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Abstract. Sparse coding, which is represented a vector based on sparse
linear combination of a dictionary, is widely applied on signal process-
ing, data mining and neuroscience. How to get a proper dictionary is a
problem, which is data dependent and computational cost. In this pa-
per, we treat dictionary learning in the unsupervised learning view and
proposed Laplacian score dictionary (LSD). This new method uses local
geometry information to select atoms for dictionary. Comparison experi-
ments with competitive clustering based dictionary learning methods are
established. We also compare LSD with full-training-data-dictionary and
others classic methods in the experiments. The results on binary classes
datasets and multi class datasets from UCI repository demonstrate the
effectiveness and efficiency of our method.

Keywords: Sparse coding, Unsupervised learning, Clustering, Dictio-
nary learning, Laplacian Score

1 Introduction

Sparse coding (sparse representation) has been improved extensively recently. In
sparse coding, a signal y is represented by combination of a defined dictionary
D atoms, which aims to use the least number of atoms. Sparse coding has a lot
of applications. Such as classification, image denosing and online learning.

In sparse representation, computational complexity is a problem. There are
three methods to reduce the computation of sparse coding. (1) Proper dictio-
nary: The dictionary represents the key information for the data, and size of
dictionary can affect the computation significantly. How to get the ideal dic-
tionary is the focus of this paper. (2) Dimension reduction: This method can
remove the redundant features of data for sparse coding and it was successful in
some applications. (3) Algorithm: This method is to use different optimization
methods to speed up the sparse representation.

The successful sparse coding lies in the proper dictionary. How to get the
proper dictionary is a hot research topic recently. At first, the pre-constructed
dictionaries are chosen, such as steerable wavelets, curvetted, DCT matrix, and
more. Then a tunable selection for dictionary is applied, such as wavelet packets
and bandelets. Recently, more research are focus on the learning the dictionary
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from the examples. Unsupervised learning methods are also shown success in
dictionary acquiring for sparse coding.

Laplacian score (LS) was proposed for unsupervised feature selection. In
their work, LS is to evaluate the locality preserving ability and to rank the
feature power for the feature selection. LS has successful application in the face
recognition and semi-supervised learning. In this paper, the work is focus on
the dictionary learning via unsupervised learning. The key idea is to use LS to
evaluate the locality preserving ability of training data, and the higher ranked
data is selected as atoms for the dictionary in sparse coding. This method is
compared with classic clustering methods such as self-organized map (SOM)
and neural gas (NGAS) in dictionary learning to show effectiveness.

The contribution of this work is listed:

– An unsupervised learning methods based on LS for dictionary learning in
sparse representation is presented. While most of LS applications has been
concentrated on features view, and we first proposed atoms selection based
LS criteria.

– The proposed dictionaries are applied to both binary and mutli-class UCI
databsets, the results are shown with classification results, reconstruction
results.

– Competitive experiments results are obtained on diverse UCI datasets, pro-
viding the capabilities of proposed dictionary learning methods.

The rest of paper is organized as follows: Section 2 presents related work and
sparse representation based classification. Section 3 presents Laplacian score
(LS) criteria for dictionary learning. Section 4 presents the comparison experi-
mental results with the UCI datasets. Finally, section 5 concludes the paper and
discusses some future planning.

2 Related Work

Recently, sparse representation based classification (SRC) was proposed and
shown successful application in face classification. SRC utilizes category based
reconstruction error to classify testing data. The performance of SRC can be
used to evaluate the dictionary in sparse coding.

In sparse coding, a dictionary containing a set of n atoms (data vectors) is
defined as D = [a11, · · · , a

n1
1 , · · · , a1c , · · · , anc

c ], where D ∈ Rm×n, c is class label
for each atom, ni is the number of atoms associated with class i. The intention
of sparse representation is to code a new test vector y with the form

y = Dx ∈ Rm (1)

where x = [0, · · · , 0, αi,1, αi,2, · · · , αi,ni
, 0, · · · , 0]T ∈ Rn. x should be sparse with

the least number of nonzero. Normally, `1-regularized least squares method [?]
is used to solve this problem.

