Practical Information: Assignment 5
Jim Stys, Erica Gucciardo, Keith Kraus, Necmi Celik

I pledge my honor that I have abided by the Stevens Honor System.

Section I: Summary of Assignments

	
	Jim Stys (Team Leader)
	Erica Gucciardo
	Keith Kraus
	Necmi Celik

	Percentage of effort towards this assignment
	25 %
	25 %
	25 %
	25 %

	Topic of Contribution
	Researching and Summarizing algorithms and methods for pitch detection from an audio sample.
	Researching and Summarizing key points in development of Android GUI applications, as well as creating the objective attributes and tree.
	Researching and Summarizing Server-side audio processing techniques and LDAP/AP authentication for cloud-based apps.
	Researching and Summarizing Mobile OS Portability and the potential to port an Android app to iOS

Section II: Summary of Useful Information

LDAP/AD Authentication – User Login and Secure Cloud Storage

In order for the Sheet Music Creator to allow users to securely upload their music / sounds and be able to restrict the access to just that user a login based security method will have to be used. LDAP is a widely used communications protocol that can be used to communicate with a user database. Using LDAP both the mobile application and the cloud services will be able to coordinate logins with a database such as an Active Directory to allow for a single logon to be used to upload music and retrieve saved music and the outputted sheet music.
The actual usernames and passwords will be stored in a database that will be an Active Directory. Active Directory is Microsoft’s user database solution that was first introduced in Windows Server 2000 and has been in every version since. Since its introduction in 2000 its growth has increased exponentially as more and more companies and products are switching away from other LDAP solutions to use the combination of Active Directory and LDAP. Since LDAP is a universal protocol, it should be able to be implemented into existing applications with ease.
	For secure file storage of the uploaded music and created sheet music, a cloud services provider will be used. The cloud services provider will use the LDAP to allow for the same single username and password to be used for every feature of the application. It will then be the cloud provider’s responsibility to set up individual storage pools for each user so that the user can access his uploaded music and sheet music wherever he has a data connection. Further features could be implemented that would allow users to share their uploaded music and sheet music with other users that have accounts in the Active Directory. When a user uploads their music, it would be temporarily stored on a server that would handle the audio processing and conversion to sheet music. After the conversion, both the original audio file and the sheet music would then be uploaded to the cloud storage and removed from the server.

References: 	
http://technet.microsoft.com/en-us/library/cc773309(v=WS.10).aspx
http://technet.microsoft.com/en-us/library/cc755809(v=WS.10).aspx
http://www.sei.cmu.edu/library/assets/whitepapers/Cloudcomputingbasics.pdf

Server-Side Audio Processing

	On the server an application would have to be created that listens for incoming music files as they’re uploaded and converts them into sheet music. Once the sheet music is created it would then upload both the music files and sheet music to the cloud storage provider and remove the local copy from the server. The application will need to use algorithms for pitch detection to determine the notes in a music file and then match those notes up against a prebuilt table of sheet music notes to build the proper sheet music. The application will also have to take into account the length and volume of each pitch as well to properly generate sheet music.

References:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.198.3684&rep=rep1&type=pdf
http://steinhardt.nyu.edu/scmsAdmin/uploads/002/926/StrumoloThesis.pdf

Portability in OSes

Android applications are programmed using the JAVA programming language while iOS applications are programmed using the Objective-C language. Given that JAVA and Objective-C are almost worlds apart in implementation, to bring the android application to an iOS platform will require time and effort. There are currently two general methods for porting from android to iOS. One of these methods is to use a program which converts JAVA code to Objective-C code. The other is to simply just build the iOS version from the ground up in Objective-C .

Method 1:
	Deciding to port our existing JAVA code via a program can be done with the Google developed program ‘J2ObjC’ . This is an open-source software and is basically a JAVA to Objective-C translator, if you will. Google describes it as such
‘J2ObjC enables Java code to be part of an iOS application's build, as no editing of the generated files is necessary. The goal is to write an application's non-UI code (such as data access, or application logic) in Java, which can then be shared by Android apps, web apps (using GWT), and iOS.’
	Now while this sounds great, there are obviously issues and limitations. For one thing , more complex bits of JAVA code will still need to be translated manually into Objective-C. Unfortunately, being still in alpha-beta phase, there isn’t much support or documentation for this program. Especially as to the limits of what it can translate from JAVA code to Objective-C code. Secondly, there will still need to be work done to build the UI on iOS itself, as this program can only convert the non-UI code of an android application. Going with this route most likely can reduce development time of a port, but it can also lead to unexpected results and an ‘unnatural’ user experience on iOS.

