
Human Motion Change Detection By Hierarchical Gaussian Process Dynamical
Model With Particle Filter

Yafeng Yin, Hong Man, Jing Wang, Guang Yang
ECE Department, Stevens Institute of Technology

Hoboken, NJ, 07030

Abstract

Human motion change detection is a challenging task
for a surveillance sensor system. Major challenges include
complex scenes with a large amount of targets and confu-
sors, and complex motion behaviors of different human. Hu-
man motion change detection and understanding have been
intensively studied over the past decades. In this paper, we
present a Hierarchical Gaussian Process Dynamical Model
(HGPDM) integrated with particle filter tracker for human
motion change detection. Firstly, the high dimensional hu-
man motion trajectory training data is projected to the low
dimensional latent space with a two-layer hierarchy. The
latent space at the leaf node in bottom layer represents a
typical human motion trajectory, while the root node in the
upper layer controls the interaction and switches among
leaf nodes. The trained HGPDM will then be used to clas-
sify test object trajectories which are captured by the par-
ticle filter tracker. If the motion trajectory is different from
the motion in the previous frame, the root node will trans-
fer the motion trajectory to the corresponding leaf node. In
addition, HGPDM can be used to predict the next motion
state, and provide Gaussian process dynamical samples for
the particle filter framework. The experiment results indi-
cate that our framework can accurately track and detect the
human motion changes despite of complex motion and oc-
clusion. In addition, the sampling in the hierarchical latent
space has greatly improved the efficiency of the particle fil-
ter framework.

1. Introduction

Detection of motion changes in video sequences is very
important in the research of computer vision. It can be used
to identify suspicious behaviors and irregular motion pat-
terns for surveillance and monitoring. In the real applica-
tion, due to various environmental conditions, such as il-
lumination, reflection and multiple human with occlusion,
human motion change detection become even more chal-

lenging.
The assumption of our work is that normal human is

prone having similar motion trajectory in a specific location,
while sudden motion change usually implies suspicious be-
haviors. If we can learn these similar trajectories in ad-
vance, then they can be used for motion trajectory classifi-
cation and motion change detection. From the learning per-
spective, previous motion change detection algorithms can
be divided into two categories: non-knowledge based detec-
tion and knowledge based detection. In the non-knowledge
based motion detection, human motion was recognized by
statistical methods [18, 21], while in the knowledge base
motion detection, human motion change is identified by us-
ing pre-defined patterns [6]. In this paper, we proposed a
Hierarchical Gaussian Process Dynamical Model integrated
particle filter for human motion change detection. Our
framework takes the advantage of both afrontmentioned cat-
egories to formulate a framework combining with particle
filter tracking and trained HGPDM for classification.

During the training phase, we extract the human motion
data from the KTH Action dataset [1], which includes run-
ning and walking videos of different people. The walking
and running motion trajectories are extracted manually and
projected to the leaf nodes of hierarchical latent space Gaus-
sian Process Dynamic Model. After jointly optimizing, the
root node represents the interaction and switching of leaf
nodes, while the leaf nodes denote different types of motion
trajectory motion. The learned motion model are then used
to classify test object trajectories, predict the next motion
state, and provide Gaussian process dynamical samples for
the particle filter framework. We test our change detection
framework in the video data set used in [7] and the IDIAP
data set used in [17]. The experimental results indicate that
our framework can detect each motion change correctly.

The major novelty of this paper is that we proposed a Hi-
erarchical Gaussian Process Dynamical Model to learn the
prior motion information for motion pattern change detec-
tion. The hierarchical structure can address complex human
motion as the root node control the interaction between the
leaf nodes. This paper extends the GPDM in [20] to Hier-
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archical GPDM and used it for motion pattern recognition.
On one hand, the particle filter is capable of tracking non-
linear and non Gaussian human motion. This allows HG-
PDM to utilize the captured human motion data for classi-
fication and change detection overtime. On the other hand,
the hierarchical structure of GPDM insures finding the most
similar motion pattern in the leaf nodes. Therefore the sam-
pling in the pre-learned GPDM model improves the effi-
ciency of the particle filter framework.

