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ABSTRACT

In this paper, a Dynamic Structure Preserving Map (DSPM)
is proposed to effectively recognize human actions in video
sequences. Inspired by the latest feature learning methods,
we modified and improved the adaptive learning procedure
in self-organizing map (SOM) to capture dynamics of best
matching neurons through Markov random walk. The DSPM
can learn implicit spatial-temporal correlations from sequen-
tial action feature sets and preserve the intrinsic topologies
characterized by different human motions. A further advan-
tage of DSPM is its ability to learn low-level features in chal-
lenging video data. The projection from high dimensional
action features to low dimensional latent neural distribution
significantly reduces the computational cost and data redun-
dancy in the recognition process. The effectiveness and ro-
bustness of the proposed method is verified through extensive
experiments on several benchmark datasets.

Index Terms— Human action recognition; spatio-
temporal dependency; self-organizing map; Markov random
walk

1. INTRODUCTION

Human action recognition has attracted much attention in the
fields of computer vision and machine learning in recent years
[1]. Many previous works have focused on augmenting the
feature descriptions, such as proposing stronger feature sets
and combining different features [4], or improving action
recognition models, such as clustering and classification for
scene analysis or abnormal events detection [2]. The analysis
of human actions in a video sequence is challenging, because
the recognition system is required to extract implicit proper-
ties including spatio-temporal coherence, behavior dynamics,
and shape deformation. The action feature extraction from a
video sequence is different from static image analysis, since
spatio-temporal variation might result in meaningful behavior
patterns. For example, the changes in human motion orienta-
tion or gesture during a specified time interval may indicate
what actions might have occurred. In real world applications,
irregular behaviors or environments should also be taken into
account, which requires the dynamic model to adapt to unex-
pected factors.

Recently, unsupervised feature learning methods [3] have
shown promising potentials for human action recognition. In

this paper, we propose a Dynamic Structure Preserving Map
(DSPM) to integrate automatic feature learning with spatial-
temporal modeling for human action recognition. The unique
properties of our proposed method can be summarized as fol-
lows:

First, DSPM is able to learn low-level features and pro-
duce a generative model to represent the dynamic topological
structure. Instead of extracting carefully selected features, our
method can automatically learn intrinsic characteristics from
raw optical flow field for action recognition. Extending to the
self-organizing map (SOM) model [5], DSPM accumulates
dynamic behavior of best-matching units (BMUs) to adjust
their synaptic neuron weights, which can effectively capture
the temporal information.

Second, DSPM can aggregate the spatio-temporal clus-
tering while simultaneously preserve underlying topological
structure. Characterized by the parameters of latent neural
distribution and neighborhood kernel function, the highly rel-
evant spatio-temporal correlations for each action feature set
are adaptively preserved in a 2-D lattice of neurons.

Third, DSPM provides an effective way to reduce the di-
mensionality of input raw feature set, such as dense optical
flow, to represent human motions in videos. Through the
non-linear mapping procedure, DSPM can reduce the com-
putational cost and data redundancy in action recognition.

The remainder of this paper is organized as follows. Re-
lated works of human action recognition are introduced in
Section 2. In Section 3, the mechanisms of related learn-
ing methods are analyzed. We introduce our DSPM method
and present the detailed learning procedures in Section 4. In
Section 5, experimental results are presented and discussed.
Finally, a conclusion is provided in the Section 6.

2. RELATED WORK

As a typical classification problem, feature extraction plays
an essential role in the action recognition. Due to the intrin-
sic sequential property, many spatio-temporal features, such
as STV [6], STIP [7, 8], HOSVD [9] have been developed.
Besides the spatio-temporal property, feature sets with mul-
tiple hierarchies are also introduced for action recognition.
Sun et al. [10] modeled spatio-temporal context information
in a hierarchical structure. Three levels of context were estab-
lished in ascending order of abstraction: point-level context,
intra-trajectory context, and inter-trajectory context. Gilbert



et al. [11] introduced a novel approach to use very dense cor-
ner features, which were spatially and temporally grouped in
a hierarchical process to produce an overcomplete compound
feature set. In addition, the spatio-temporal feature set is also
combined with other features, such as shapes [12], to make
the action more descriptive.

Besides augmenting the features, different machine learn-
ing algorithms also have been introduced to improve the hu-
man action recognition performance. Zhu et al. [13] adopted
multi-class support vector machine (SVM) with linear ker-
nels. Schuldt et al. [14] used local space-time features
for recognizing complex motion patterns. They constructed
video representations in terms of local space-time features
and integrated these representations with SVM classifica-
tion schemes for action recognition. To improve the robust-
ness, a Multiple Kernel Learning with Augmented Features
(AFMKL) was proposed to learn an adapted classifier based
on multiple kernels and pre-learned classifiers of other action
classes in [15]. Fathi et al. [16] classified the input video se-
quence into one of the discrete action classes. The low-level
motion features were used as the weak classifiers. The mid-
level shape features were constructed from low-level gradient
features using AdaBoost. To aggregate the information from
different parts of the video sequence, AdaBoost was used for
a second time to train the final classifier from the mid-level
motion features.