Method 2:
	The second option is to build the iOS app from the ground up in Objective-C. While this will no doubt take a longer time in development, it will also undoubtedly provide a more natural user experience in iOS. If the development is only familiar with JAVA, learning Objective-C may start with some serious head-scratching as the two’s languages syntax and implantation is worlds apart.
	Some big shortcomings of Objective-C, as compared with JAVA include lack of an automatic memory management, different file structure, and the lack of invisibility for classes.
1 Regarding memory Management; whereas Java employs an automatic system to manage memory, Objective-C's system is almost completely manual. The system that Objective-C uses is called retain/release4. While this memory management is faster than JAVA, it puts a lot more work on the developer’s plate.
2 In Objective-C; there are 2 files for each class. A header file (.h) where you have to declare instance variables, properties, and methods. Then is the implementation (.m) file where you write your methods. Properties in Objective-C have to be "synthesized" with the @synthesize keyword to create the getter and setter methods3.
3 Conceptually, the biggest difference is that Objective-C is dynamically typed and you don't call methods, you send messages. This means that the Objective-C runtime does not care what type your object is, only whether it will respond to the messages you send it. This in turn means that you could (for example) create a class with an objectForIndex: method and use it in place of an NSArray as long as the code that uses it only calls objectForIndex:.All methods are public. This is a direct consequence of the message sending paradigm, but you can't define private or protected methods.3
References:
https://code.google.com/p/j2objc/
http://www.oreillynet.com/mac/blog/2001/05/a_bit_of_objectivec_from_a_jav.html
http://stackoverflow.com/questions/2982762/difference-between-objective-c-and-java
http://www.peachpit.com/articles/article.aspx?p=377302&seqNum=2

Pitch Detection Algorithms

	The implementation will require the use of an open-source library for computing FFTs and Cepstrum analysis of an audio signal due to time limitations and the inexperience of the team with writing algorithms for such methods. Once there is a library imported into the project that can give usable FFT results, some additional mathematics will be required to convert the array of FFT data into a working fundamental frequency but should be simple enough that no additional libraries should be needed for this. Some analysis of possible libraries will be discussed:

Android Audio Recording
[bookmark: h.gjdgxs]
	Luckily Android provides an easy to use Audio Capturing interface named “MediaRecorder” that has all the options that recording audio should have such as setting sampling rate, storage location of the recorded audio stream, etc. MediaRecorder is well documented on the Android Developer website so it should prove simple to get raw audio data while an instrument is playing for the purpose of this application.

KissFFT

KissFFT is a simple FFT library originally written in C that has implementation in JAVA as well. According to sources on StackOverflow, the licensing for KissFFT is more versatile than other well-known FFT libraries, so it should be suitable for the group developing a prototype. The source is available online with an additional example illustrating its use on an audio stream. It is likely that this application will make use of KissFFT due to its notability, good reputation, and documentation online even though it was not originally written in Java.

JTransforms

	The main advantage of JTransforms over KissFFT is the fact that it was written in Java natively. This could result in a more suitable implementation but it looks less developed overall from KissFFT so it likely will not be included within the project unless KissFFT proves to be a pain to work with. Both libraries have been included in pitch detection apps (namely tuners) so their effectiveness is not a concern.