In contrast with Gaussian Process Dynamical Model
used in [11, 13, 20], we focus on the global human mo-
tion rather the local motion of human body parts. There-
fore instead of using 3D motion database, we select 2D mo-
tion data of multiple human to construct a high dimensional
training data set, and train our HGPDM. In addition, our
framework can address the switching between different mo-
tion patterns, which is very critical for change detection of
human with complex motion.

Our HGPDM is inspired by the Hierarchical Gaussian
Process Latent Variable Model (HGPLVM) in [9]. Neil
Lawrence applied Hierarchical GPLVM for modeling the
human interaction. Our approach is different from Neil
Lawrence’s work in two ways: Firstly, we extend the
GPLVM to GPDM in the leaf nodes, which gives a compact
representation for the joint distribution of observed tempo-
ral data in the latent space. In addition, the latent space in
root node is optimized after leaf nodes instead of jointly op-
timizing all the nodes in [9]. In other words, the root node
in our framework is a classifier controlling all the switching
between leaf nodes.

This paper is organized as follows: Section 2 reviews the
related work on the human motion change detection, Hi-
erarchical Gaussian Process Dynamical Model and particle
filter for multiple-target tracking. The structure of HGPDM
with particle filter is proposed at Section 3. Section 4 de-
scribes the detailed training and testing process of HGPDM
with particle filter. All the experimental results and com-
parison are shown in the Section 5. Finally, conclusion and
future work is summarized in the Section 6.

2. Related Work

Human motion change detection is usually used for ac-
tion recognition and suspicious behavior analysis [12]. It
has attracted much attention in recently years. Many previ-
ous work used segmentation and tracking for human mo-
tion detection [4, 10]. O.Boiman [3] proposed a proba-
bilistic graphical model for detecting irregularities in the
video. N.Kiryati et al.[7] extracted the motion features from
videos, and used a pre-trained motion model to classify dif-
ferent human motion. The abnormal human motion pattern
relied on the trained motion trajectories. J.Sherrah [16] pre-
sented a platform(VIGOUR) for tracking and recognition of
multiple people’ activities. The system can track up to three

people and recognize their gestures. However, most previ-
ous methods cannot handle human motion change detection
with multiple people, due to the increasing computational
complexity with multiple targets tracking.

Gaussian Process Latent Variable Model [8] (GPLVM)
developed by Neil Lawrence in 2006 provided probabilistic
mapping from high-dimensional observation data to low-
dimensional latent space, which represented the joint distri-
bution of observation data. Compared to other dimensional
algorithms, such as LLE [15] and ISOMAP [19], GPLVM
has the advantage to provide the posterior probability of
the projected observation space. J.Wang et al. introduced
Markov dynamics in latent variable state transitions lend-
ing Gaussian Process Latent Variable Model to handle time
series data. Their proposed framework can robustly track
human body motion and pose dynamics [20]. Leonid et
al. proposed a Gaussian process annealing particle filter
based method to perform 3D target tracking by exploring
color histogram features [13],while he focused on pose re-
construction rather than human trajectory tracking. A real
time body particle tracking framework introduced by Hou
[5] to capture human motion.However, he aimed to track
complex motion of one target and used the motion data for
the pose estimation. Neil Lawrence extended the GPLVM
to hierarchical GPLVM in [9], in which he used the hierat-
ical GPLVM for modeling the interaction of multiple sub-
jects.

3. Proposed Framework

This article is aimed to learn a general human motion
trajectory model for multiple human motion change detec-
tion. The pre-trained model can robustly detect different
human motion change, and reduce the computational com-
plexity as well as improve the robustness of particle tracking
framework. The flowchart of our framework is shown in the
Figure 1.

The basic procedure of the proposed Particle Filter with
Hierarchical Gaussian Process Dynamical Model is de-
scribed as follows.

