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ABSTRACT work by Yin et al. [7] studied the the interactions among peo-
. L ) . ) ple based on BEHAVE dataset [8], which is a recorded data
Recognizing human-object interactions in videos is & verge yith interactions within or between small groups, sieh a

challenging problem in computer vision research. There argynting. chasing, walking together and etc. These seqsence
two major difficulties lying in this task: (1) The detectioh 0 56 yery close to real surveillance video. However there are

human body parts and objects is usually affected by the qualore challenges lying in realistic videos, mostly sportd an

ity of the videos, for instance, low resolutions of the V80 qyie ¢lips, which involve the interactions between human
camera motions, and blurring frames caused by fast motiong,,4 objects.

as well as the self-occlusions during human-object interac In the study of recognizing human-object interactions,

.tions. (2.) The spatial and temporal dynamics of human-cbbjecinany researchers started from still images [9, 10, 11]. &hes
interaction are hard to model. In order to overcome those na&xisting methods on learning the interactions from staic i

ural ObStaCI_eS’ we propose a new method using soc_lal _neé'ges are mostly using contextual information to build the
work analysis (SNA) based features to describe the dlstrlburelations between the object and human poses. Desia et

tions aqd relat|on§h|ps of IOV.V level objects for human-obje al. [9] provided a unified model based on detecting spatial
interaction recognition. In this approach, the detectetdému ntextual relations of multiple objects. Yao and Fei-Fel|

. ) ) c
body parts and objects are treated as nod_es in social netwoﬁgesented a mutual context model to jointly model the human
graphs, and a set of SNA features includioigseness, cen-

tralit dcentrality with relati olocit tracted f poses with objects in still images by two contextual infor-
' t'l y andcen ; "y VK rea 'VZ v ?C' y arfe Selil( Arag € dofr mation, which are the co-occurrence statistics and théaspat
action recognition. major advantage o ased Teag,htext between objects and body part. And Prest et al. [11]
ture set is its robustness to varying node numbers and err

. . ; fhtroduced a weakly supervised algorithm to learn the dbjec
neous node detections, which are very common in huma

'Yelevant for the action and its spatial relation to the human
object interactions. An SNA feature vector will be extracte Some recent attempts havepbeen made on recoanize inter-
for each frame and different human-object interactions are b 9

classified based on these features. Two classification metﬁ—Ctlons between human and object in videos. Gupta etal. [12]

ods, including Support Vector Machine (SVM) and Hidden‘rjldded.the psychological analyse§ of human p_erceptlon oa
Bayesian model to recognize objects and actions in videos
Markov Model (HMM), have been used to evaluate the pro- .
. o . in a fully supervised manner. Prest et al. [13] further devel

posed feature set on four different human-object intevasti ; N )
X oped their method on realistic videos based on [11], by in-
from HMDB dataset [1]. The experimental results demon-Cludin spatio-temporal annotations about obiect's i

strated that the proposed framework can effectively captur gsp P )

the dynamical characteristics of human-object interactiod and human actions. Another WO”.( by Si et al. [1.4 ] provided
. o an AND/OR grammar based algorithm to semantically under-
outperforms the state of art methods in human-object intera ) . e )
tion recognition. stand certain human daily act|V|t|e.s |n'off|ce. .
There are many challenges lying in the task of precisely
identify the interactions between human and object inséali
1. INTRODUCTION videos. First, most existing methods require robust dietect
or tracking on human and objects, since the inconsistent in-
Human action understanding is a challenge topic and has be@rmation on human/body parts causes poor estimations on
widely studied in applications such as surveillance anéwid human poses and object positions. However, these tasks are
retrieval. Many methods [2, 3, 4] have achieved high pervery difficult in realistic videos. For one thing, it is commo
formance on recognizing single human with periodical acto see self-occlusions of the human body parts, or occlgsion
tions in clear background scenarios, such as Weizmann hof objects by human or other less relevant background like
man action dataset [5] and KTH human action dataset [6]branches of the trees. Another potential concern is that the
With increasing demands on video content analysis, studieguality of the video may vary significantly. The moving tra-
have been more focused on complicated scenarios. A recejectories of objects may temporarily be lost because ofdhe r



(a) Frame 1 (b) Frame 23 (c) Frame 48
Fig. 1. Challenges on object detections in realistic videos. In
a sequence of human playing golf, (a) two hands are over-
lapped all the time. In (b), the golf club is invisible tempor
ily because of the fast motion speed and relatively poor-qual
ity of the video. In (c), the club is out of the scene. Besides, g
the camera itself is not fix and the background is not still.