x̂ = argmin{‖y −Dx‖22 + λ‖x‖1} (2)
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In SRC, it utilizes the representation residual to judge the target class [?]. For
each class i, a function is defined as δi : Rn → Rn, which chooses the coefficients
associated to i-th class. Then classification process can be shown as:

label(y) = argmin ri(y), ri(y) = ‖y −Dδi(x)‖2 (3)

Algorithm 1 Sparse Representation based on Classification

1: Input: a dictionary D ∈ Rm×n with c classes, a test data y ∈ Rm

2: Solve `1-regularized least squares problem:
x̂ = argmin{‖y −Dx‖22 + λ‖x‖1}

3: Compute the residuals:
ri(y) = ‖y −Dδi(x)‖2 for i = 1, · · · , c

4: Output: label(y) = argmin ri(y)

The SRC process is shown in Algorithm 1. A case study is for SRC is shown in
Fig.1. “Libreas Movement” datasets from UCI Repository are used. A dictionary
is trained with Laplacian score criteria, which has 65 atoms from 13 classes. Then
the dictionary is applied on a test data to get the sparse vector for atoms. The left
figure shows the details of sparse coding coefficients. The construction residuals
based on each class are shown in the right figure. It obvious to see the residual for
class 6 is smallest. Then the SRC algorithm will put the test data to the class 6.
Actually, the total classes for the “Libreas Movement” datasets are 15. However,
there are just 13 classes data are chosen in this case study. How to leverage all
category data in the dictionary is a problem in dictionary construction.
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In dictionary learning, a popular criteria is optimized with sparse coding.
The dictionary updating and sparse coding are processed iteratively until some
threshold are reached. Though it has been proved effectiveness in some appli-
cation, the iterative process has made heavy computation cost. The following
methods are from this view.

MOD is frame design algorithm called the method of optimal directions
(MOD) [?]. In the MOD, first, a dictionary is initialed, then sparse coefficients
of a signal are calculated from the dictionary. Then use the coefficients and the
original signal to update the dictionary. The stop criteria is based on the least
square error.

KSVD [?] is different with mod that the atoms in the dictionary are updated
sequentially. It is relative to the k-means as it tries to update the atoms based
on associate examples. In KVSD, first, find the group examples for the atoms.
Then calculate residuals for the chosen examples. Finally, use singular value
decomposition based on the residuals to update the dictionary atoms.

Efficient sparse coding algorithms [?]is based on the iteratively solving two
least square optimization issue: `1 norm regularized and `2 norm constrained.
The problem can be written as:

min
α,D

1

2σ2
‖Dα−X‖2 + λ‖α‖1 subject to ΣD ≤ c (4)

In the learning process, this method optimizes dictionary D or sparse coefficients
α when fixed other. This method is kind of acceleration of the sparse coding
process which can be applied in the large databases.

Supervised dictionary learning[?] tried to combine the different categories
information to the sparse coding process. The formulation shows how it works.

min
α,θ,D

(ΣiC(yif(xi, αi, θ)) + λ0‖Dα−X‖2 + λ1‖α‖1) + λ2‖θ‖22 (5)

where C is kind of loss function which is similar to the loss function of SVM.
θ, λ0, λ1, λ2 are regularization paramether. The loss function utilizes label infor-
mation in the optimization process.

3 Laplacian Score for Dictionary Learning

Laplacian score evaluates local geometrical structures without data labels infor-
mation. This method is based on Laplacian Eigenmaps and Locality Preserving
Projection.

Given a data set X = [x1,x2, · · · ,xn], where X ∈ Rm×n. The feature vectors
for the data set are F = {f1, f2, · · · , fm}. Assume Sr is the Laplacian score for
the rth sample xr, r = 1, · · · , n. The Laplacian score based on each sample can
be stated as follows:

1. A nearest neighbor graph G is constructed with different feature vectors (fi
and fj , i = 1, · · · ,m). In details, if feature vector fi is among k nearest neighbors
of fj , fi and fj are defined connected in graph G.