1. Creating Hierarchical GPDM: The leaf node of Hier-
archical GPDM is created on the basis of the trajec-
tory training data sets, i.e. coordinate difference val-
ues, while the top node is created on the basis of de-
pendence of leaf nodes. The learning model parame-
ters include Γ = {Y T , XT , ᾱ, β̄,W}, where Y T is the
training observation data set, X T is the corresponding
latent variable sets, ᾱ and β̄ are hyperparameters, and
W is a scale parameter.

2. Jointly initializing the model parameters: The
three nodes of latent variable sets and parameters
{XT , ᾱ, β̄} are obtained by minimizing the negative



Figure 1. Human motion detection and tracking framework

log-posterior function −lnp(X T , ᾱ, β̄,W |Y T ) of the
unknown parameters {X T , ᾱ, β̄,W} with scaled con-
jugate gradient (SCG) on the training datasets.

3. Initializing the particle filter framework: The prior
probability is derived on the basis of the created model.
In this step, target templates are obtained from the pre-
vious frames as reference images for similarity calcu-
lation in the later stage.

After initializing the targets’ position, each target will
be tracked by the regular particle filter in the first five
frames. Then test observation motion pattern data is
calculated and projected to the latent coordinate sys-
tem on the top node of HGPDM by using probabilistic
principal component analysis (PPCA).

4. Latent space motion classification and change detec-
tion: After projecting the current motion data into the
latent space, the top node will determine which motion
pattern in the leaf node that the current motion belongs
to. If the motion pattern is not consistent with the pre-
vious one, the motion change is reported and the latent
space will switch to the new leaf node

5. Leaf node latent space particle sampling and Predict-
ing: Particles are generated in the latent space of leaf
node GPDM to infer the likely coordinate change value
(Δxi,Δyi).

6. Determining probabilistic mapping from the latent
space to observation space: The log posterior prob-

Figure 2. A Hierarchical Gaussian Process Dynamical Model. The
root node X0 controls all the interactions between the latent space
of leaf nodes in X1, ...Xn . Y1, ..Yn denotes the observation data
associated with X1, ...Xn

ability of the coordinate difference values of the test
data is maximized to find the best mapping in the train-
ing data sets of the observation space.

In addition, the most likely coordinate change value
(Δxi,Δyi) is used for predicting the next motion.

7. Updating the weights: In the next frame, the similar-
ity between the template’s corresponding appearance
model and the cropped region centered on the parti-
cle is calculated to determine the weights wi, and the
most likely location (x̂t+1, ŷt+1) of the corresponding
target, as well as to decide whether resampling is nec-
essary or not.

8. Repeat Step 4 - 7.

4. HGPDM with Particle Filter

The reason that we used Hierarchical Gaussian Process
Dynamical Model is the root node can control all the inter-
actions and switchings between each leaf nodes. Therefore
it can model more complex motion. Its structure can be de-
scribed in Figure 2.

4.1. Human Motion Training by HGPDM

4.1.1 Extract Human Motion Trajectory Data

During the training phase, we manually extracted the mo-
tion data from the KTH motion database [1]. At each frame
of a walking cycle, we select a point at the central location
of the human body. The coordinate difference between two
consecutive frames forms a motion vector. Supposing the
total frame number is 30, the motion data of one person is
30 by 2 dimension. In our training set, we choose 20 dif-
ferent people, each walks at a different direction. The total
training data is then 30 by 40 dimensional. In this paper, We
just select two typical motion trajectories in the KTH mo-
tion database[1], walking and running, to demonstrate the



performance of our proposed framework. In the walking
and running categories, we extract different human motion
moving at different direction.

4.1.2 Establishing Trajectory Learning Model On The
Leaf Node

GPDM is applied to learn the specific trajectories of moving
human. The probability density function of latent variable
X and the observation variable Y are defined by the follow-
ing equations,

P (Yk|Xk) =
|W |N√

(2πND|KY |D)
exp(−1

2
tr(K−1

Y YW 2Y T ))

(1)

where W is the hyperparameter, N is the number of Y se-
quences, D is the data dimension of Y , KY is the kernel
function.