atively poor quality of the video. The other reason of losing ) - 3
the trajectory of the object or human parts is when thoses part (c) shoot gun (d) swing baseball

reaching out of the camera field of view during the activity.Fig 2: Examples of activity trajectories of the body parts and

different from surveillance video which have a fixed camerayead and upper-body center. Magenta represents hands tra-
scene, camera motions in realistic video must be taken intRctory and red color is for the object.

account as it affects the human/objects locations and the mo
tion trajectory patterns. In this paper, we propose a novel 2. HUMAN AND OBJECT TRACKING
framework of recognizing human-object interactions by-con
sidering the body parts and objects as nodes of social nketwotn our approach, the human object interaction is considased
graphs in the spatial dimension, and analyzing the featuresserial activities happening among the key body parts and th
of the social network overtime to understand the video sesbject, which we consider as nodes in a social network graph.
quences. This framework consists of three stages. First isis a challenging task to have perfect detectors or tracter
tracking the body parts and object, which provides the spasbtain the precise locations of specific body parts and tdbjec
tial information by a tracking algorithm of [15]. Secondgta under realistic image quality conditions. In this framekyor
is constructing the social network graphs and extractirg tha reliable tracking algorithm is applies to obtain the |omas
SNA features to describe the temporal dynamic of an interfor these node. We adopt a state-of-the-art tracking dlyuri
action in each sequence. This is inspired by Yin et al. [7]in [15] to have the motion trajectories. In human objectrinte
in which individual humans were modeled as nodes in sociadctions, we consider only a few crucial parts providing mean
networks and hence the SNA feature set were used to describgyful information and forming the social network as nodes.
small human group activities. At the last stage, two claasifi The body parts include head and upper-body centers, which
are applied to the feature vectors, namely, a K-means clusteepresent the human positions in the frame, and hand posi-
followed by SVM and a Hidden Markov model classification. tions, which are important to reveal the physical contaet be
Each method reduces the length of feature vectors to a low@teen human and object. Figure 2 shows some examples of
dimension. Experiments were conducted on typical sports athe activity trajectories. The trajectories of head, uppeaty
tivities from HMDB dataset [1]. center and hands are colored in blue, green and magenta re-
spectively. The red color represents the object motion.path

The contribution of our work is threefold. First, this sdcia It may discontinue in some places due to the occlusions or
network based framework characterizes the distributidghef the limitation of the video data. However, the proposedaioci
activity globally as well as the distribution of each node innetwork analysis based framework is robust enough to handle
the social network. Second, the social network analysisdas such missing information.
feature set dynamically organizes the body parts and object
as nodes in a graph. It is able to handle various number & SOCIAL NETWORK ANALYSISBASED FEATURE
nodes as well as length of the sequence. Last but not lesst, th
framework is able to tolerant missing information during th Features describing human action can usually be catedorize
sequence. Therefore, by using the social network strugturento low level features and middle level features [7]. Low
feature sets, it does not required strictly precise datestin  level features such as STIP or SIFT, are computed on the
the earlier stage, which is a major difficulty in realistidedos complete image region and more suitable for individual hu-
and many other scenarios. man actions. As discussed in the previous section, there are
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many difficulties in obtaining accurate low level features f
a variety of human appearances, poses and camera motio
However, for the recognition of human object interactions,

Fig. 4: Examples of social network analysis based features on
iRteractions.

need a structural information of the activities which cap-re i e W J/

resent the interactions between body and object in a hight ‘@ b ; | =%

level. The social network analysis based feature set repr \ T ’ ‘ )

sents a middle level feature set to characterize such camplt *®

interactions A certainnode (object) The mess center will Feature distribution: each feature is a
) has a heavier weight than be shifted. histogram with 8 bins.

A social network graph model a structure of social rela- othernodes.
tionships ties) among a set of individuals known astors  Fig. 5. In a weighted social network, the network center
or nodes. Social network analysis was originally proposedshifted due to the unequal weighted nodes.
in [16], which was designed to model the social structure in
real world human societies. Inspired by the theoretic aisly entry in the feature matrix. A sequence withframes will
of the social network [16] and its extensions on group acproduce a SNA feature set in the dimensior26fx N. Fig-
tivity recognitions [7], we introduce a new set of features t uyre 4 shows examples of social network features from two

describe the dynamic properties of the human object interagnteraction sequences, i.e. golf and shoot gun, respéctive
tions. Figure 3 shows the overview of this approach. To our

best knowledge, this is the first time of using social network
analysis based features to model human-object interaction3.1. Weighted Social network

