Network-
ing, Storage and Analysis. IEEE Press, 2014.

[74] Kai Wang and Zhendong Su. GraphQ: Graph
Query Processing with Abstraction Refinement-
Scalable and Programmable Analytics over Very
Large Graphs on a Single PC.

[75] Siyuan Wang, Chang Lou Lou, Rong Chen, and
Haibo Chen. Fast and Concurrent RDF Queries
using RDMA-assisted GPU Graph Exploration.
In 2018 USENIX Annual Technical Conference
(USENIX ATC 18), Boston, MA, 2018. USENIX
Association.

[76] Yangzihao Wang, Andrew Davidson, Yuechao Pan,
Yuduo Wu, Andy Riffel, and John D Owens. Gun-
rock: A high-performance graph processing library
on the GPU. In Proceedings of the 20th ACM
SIGPLAN Symposium on Principles and Practice
of Parallel Programming, pages 265–266. ACM,
2015.

[77] Yangzihao Wang, Yuechao Pan, Andrew Davidson,
Yuduo Wu, Carl Yang, Leyuan Wang, Muhammad
Osama, Chenshan Yuan, Weitang Liu, Andy T Rif-
fel, et al. Gunrock: GPU Graph Analytics. arXiv
preprint arXiv:1701.01170, 2017.

[78] Ming Wu, Fan Yang, Jilong Xue, Wencong Xiao,
Youshan Miao, Lan Wei, Haoxiang Lin, Yafei Dai,
and Lidong Zhou. G ra M: scaling graph compu-
tation to the trillions. In Proceedings of the Sixth
ACM Symposium on Cloud Computing, pages 408–
421. ACM, 2015.

[79] Shucai Xiao and Wu-chun Feng. Inter-block GPU
communication via fast barrier synchronization. In
International Symposium on Parallel & Distributed
Processing (IPDPS), pages 1–12, 2010.

426 2019 USENIX Annual Technical Conference USENIX Association

[80] Chenning Xie, Rong Chen, Haibing Guan, Binyu
Zang, and Haibo Chen. Sync or async: Time
to fuse for distributed graph-parallel computation.
In ACM SIGPLAN Notices (PPoPP), volume 50,
pages 194–204. ACM, 2015.

[81] Da Yan and Hang Liu. Parallel graph processing.
Encyclopedia of Big Data Technologies, pages 1–
8, 2018.

[82] Shengen Yan, Guoping Long, and Yunquan Zhang.
StreamScan: fast scan algorithms for GPUs without
global barrier synchronization. In PPoPP, 2013.

[83] Jialing Zhang, Xiaoyan Zhuo, Aekyeung Moon,
Hang Liu, and Seung Woo Son. Efficient Encod-
ing and Reconstruction of HPC Datasets for Check-
point/Restart. In IEEE Symposium on Mass Storage
Systems and Technologies, 2019.

[84] Kaiyuan Zhang, Rong Chen, and Haibo Chen.
NUMA-aware graph-structured analytics. ACM
SIGPLAN Notices (PPoPP), 50(8):183–193, 2015.

[85] Mingxing Zhang, Yongwei Wu, Kang Chen, Xue-
hai Qian, Xue Li, and Weimin Zheng. Exploring the
Hidden Dimension in Graph Processing. In OSDI,
pages 285–300, 2016.

[86] Mingxing Zhang, Yongwei Wu, Youwei Zhuo,
Xuehai Qian, Chengying Huan, and Kang Chen.
Wonderland: A Novel Abstraction-Based Out-Of-
Core Graph Processing System. In Proceedings of
the Twenty-Third International Conference on Ar-
chitectural Support for Programming Languages
and Operating Systems, pages 608–621. ACM,
2018.

[87] Yanfeng Zhang, Qixin Gao, Lixin Gao, and
Cuirong Wang. Maiter: An Asynchronous Graph
Processing Framework for Delta-based Accumula-
tive Iterative Computation. IEEE Transactions on
Parallel and Distributed Systems, 2014.

[88] Yunhao Zhang, Rong Chen, and Haibo Chen. Sub-
millisecond Stateful Stream Querying over Fast-
evolving Linked Data. In Proceedings of the
26th Symposium on Operating Systems Principles
(SOSP), pages 614–630. ACM, 2017.

[89] Yunming Zhang, Vladimir Kiriansky, Charith
Mendis, Saman Amarasinghe, and Matei Zaharia.
Making caches work for graph analytics. In 2017
IEEE International Conference on Big Data (Big
Data),, pages 293–302. IEEE, 2017.

[90] Da Zheng, Disa Mhembere, Randal Burns, Joshua
Vogelstein, Carey E Priebe, and Alexander S Sza-
lay. FlashGraph: processing billion-node graphs
on an array of commodity SSDs. In Proceedings of
the 13th USENIX Conference on File and Storage
Technologies, pages 45–58. USENIX Association,
2015.

[91] Jianlong Zhong and Bingsheng He. Medusa:
Simplified graph processing on gpus. Parallel
and Distributed Systems, IEEE Transactions on,
25(6):1543–1552, 2014.

[92] Xiaowei Zhu, Wentao Han, and Wenguang Chen.
GridGraph: Large-Scale Graph Processing on a
Single Machine Using 2-Level Hierarchical Parti-
tioning. In 2015 USENIX Annual Technical Confer-
ence (USENIX ATC 15), pages 375–386. USENIX

Association, 2015.

USENIX Association 2019 USENIX Annual Technical Conference 427