In our study, RBF kernel given by the following equation
is employed for HGPDM model,

kY (x, x
′) = exp(−γ

2
||x− x′||2) + β−1δX,X′ (2)

where x and x′ are any latent variables in the latent
space, γ controls the width of the kernel, β−1 is the vari-
ance of the noise.

Given a specific surveillance environment, certain pat-
terns may be observed and worth exploring for future infer-
ences. To initialize the latent coordinate, the d (dimension-
ality of the latent space) principal directions of the latent
coordinates is determined by deploying probabilistic prin-
cipal component analysis on the mean-subtracted training
dataset Y T , i.e. Y T −Y T . Given Y T , the learning parame-
ters are estimated by minimizing the negative-log-posterior
using scaled conjugate gradient (SCG) [14].

4.1.3 Optimizing The Hierarchical Gaussian Process
Dynamical Model

As the structure described in Figure 2, Y1 and Y2 denote
the high dimensional multiple human walking and running
data, X1 and X2 represent the corresponding latent space in
the leaf nodes.

The joint probability distribution of Y1 and Y2 is given
by

P (Y1, Y2) =

∫
p(Y1|X1)×

∫
p(Y2|X2)...

×
∫

p(X0|X1, X2)dX3dX2dX1 (3)

where each conditional distribution is given by Gaussian
Process. The major advantage of the GPDM is that each
training data is associated with a likelihood in the latent
space. We then use the MAP method to find all the values
of latent variables. For this simple model, we are trying to
optimize the parameters by maximizing the following equa-
tion,

logp(X0, X1X2|Y1, Y2) = logp(Y1|X1)...

× logp(Y2|X2)...

× logp(X0|X1, X2) (4)

The training process for optimizing the Hierarchical
Gaussian Process Dynamical Model is described as follows:

1. Initial each leaf node: Project the walking and running
training data to (X1, X2) through probabilistic princi-
ple component analysis

2. Initial root node: Initialize the root’s latent vari-
able through probabilistic principle component anal-
ysis and its dependence of (X1, X2)

3. Jointly optimize the parameters of each Gaussian Pro-
cess Dynamical Model Optimize jointly for the kernel
matrix of each GPDM

Once the latent space has been optimized, we applied su-
pervised clustering at the top latent space to group the train-
ing data to the leaf node. Supposing we have N leaf nodes,
and Y = {yi, i = 1...M}. Each leaf node is associated with
mean μj and variance σj , and we assign each training yi to
the leaf node by

X̂yi = arg max
j=1,2,...,N

p(x′|μj , σj), i = 1, 2, ...,M (5)

One example of the learned running latent space in the leaf
node is shown in the Figure 3.

4.2. HGPDM With Particle Filter Testing

After jointly optimizing the HGPDM, the trained HG-
PDM can be used to identify the human motion trajectories
captured by particle filter tracker. In the meantime, the clas-
sified motion pattern provides the most similar motion tra-
jectory for efficient particle sampling. The process of our
framework is described as follows.

4.2.1 Initializing The Particle Filter Framework

A particle filter is a Monte Carlo method for non-
linear, non-Gaussian models, which approximates continu-
ous probability density function by using large number of



samples. In our framework, histogram was used as ap-
pearance modeling for its simplicity and efficiency. The
RGB histogram of the template and the image region un-
der consideration are obtained respectively. The likelihood
P (Zt|kt, Ŷt) is defined to be proportional to the similarity
between the histogram of the template and the candidate,
and is measured by Bhattacharya distance.

At this step, target templates are obtained by the using
background subtraction. The obtained target templates will
be used for similarity calculation in the testing stage.

After initializing the targets’ position for the first frame,
each target will be tracked by using regular particle filter in
the first five frames. This is based on the assumption that
the human motion does not change at the very beginning.
Then test observation motion data of the first five frames is
calculated and projected to the latent coordinate system on
the top node of HGPDM.