Network center: Suppose there are nodes in a network,
the centenn, = (230 ja;, 277 v;) is defined as the Each node has its contribution in terms of forming a dynamic
1= n 1=

n

mass center of the network. The network center is calculategPcial network, and some may play more important roles
first, and other features are related to it. than others. Therefor, the centrality weight is introduted
Centrality: In general, centrality measures how the centrameasure the influence of a node in the netwdZentrality

node related to all other nodes in a social network. In outveights: It assigns relative scores to all nodes in the network
framework, centrality is used as a distance measurement beased on the concept that connections to high-scoring nodes

tween each node and the mess center of the network. EagRntribute more to the score of the node than connections
node has a positiom; = (z;,y;),(i = 1,...,n) in the net-  t0 low-scoring nodes. In the social network that describes

work and the relative position to the network center is addire human and object interaction, there are certain rules ghoul
tional vectorce; = im;m.. The centrality vector is designed be taken into consideration while assigning the weighteeft

as an 8-bin histogram of directions accumulating the magnitodes.
tude of the distance and it is normalized. The centralityaec

is written asCe; = {ce;}s, (i = 1,...,n;t = 8). e The total weight of the network is normalized as one.
5 . P PR L . Nhum

Closeness: Closeness describes how close an individual is to Whum + Wop; = 1, whereWh,,, = ;"™ w; and

all the rest nodes in a network. In our framework, the direc- Wopj = Z;.V"”j wj.

tional distance between each node to every other node in the
network is calculated. Therefore, the distance of every pai e As human has more complicated structures and poses,

of nodescl; ; = m;m; are accumulated in the closeness vec- there are more nodes on describing human than what
tor which is also a histogram with 8 bins of directions. It is on objeCtS Nyyum > Nopj andWiym > Wop;.

denoted a£ly, = {cl; j}+, (4,7 = 1,...,m0 # j;¢t = 8).

Following these definitions, a set of social network analy- 4 The gbjects have more important roles in understand-
sis based features extracted at each frame will form an SNA g the interactions with human. Therefore each node
feature vector witt26 dimensions, including network center, on object has higher score than each node on human.
centrality, closeness and centrality with relative vetpciA Wham > Wap; andwlem < w;”’j.

feature vector is calculated at each desired frame and as one
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(b) weighted SNA
Fig. 7. The confusion matrix of HMM classification results
on SNA and weighted SNA features.

(b) weighted SNA
Fig. 6: The confusion matrix of SVM classification results on
SNA and weighted SNA features.

between the test data and each trained HMM model, and the

classification decisions are made according to the maximum

We validate our method on HMDB dataset [1], which Bas I!kel|hood. This e>.<per|m9n.t Is also cro;s-vahdat_ed foefiv
Cymes, and each time training and testing data is randomly

actions in five general types, and human motion with object,. . . e
interactions is one of them. Videos in this dataset are Col(_lelded into half and half. The average classification accu-

; 0 0 .
lected from various source of real world sources, like mevie 2% 'S 63% and 67% by SVM classifier on SNA features

or YouTube. The video quality varies significantly, which and weighted SNA features respectively, and 71% and 74%
makes the récognition task difficult ' by HMM. Some classes even have over 80% correct recogni-

) . tions. From the results, we can observed that weighted SNA
In our experiments, we choose four classes of interac:

Lo . features outpreform the un-weighted SNA features. The-over
tions: swing golf club, shoot basketball, shoot gun, andgwi all performance of our social network analysis based featur
baseball bat. Each class ha¥) clips. We apply body parts P Y

. . . is much higher than the benchmark [1] result by using the
and object detectors on every five frames in each sequencg,l_IP features [4], which has accuracy around 20%
and then extract the social network features from the detec- ' y o

4. EXPERIMENTAL RESULTS

tion results. In each activity class, there are four nodps re 5. CONCLUSIONS
resenting human bodies, which are head, upper-body center
and both hands, and one more node as the object. In this paper, we proposed a new method for recognizing hu-

In the classification stage, we apply two classifiers, SVMman object interactions. In this framework, key human body
and HMM. Data clips contain different number of frames, andparts and the object are considered as nodes in a social net-
each frame is represented in a feature vector of 26 dimemwork graph. And a set of social network analysis based fea-
sions. In the SVM approach, social network analysis basetiires is introduced to capture the distributions of motiaty p
features from all frames are clustered and normalized beforterns among all the nodes overtime. It provides a global view
applying SVM. In our experiment, SVM with linear kernel is of the activity while preserving the individuality of eacbde.
adopted and the training and testing data is divided int6®0/ Because of these, our method can tolerate missing informa-
with five-fold cross-validation. The classification resuty  tion of the low-level detections on human body parts and the
SVM are shown in the confusion matrix in figure 6. In the small object. We have shown that this method can achieve
HMM approach, we project the social network features intagood performance in very challenging scenarios. In future
hidden Markov models with two hidden states and each statwork, we will extend this framework to model interactions
with two mixtures of Gaussian. The likelihood is computedinvolving more individuals and multiple objects.
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