Rather than computing the hand-engineered features or
introducing complex classification models, we adopted the
feature learning concept in [4] and [17], together with SOM
model, to build DSPM to persevere the underlying highly rel-
evant structure both in spatial and temporal dimension.

3. DYNAMIC STRUCTURE PRESERVING MAP FOR
ACTION RECOGNITION

It is a complex process to analyze the correlation and varia-
tion across space and time. There are limitations on the es-
timation of traditional state-space models, since the high di-
mensional parameters may lead to complex dependency struc-
tures. Based on the clusters on the spatio-temporal feature
map defined in DSPM, the parameters of the latent space
model are estimated. The ensemble learning based on EM
further enhances the dynamic model to yield better perfor-
mance. The classifier with highest likelihood will be selected
to predict class label. The training procedure of DSPM can
be illustrated in Fig. 1.

3.1. Self-organizing Map

SOM [5] is considered as a powerful neural network model
in unsupervised learning, which can extract certain implicit
knowledge without human intervention or empirical evi-
dence. Given the input data sequence X = {x1, ..., xn} and
synaptic neuron weight mj , j ∈ {1, ..., Ns}, Ns is the total
number of the neurons on the map. The procedure of search-
ing the best-matching unit (BMU) can be expressed as (1).
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Fig. 1: Training procedure of the proposed dynamic model. (a) Op-
tical flow is extracted from each action video sequences. Given two
consecutive frames, optical flow is computed at each pixel, and sam-
pled with a 10×10 grid. For instance, the frame size of KTH data
set is 160×120, after optical flow computing, the size of optical flow
field for each frame is 16×12×2. The third dimension 2 indicates
the magnitude and direction of optical flow. (b) Example DSPMs
describing spatio-temporal patterns. The colors of grid represent the
distances of various motions on DSPM. (c) The EM based ensemble
learning is adopted to predict the action class.

bi = argmin
j
∥ xi −mj ∥ (1)

Gaussian neighborhood kernel function defined in (2) is
used to constrain the neighborhood scope of the BMU.

hj,bi(t) = exp(−
d2j,bi
2σ2(t)

) (2)

where dj,bi =∥ rj − rbi ∥, σ(t) = σ0(
σ1

σ0
)

t
Nc , rj is a 2-D

position vector of neuron j; t represents the training time; Nc

denotes the convergence iterations; σ0 and σ1 are initial and
terminal neighborhood radius, respectively.

An adaptive learning rule updates the synaptic neuron
weight mj,t+1 according to (3).

mj,t+1 = mj,t + α(t)hj,bi(t)(xi −mj,t) (3)

where α(t) = α0(
α1

α0
)

t
Nc , α0 and α1 represent the initial

and terminal learning rate, respectively.

3.2. Dynamic Structure Preserving Map

In SOM, the neighborhood function can be only used to pre-
serve the spatial topology. Several extensions to SOM, in-
cluding Temporal Kohonen map (TKM) and recurrent self-
organizing map (RSOM) [18], have been proposed to adap-
tively model a data distribution over time on non-stationary
input sequences. Although TKM preserves a trace of the past
activation in terms of weighted sum, the weights are only up-
dated towards the last frame sample of the input sequence
based on the convention SOM update rule. RSOM provides a



consistent update rule for the network parameters. The main
objective of TKM and RSOM is to follow the trend of the
temporal sequence while smoothing out temporary volatili-
ties. These method emphasize more on the latest samples,
and eventually remove the influence from old samples. On
the contrary, DSPM intends to capture the whole dynamic
patterns within the data sequence. We improve the learning
rule of DSPM based on (3). The input sequential samples, af-
ter some simple cleaning operation, have the same importance
and contribute evenly to the model from the beginning to the
end. The resulting DSPM with the complete spatio-temporal
information is then used in classification. In particular, the
neuron transition probabilities in DSPM can describe the tem-
poral dynamics from the training video sequences. DSPM
models sequential dynamics by introducing Markov process
to capture neuron transition probabilities between every two
time samples. It is similar to Markov random walk [19] on
graph, where at each step the walk jumps from one place to
another based on specified probability distribution. The pa-
rameters of Markov process are used in neuron update and
model classification.

Suppose the video sequences X = {X1, ..., XS}, the ith
sequence Xi = {xi,1, ..., xi,t, xi,t+1, ..., xi,T }, where xi,t is
the video frame data at time t. In DSPM, we have Ns neurons
on the lattice map. pi,j is the transition probability from BMU
i at the time t to BMU j at the time t+ 1.

pi,j =
K(i, j)∑

m∈Ns
K(i,m)

(4)

The kernel function K is: K(i, j) = exp(−d(i, j)/α),
where d(i, j) is Manhattan distance between BMU i at the
time t to BMU j at the time t + 1 on the lattice map, α is a
constant.