4.2.2 Latent Space Motion Classification and Change
Detection

Since HGPDM was constructed in the latent space, at the
beginning of the test process, the target observation data
of first five frames has to be projected to the same 2-
dimensional latent space in order to be compared to the up-
per level of trained HGPDM. The purpose of projecting the
test data from the observation space to the latent space is
to initialize the testing data in the latent space and obtain a
compact representation of the similar motion patterns in the
training data set. This projection is achieved by using prob-
abilistic principal component analysis (PPCA), same as the
first stage in HGPDM learning. The feature vector of each
frame contains the coordinate change values for every target
being tracked in that frame. For n targets, the feature vector
will contain n × 2 pairs of coordinate change values. The
PPCA projection will reduce this n × 2 dimensional fea-
ture vector to a 1 × 2 latent space vector. After projecting
test motion data from observation to latent space, the upper
level of hierarchical GPDM will be used to identify the most
similar motion patterns in the leaf node. The classification
algorithm in the HGPDM is shown as below:

1. Select top K most likely latent variables xiin the root
node by using equation,

xi = argmax
x∈I

K(p(y′|x)), i = 1, 2, ...,K (6)

2. Compute the relative normalized probability as :

πi =
p(y′|xi)∑K
i=1 p(y

′|xi)
(7)

Figure 3. Trained Running Latent Space

3. Establish the latent variable x’ as

x′ =
n∑

i=1

πixi (8)

4. Determine the corresponding latent space in the leaf
node X̂ as:

X̂ = arg max
j=1,2,...,N

p(x′|μj , σj), i = 1, 2, ...,K (9)

At each frame, once the human motion pattern is classi-
fied to a different category by equation(9), the framework
does not immediately transfer the latent space to the corre-
sponding one. If the motion pattern keeps to be identified as
another category for five consecutive frames, then the sam-
pling latent space is switched from one leaf node to the other
one, and the human motion change is reported to the frame-
work. Otherwise the temporary human motion change is
consider as a noise and the particle filter framework will still
sampling in the latent space which is determined in the last
frame. The next possible position is predicted by determin-
ing the most similar trajectory pattern in the leaf node and
using the corresponding position change value plus noise.

4.2.3 Particle Filter Tracking and Update

After determining the general categories of the human mo-
tion pattern in the root node of HGPDM, next we propagate
the particles in the latent space of leaf node. The next possi-
ble position is predicted by determining the most similar tra-
jectory pattern in the training database and using the corre-
sponding position change value plus noise. The number of
particles are reduced from over one hundred to about twenty
by deriving the posterior distribution over latent functions.
Each point on this 2D latent space in the Figure 3 is a pro-
jection of a feature vector representing 20 training targets,



i.e. 20 pairs of coordinate change values. The gray scale
intensity represents the precision of mapping from the ob-
servation space to the latent space, and the lighter the pixel
appears the higher the precision of mapping is.

Thereafter, the latent variables are mapped in a proba-
bilistic way to the location difference data in the observa-
tion space. Estimation maximization (EM) approach is em-
ployed to determine the most likely observation coordinates
in the observation space after the distribution is derived.

The non-decreasing log posterior probability of the test
data is given by equation (1). KY is a kernel matrix defined
by a RBF kernel function given by equation (2). The log
posterior probability is maximized to search for the most
probable correspondence on the training datasets. The cor-
responding trajectory pattern is then selected for predicting
the following motion.

The weights of the particles are updated in terms of the
likelihood estimation based on the appearance model. The
importance weight equation is given by

P (Ŷt|Zt, kt) =
P (Zt|kt, Ŷt)P (kt, Ŷt)

P (Zt)
(10)

wt ∝ P (Zt|kt, Ŷt)P (kt, Ŷt) (11)

where Ŷt is the estimation data, Zt is the observation data,
kt is the identity of the target, and wt is the weight of a
particle.

5. Experiment Results And Comparison

The proposed HGPDM particle filter framework was im-
plemented by using MATLAB running on a desktop of
2.33GHz Intel Core 2 Duo CPU PC with 2GB memory and
tested on the IDIAP datasets used in [17] and the data set
used in [7]. Neil Lawrence’s Gaussian process softwares
provide the related GPDM functions for conducting simu-
lations [2].