Dictionary learning Based on Laplacian Score in Sparse Coding 5

2. The weight matrix of graph G is Sij . When fi and fj are connected,

Sij = e−
‖fi−fj‖

2

t , otherwise Sij = 0. Where t is a suitable constant.
3. Then Sr for each sample can be caculated as

Sr =
x̃Tr Lx̃r
x̃Tr Dx̃r

(6)

where D = diag(S1),1 = [1, · · · , 1]T , L = D − S, and x̃r is calculated via:

x̃r = xr −
xTr D1

1TD1
(7)

The results of Sr are used to choose atoms for the dictionary, which aims to
effectively utilize graph structure information.

SOM and NGAS are classic cluster methods in the unsupervised learning.
SOM and NGAS can preserve the topological properties of training data, which
is the inspiration of our work. The center trained by SOM and NGAS are used as
atoms in dictionary for sparse coding. Relative work has shown some application
between NGAS and sparse coding. It is important to mentioned that class label
are needed for atoms. In this work, the atoms trained by SOM and NGAS are
labeled based on 5-nearest neighbor training data voting.

4 Experiment

In this section, we present experiments on different UCI datasets, especially on
multi-category datasets which are more challenge in application. The experiment
is aimed to show the effectiveness of proposed dictionary method. The results
are presented with SRC classification accuracy and data reconstruction errors.

4.1 Experiment Datasets

Six UCI datasets are chosen in the experiments. The details are shown in Table
1. Data “Car Evaluation” and “Tic-Tac-Toe” are binary datasets. Data “Con-
traceptive Method Choice” has three classes. The rest are typical multi-class
datasets which are frequently used in the data mining. The feature number and
the data size are also shown in Table 1.

4.2 Experiment Setup

In the experiments, 5-fold cross-validation are applied on each datasets for com-
parison of different learning models. The training data are trained with LS, SOM
and NGAS to get dictionaries. We set the different sizes of dictionary to shown
the performances. In detail, the sizes of dictionary is rang from 10% to 50% of
training data size. Then SRC classifier, according to Algorithm 1, is applied on
testing data to evaluate the performance of different dictionaries. In order to
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Table 1. UCI Experiment Data Sets

Name Feature number Total size Class number

Car Evaluation 6 1728 2

Tic-Tac-Toe 9 958 2

Contraceptive Method Choice 9 1473 3

Glass 10 214 7

Image Segmentation 19 2310 7

Libras Movement 90 360 15

get comprehensive results, three references are introduced: LibSVM, k-nearest
neighbors classifier and full-training-data-dictionary. It is important to point out
that all three references are based on entire training data. It is not equivalent
for proposed dictionary learning method to reach same performance with these
three references.

For simplicity, the dictionaries trained with LS, SOM and NGAS are abbre-
viated as LSD, SOMD and NGASD. The LibSVM classifier is simplified as SVM.
K-nearest neighbors classifier are simplified as KNN5, which is evaluated by 5
neighbors in our experiments. The full-training-data-dictionary is abbreviated
as ALLIND.

In sparse coding, reconstruction error for each test data is represented as

errory = 2
√
‖y −Dx‖2 (8)

and can be evaluated the quality of dictionary. In our experiments, the average
reconstruction error among LSD, SOMD, NGASD and ALLIND are shown in
different dictionary sizes.

The sparse coding tool is from Stanford. The libSVM classifer is from Support
Vector Machines Library. When the datasets are multi-categories, LibSVM use
“1-v-r” method to transfer mulit-class issue to binary issue. SOM and NGAS
training methods are from SOM TOOLBOX.

4.3 Experiment Result

We perform our comparison models on different datasets and results are shown
in the following.

Fig. 2 shows the results on the data “Car Evaluation”. From the classifi-
cation view, LSD has higher classification accuracy compared with SOMD and
NGASD. The accuracy of LSD is increased with dictionary size enlarging. LSD
performance reaches the equal level with SVM when dictionary size is 20% of
training data, and LSD has almost same accuracy with ALLIND when dictio-
nary size reach 50% of training data. In the right figure, the reconstruction error
from LSD decreases with more atoms in dictionary.