Fig. 2 illustrates the adaptive learning rule of DSPM.
m∗

j,t+1 and mj,t are used to update the synaptic weights. We
can see that m∗

j,t+1 can be calculated by mj,t and mj,t+1.
mj,t means the neuron weight at the previous time. The
transition probabilities constrain the variations of neuron
weights, which keeps temporal dependencies between mj,t

and mj,t+1. This formulation means the elastic characteris-
tics of DSPM have effects on both spatial domain as well as
temporal domain. The temporal properties depend on neigh-
borhood topology and dynamic information. The synaptic
neuron weights can be updated according to (5).

mj,t+1 = mj,t + α(t)hj,bi,t(t)(xi,t − pbi,t,bi,t+1m
∗
j,t+1

−(1− pbi,t,bi,t+1)mj,t)
(5)

where m∗
j,t+1 = (1−pbi,t,bi,t+1)mj,t+pbi,t,bi,t+1mj,t+1,

m∗
j,t+1 can help the target neuron to adaptively learn tempo-

ral knowledge from Markov model. The transition probability
can teach the neuron how to preserve the temporal informa-
tion by updating the neuron weight in DSPM.
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Fig. 2: Adaptive learning rule of DSPM.

Algorithm 1 Spatio-temporal DSPM

Input:
(1) Video feature sequences: X = {X1, ..., XS}, where
Xi is a sequence vector {xi,1, ..., xi,T }
(2) Initial neuron weights: mj(t0)

X ← X−min(X)
max(X)−min(X) , X ∈ [0, 1]

for i = 1 to S do
for t = 1 to T do

Search BMU bi,t as (1)
Calculate pbi,t,bi,t+1 as (4)
Update mj,t+1 as (5)
di,t ← bi,t

end for
end for
Output: Discrete sequences D∗

i = {di,1, ..., di,T }

We take the frame samples of “bend” action from 9 per-
sons in the Weizmann dataset in Fig. 3. DSPM can extract
the key feature information by spatio-temporal knowledge
and statistically measure the dependency by Markov transi-
tion probability. The green color grid is the output of DSPM,
which can aggregate the key features into the clustering. The
x coordinate represents temporal feature in frame number and
the y coordinate means the cost on distance between the in-
put video frame and its best matching neuron in DSPM. The
red marked circles represent the corresponding cluster in the
DSPM. We can see that key features with sparse distribution
have a high cost on distance.

4. DYNAMIC MODEL FOR ACTION RECOGNITION

The proposed dynamic model can optimize the parameters
and train the ensemble learning model for classification.

We assume the input data Xt = {X(xi; t)}, i = 1, ..., S,
where S is the number of spatial data attributes at the time
t. The covariance matrix of The zero-mean Gaussian noise is
∆t. Θt describes the state transition over the time t.

We collect the dynamic model parameters as Φ =
{Θt,∆t}. The primary goal of this model is to estimate
the modeling parameters through expectation-maximization
(EM). From Algorithm 1, we can obtain the discrete se-
quences D∗. The likelihood of the input data sequences can
be estimated as (6).



 

 

 

 

 

 

 

  

0 5 10 15 20 25 30 35 40 45 50
0

50

100

150

200

250

300

350

Fram e Num ber

D
is

ta
n

c
e

 

Fig. 3: Spatio-temporal dependency analysis on the key region.

P (D∗|Φ) =
n∏

i=1

P (D∗
i |Φ) (6)

We can predict the class label based on (7).

y = argmax
si∈S

n∑
j=1

P (D∗|Φj , sj)P (sj |Φj)P (Φj) (7)

where Φj represents one of the alternative models, S is
the set of all class labels.

5. EXPERIMENTS

KTH [14], Weizmann action [20] and UCF sport datasets [21]
are used to evaluate the performance of the proposed method.
To analyze the effects of periodic and non-periodic actions,
we calculate optical flow in feature extraction [22]. Optical
flow approximates local image motion based on local deriva-
tives in a video sequence, and it can essentially reflect the
spatio-temporal variability between two consecutive frames.