The first testing sequence extracted IDIAP data set con-
tains two targets and one of them runs after the other one
from left to right. The motion data is captured by the par-
ticle filter and classified in the HGPDM. Human motion
change is reported at the 58th frame. Figure 4 shows the
corresponding frame sampled from the tracking results and
Figure 5 showed the posterior probability of left target’ mo-
tion belonged to running GPDM latent space. According
to Figure 5, the posterior probability is higher than 0.5 be-
fore the 58th frame, while low than 0.5 after the 58th frame.
This means that the motion trajectory is switched from run-
ning to walking in the HGPDM near the 58th frame. The
sampling frames in the Figure 4 verifies the human motion
change is correctly detected. It need to be noticed that there
are several sparks in the posterior probability curve due to
the noise motion data captured by the particle filter.

Figure 4. Sampling frames of 3,19,58,98 in the first testing se-
quence
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Figure 5. Posterior probability of running motion change

The second sequence contains four people with occlu-
sion and complex motion patterns. The person with blue
bounding box firstly firstly walked to the road center, then
circled around the bike ramp in the middle of the road. Both
the direction and the velocity were varied at this circle mo-
tion. Motion change are reported at the 42th and 129th
frame respectively. Figure 6 shows the posterior probability
of motion change. The posterior probability is below 0.5
near the 42th and 129th frame, as the person made a turn
near this two frames respectively. The sampling frames in
Figure 7 indicate the motion change is correctly detected.

we apply our framework on the data set used in [7],
and compare the human motion change detection results
with the abnormal motion recognition. The experiment re-
sults indicate that our framework can detect all the mo-
tion change correctly, which are corresponding to the de-
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Figure 6. Posterior probability of circle motion

fined abnormal motion in the [7]. One of the testing se-
quences shown in Figure 8 was defined as jumping episode
in [7]. The motion change detection of left target are re-
ported at 18th and 60th frame. According to Figure 8, the
woman stopped from running near frame 9 and began to
walk after jumping toward the man near frame 60. Our pro-
posed framework can capture the motion change success-
fully through the switching between different latent space
nodes.

As all the abnormal motion patterns in [7] were pre-
defined, their system can only detect all the trained trajec-
tories. While we propose a general framework for detecting
the motion change of tracked targets over time. The de-
tected motion change can be used for suspicious behavior
analysis in the surveillance system. Moreover, our frame-
work can track up to five targets and detect their motion
changes simultaneously, which can provide the group hu-
man behavior analysis.

6. Conclusions and Future Work

We proposed a Hierarchical Gaussian Process Dynami-
cal Model with particle filter for human motion change de-
tection in the surveillance systems. The proposed frame-
work can track up to five targets simultaneously and detect
their motion change over time despite various visual envi-
ronment. HGPDM and particle filter benefit each other for
motion change detection. The particle framework can ac-
curately capture unexpected, non-linear, and non-Gaussian
motion for the motion classification in the HGPDM. The
pre-trained HGPDM provides the most similar motion tra-
jectory for particle filter sampling and tracking, which
greatly reduce the particle number. Almost 20 particles in
our framework can correctly and robustly track each target.

In this paper, we just use IDIAP data set and abnormal

Figure 7. Sampling frames of 1,42,65,87,129,150 in the second
testing sequence

motion data set in [7] to demonstrate efficiency and accu-
racy of our proposed framework. The testing results indi-
cate that our framework can correctly detect each motion
change and robustly track multiple targets with complex
motion at the same time.

Due to the the definition of abnormal motion pattern is
different in different applications, we are trying to learn a
general motion trajectory model for motion change detec-
tion rather abnormal motion detection. The detected mo-
tion changes by our framework can be used for suspicious
behavior analysis and irregular motion detection.It need to
be noted that due to different scale and different direction of
viewpoints, the human motion trajectory extracted from im-
ages may be different from each other. Therefore the perfor-
mance our framework may vary with different application.

In the future, our framework can be extended to group
human behavior analysis or 3D multiple human motion
modeling.
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Figure 8. Sampling frames of 1,18,25,33,60,85 in the third testing
sequence
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