The performance of data “Tic-Tac-Toe ” is shown in Fig. 3. In the left figure,
LSD has better performance than SVM and it can surpass ALLIND performance
when dictionary size is larger than 40% of training data. The SOMD performance
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Fig. 2. Left : Classification comparison with data “Car Evaluation ” Right : Recon-
struction error with data “Car Evaluation ”

can be competitive with SVM. In the reconstruction performance, NGASD has
better rate than ALLIND which is interesting point.
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Fig. 3. Left : Classification comparison with data “Tic-Tac-Toe ” Right : Reconstruc-
tion error with data “Tic-Tac-Toe ”

Fig.4 shows experiment performance on data “Contraceptive Method Choice
”, which has 3 classes. This data is difficult for classification, the best accuracy
is around 52% reached by SVM. LSD is ranked second among all the models.
It surpasses KNN5 and ALLIND when dictionary size is larger then 30% of
training data. Meanwhile, LSD has smaller reconstruction error than SOMD
and NGASD.
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Fig. 4. Left : Classification comparison with data “Contraceptive Method Choice ”
Right : Reconstruction error with data “Contraceptive Method Choice ”

Fig.5 shows the results on the data “Glass”. In the left figure, ALLIND
has the highest accuracy and LSD performs better than KNN5 and SVM. The
performance of SOMD is also competitive with KNN5. It seems that SRC method
has advantage than classic classifiers in this dataset. In the reconstruction view,
LSD reach a stable level when the dictionary size is larger than 20% of training
data.
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Fig. 5. Left : Classification comparison with data “Glass” Right : Reconstruction
error with data “Glass”

The results of data “Image Segmentation” is shown in Fig.6. The performance
of KNN5 are almost the same with ALLIN. With increasing the dictionary size,



Dictionary learning Based on Laplacian Score in Sparse Coding 9

the performance of LSD improves. And LSD reaches the level of SVM when the
dictionary size is 40% of training data. In the right figure, the reconstruction error
of LSD continuously decreases with more atoms are selected in the dictionary.
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Fig. 6. Left : Classification comparison with data “Image Segmentation” Right : Re-
construction error with data “Image Segmentation”

Fig.7 shows the performance of data “Libras Movement”. ALLIND has the
best performance and LSD can be compared with SVM when the dictionary size
is 40% of training data. In the reconstruction view, LSD has decreasing trend
but NGAS has lower error.

Table 2. Accuracy [%] average in different dictionary sizes

Dictionary size (rate) 10% 20% 30% 40% 50%

SOMD 44.75 51.07 52.59 52.69 53.98

NGASD 43.28 42.65 39.55 38.40 44.89

LSD 56.78 68.10 70.30 73.85 75.85

From the results of different figures, we observe that LSD classification per-
formance tend to be converged when the dictionary size in the range of 40%-50%
training data. Then we get the average accuracy results based on different data
in Talbe 2, and the average accuracy of SVM, KNN5 and ALLIND are 72.63%,
77.31% and 78.78% separately. It is interesting to know the accuracy of LSD with
40% training data can have better performance than SVM with 100% training
data.

Overall, from the classification view, LSD is relatively better than SOMD
and NGASD. The reason may due to the atoms labels in SOMD and NASD,
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Fig. 7. Left : Classification comparison with data “Libras Movement ” Right : Re-
construction error with data “Libras Movement ”

which is assigned from training. While LSD, the atoms labels are associated with
data which have unbiased information. However, in the construction view, we
also can observe LSD has competitively smaller error compared with SOMD and
NASD. It seems that unsupervised selection is more robust and meaningful than
unsupervised transform for the dictionary learning.

5 Conclusion

We have presented a novel dictionary learning method which is inspired from
geometry local information. It is an unsupervised learning to search the atoms
in the training data. The experiments on the UCI data give a comprehensive
study on different unsupervised dictionary learning models. The proposed LSD
has shown effectiveness on SRC classification and reconstruction processes. LSD
based on partial training information shows competitive performance with SVM
based on full training information.

More experiments and theoretical analysis are of course need to assess the
proposed dictionary in real application. Beyond this, there are some interesting
points for future study: (1) Exploration of the connection between category
data distribution and data geometry information in the dictionary learning; (2)
Exploration of the relations between the unsupervised selection and unsupervised
transform in the dictionary learning; (3) Exploration of the optimal dictionary
size for dictionary learning.

5.1 Citations

For citations in the text please use square brackets and consecutive numbers:
[1], [2], [4] – provided automatically by LATEX’s \cite . . . \bibitem mechanism.
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