5.1. Performance

The performance of the proposed approach can be analyzed
through the confusion matrix. In KTH dataset, “walk” can
be easily recognized with the rate of 98% in Fig. 4, but it is
confused by “run” with 2%. “jog” and “run” are both af-
fected by “walk”. “handwave” and “handclap” affect the
recognition results with each other. From Fig. 5, we can see
that our method achieves 100% accuracy for recognizing the
actions including “jack”, “jump”, “pjump”, “side” and
“walk”. There are some errors in other actions. For exam-
ple, both “bend” and “wave2” are the actions with two-hand
up in some specified scenarios. The spatial similarities over
time make it difficult to achieve high accuracy. As shown
in Fig. 6, the sport action recognition is also a challenging
task. We can recognize the action “dive” with high accuracy,
but it becomes more difficult to recognize other actions, such
as “run”. Although the spatio-temporal dynamic topological

structure improves dynamic model to make accurate decision,
the false recognition occurs when training frame snapshots
or sequences shares the similar variations of spatio-temporal
features.
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Fig. 4: Confusion matrix on KTH action dataset.
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Fig. 5: Confusion matrix on Weizmann action dataset.
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Fig. 6: Confusion matrix on UCF action dataset.

To verify the recognition capability of the proposal
method, Table 1 shows the recognition results of many com-
parable approaches based on KTH, Weizmann and UCF
dataset, respectively. On KTH dataset, Wu et al. [15] and Ko-
vashka et al. [17] achieved the best performance with 94.5%.
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Fig. 7: Recognition performance on YouTube dataset.

Table 1: AVARAGE ACCURACY ON KTH, WEIZMANN, UCF, AND

YOUTUBE DATASETS

Method KTH Weizmann UCF YouTube
Fathi et al. [16] 90.5% 100% - -

Dollar et al. [23] 81.2% 86.7% - -
Niebles et al. [24] 81.5% 90.0% - -
Zhang et al. [25] 91.3% 92.9% - -
Blank et al. [20] - 100% - -

JHuang et al. [26] 91.7% 98.8% - -
Schuldt et al. [14] 71.7% - - -
Laptev et al. [7] 91.8% - - -
Klaser et al. [27] 91.4% 84.3% - -

Campos et al. [28] 91.5% 96.7% 80.0% -
Wang et al. [29] 89.0% 97.8% 83.3% -
Wu et al. [15] 94.5% - 91.3% -

Kovashka et al. [17] 94.5% - 87.3% -
Liu et al. [30] 93.8% - 86.5% 71.2%
Le et al. [3] 93.9% - 86.5% 75.8%
Our method 94.2% 98.7% 91.6% 76.5%

Our method can achieve 94.2% on average. On Weizmann
dataset, Blank [20] and Fathi [16] achieved 100%, Jhuang
[26] achieved 98.8%, and our method achieved 98.7%. On
the most challenging UCF dataset, Kovashka et al. [17] and
Wu et al. [15] achieved 87.3% and 91.3%, respectively. Our
method with 91.6% performs better than these methods. The
performance of our method is comparable with these state of
the art methods on action datasets. Particularly, for more com-
plex dataset, such as UCF sport dataset, our method can ef-
fectively improve the recognition performance. But more im-
portantly our method can adaptively learn from low level fea-
tures, such as optical flow, rather than using strong features.
This improves model robustness, and requires less human in-
tervention.

To further analyze the robustness of our proposed method
on challenging realistic actions, we compare our method with
the work by Liu et al. [30] based on UCF YouTube dataset
with 11 action categories. This video dataset is very challeng-
ing, including mixture of steady and shaky cameras, diver-
sity of background, different viewpoint, various illumination
and low resolution. Fig. 7 shows the recognition accuracies
of three variations of method in [30] and our DSPM. From

Fig. 7, we can see that DSPM outperforms the average recog-
nition accuracy in [30], especially for some difficult scenarios
such as “s juggling”, “swinging” and “b shooting”. The
experiment results indicate that our method performs particu-
larly well in recognizing cyclic actions such as “s juggling”,
“swinging”, “cycling”, “t jumping” and “walking”. The
performance is not as good as the hybrid method in [30] on
“diving”, since there is significant data redundancy at the be-
ginning of the sequence. The hybrid method adopts a heuris-
tic pruning strategy to reduce the redundant frames. DSPM
has the capability to handle this problem if a simple redun-
dancy detection is employed. The similar performance on
“v spiking” indicates the effectiveness of DSPM to recog-
nize group action of multiple people. [30] are mainly focused
on three kind of video feature styles. Through the compar-
ison in table I, DSPM can perform as a competitive method
compared with the existing methods.

6. CONCLUSION

In this paper, we proposed a new DSPM as an effective spatio-
temporal model to recognize human actions from video se-
quences. Through learning on low level features, DSPM auto-
matically extracts intrinsic spatio-temporal patterns from the
video sequence. DSPM improves the adaptive learning rule
with a Markov model on the dynamic behavior of BMUs,
which helps to preserve spatio-temporal dynamic topologi-
cal structure. Through the non-linear mapping, DSPM can
reduce computational cost and data redundancy for action
recognition. The ensemble learning based on EM is adopted
to estimate the latent parameters. In the future work, we
will continue to improve DSPM to efficiently recognize more
complex human actions from the real-world video datasets.
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