References:
http://developer.android.com/reference/android/media/MediaRecorder.html
https://github.com/libgdx/libgdx/blob/master/extensions/gdx-audio/src/com/badlogic/gdx/audio/analysis/KissFFT.java
https://sites.google.com/site/piotrwendykier/software/jtransforms
http://epubl.ltu.se/1402-1617/2009/073/LTU-EX-09073-SE.pdf

Android GUI Development

	Creating the GUI will be simple and trivial, as this product does not require extensive GUI features but rather more server-side processing. The easiest way to develop the GUI would be using the Android Development Tools (ADT) plugin for Eclipse. As these tools are visual based, not much will be needed in order to quickly create a GUI that will allow the user to Login, capture his/her sound, and view the output of the notes on the screen.
As for designing the GUI, the team members will come to an agreement about what the User-Experience should be, draw some basic designs for the GUI, then a single Team Member will create the screens needed with the UI elements needed (buttons for submission and capturing audio and logging in, text fields for entering login names etc). Some nice-looking graphics will be created using a photo-editor such as Photoshop.
The designer of the GUI will look into specific UI patterns so that the look and feel of the app is not foreign to the android user and mimics the native look and feel of an android application while also making use of hardware buttons such as the menu button.

References:
http://developer.android.com/tools/projects/projects-eclipse.html
http://www.androidpatterns.com/

Section III: Constraints and Responsibilities

LDAP/AD Authentication – User Login and Secure Cloud Storage

· Economics
· An Active Directory that could scale to the thousands of users would require a significantly powerful server to run it. A starting setup would probably run at least $5000, and then be scaled upward for somewhat significant cost. Furthermore, more users requires more bandwidth which would be a further cost that would need to be accounted for. The cost of the hardware and hardware services would need to be made up for in the subscription price for the application.
· Safety
· The Active Directory would have to be thoroughly secured to prevent users from being able to abuse the server. Furthermore, it would have to be secure to prevent users from hijacking other users’ accounts / subscriptions.
· Sustainability
· Daily maintenance and service will have to be done on the Active Directory to ensure that it’s running smoothly and efficiently. A plan will also need to be formed to be able to migrate from an Active Directory platform to a different platform if the need arises.

Server-Side Audio Processing

· Economics
· Audio processing of this magnitude could involve a very complex algorithm that requires a large amount of processing power to run in the time required. This level of processing power will cause significant expense to the already costly server(s).
· Safety
· There needs to be a form of copyright protection to ensure that the application isn’t being abused to steal someone else’s work or gain tabs / sheet music for a song that is legally copyrighted. A system will also need to be in place where users can claim ownership of a piece of music they’ve submitted to prevent other users from attempting to claim it as their own.
· Manufacturability
· The application that does the audio processing would probably take between 6 months and a year to develop, which is a significant amount of time. Once the software is released, patches can be released every 2 to 4 weeks for security and other fixes. It will be of utmost importance to maintain a stable software.
· Sustainability
· The application must scale well to a large user base without becoming inefficient or ineffective. Furthermore, the application will have to be able to be ported to newer versions of operating systems or different operating systems with relative ease if possible.
Pitch Detection Algorithms

· Economic
· The use of external libraries depends on their availability to projects such as the one being developed for sheet music generation. The group must consider different options and whether the licenses are accommodating enough and affordable enough (if not free) to be included in the project.
· Security
· Access to different components of the smartphone hardware i.e. the audio recording interface or user storage must be done only at user request so that the user does not regard the application as malicious.
· Professional and Ethical Responsibilities
· Similar to the Economic constraints, all the terms of the license that is being acquired need to be agreed to and adhered to throughout the project.
· The application must inform users that access to microphone or user data will not be used for malicious purposes and initiated only when the user prompts the application.

Section IV: Attribute List / Objective Tree
· Appeal to Musicians → DIRECTLY IMPORTANT
· Robust Detection → appeals to musicians
· Works for any instrument / voice → robust detection
· Works for any frequency range → robust detection
· Accurate Pitch Detection → appeals to musicians
· Detects the correct note → Accurate
· Detects the correct timing of the note/notes detected → Accurate
· Marketable Mobile Application → DIRECTLY IMPORTANT
· Secure → marketable application
· Visually appealing → marketable application
· Provides stable connection to cloud services → Secure
· Not vulnerable to attack → secure
· Not vulnerable to copyright infringement → Secure
· Protects users’ privacy → Secure
· Online and offline functionality → Marketable Application
· Easily accessible → Marketable Application
· Can be accessed from a mobile device → Accessibility
· Can be downloaded from app store → Accessibility
· Fast program → Marketable application
· Efficiently coded → fast
· Fast connection to servers → fast
[image:]
image00.jpg

