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Abstract—The fusion of images captured from multi-modality ~representation and optimization theory. In order to fuse tw
sensors has been studied for many years. It is aiming at combin- jmages together, the new sparse vector should be very "same”
ing multiple sources together to maximize the meaningful infor- as the original sparse vectors which are weighted by the thei

mation and reduce the redundancy. Meanwhile, sparse represen- . Lo .
tation of images has been attracting more and more attentions. It 9radients, and the similarity between fused and the origina

has been effectively utilized on image reconstruction, image de- images are evaluated by their Euclidean distances.

noising, super-resolution and others. In this paper, we propose  This paper is organized as following: section Il introduces
an optimum function based on sparse representation model to some related works about image fusion and sparse representa
accomplish image fusion tasks. For any pair of input source i gection 11l gives the mathematic model to bridge image
images, we first obtain their sparse vectors respectively on a pre . . 2

trained dictionary. Then we pursuit the sparse vector for the representations and_ optlr_nlzatlorl models. The contrlt_)Btm)‘ )
the fused image by optimizing the Euclidean distances between OUr work are described in section 1V, which show in detail
fused image and each input, weighted by their own gradients. about our proposed objective function as well as discussion
Optimization penalties are discussed to induce numerical or optimum penalties and solutions. Experiments and comparis
analytical solutions. And the experimental results have shown in section V illustrate the advantages of this work besides

that the proposed method can effectively combine meaningful the slidi ind trat - laorithm. Conclusi
information and outperform traditional wavelet methods. _e sliding _Wm ow stra eg_y In our algorithm. Lonclusioms a
discussed in the last section.

I. INTRODUCTION

Image fusion is known as multi-sensor or multi-modality
data fusion, aiming at actively combining multiple sourced. Image Fusion Methods
together to maximize the meaningful information and reduce The task of image fusion is defined athe combination
the redundancy. Multi-modality cameras systems are n@W two or more different images to form a new image by
adopted by many fields, as remote sensing, medical imaggng a certain algorithm’, by Pohl and Genderen reviewed
processing, and military applications. Original imagesldde in [7]. It was considered in three processing stages, ang the
captured from multiple optical sensors at different resohs, are categorized in three levels, pixel-level, featureleand
different capturing angles, or different spectrum bandssM decision-level. Among them, in [7], pixel-level fusion isost
frequently used systems are, such as, visible light camefagortant stage to perform precise work for later procegsin
together with Infra-red cameras, and panchromatic imagesAs developed in decades, wavelet transform [8] has been
together with multi-spectral data. used in many works, such as [9]. Wavelet based image fusion

Image gradient is often used in metrics to evaluate theto transform data into frequency domain and apply certain
quality of a image, since human visions are more sensitifigsion rules to corresponding sub-bands. Unlike wavedesed
to sharpen images than blurry ones. Xydeas [1] introduc@gsion algorithms, we are seeking a fusion method not only
an objective metri@)4”/# to evaluate how much the fusedworking on spatial domain directly and effectively, butals
image I keeping from original images gradient weightéd focus on more generic optimization method.
and B. Inspired by this work, we also adopt the gradients as )
the weights in our objective function. B. Sparse Representation on Image

Recently years, compressive sensing and sparse representdparse representation is a method to model image process-
tion on image applications are very popular since the proiofg problems. Suppose there is a linear system:
of ¢; norm penalty equivalent td, norm under certain ik ,
circumstance with overwhelmingly high possibility [2],]{3n Da ==z where D eR™* and acR* (1)
many literatures, sparse representation models are agplyi \Where D ¢ R*** is an over-complete dictionary (< k)
signal and image processing areas, and are successfuiiygol trained by the given samples, and each column is named as
many problems including in blind source separation [4],d®a atom. o € R* is the sparse coding vector for a given test
denoising [5], image super-resolution [6] and etc. Oneiatuc sample obtained from the dictiona®, with L < k sulffi-
step in our proposed method, is using sparse representatiogiently small nonzero elements. Inducted from the tradilo
reconstruct the original images, hence to obtain theirsgpatompressive sensing theory, the sparse representatioel mod

coding vectors. in signal processing can be written as following:
Inspired by the aforementioned techniques, we propose

a multi-modality image fusion algorithm based on sparse min [, subject to x ~ D )

Il. RELATED WORK



Here ||a|l¢, is a pseudo norm which counts the number afmage and how well it is combining many different source

nonzero elements iev. Actually, this standard, optimization images together. In order to generate a good fusion resalt, w

form is a NP-hard problem. Howeverdf is sufficiently sparse, perform a two-side criteria to evaluate our result,

fo-norm can be approximated bg-norm [3]. Therefore, . The higher gradient should be kept in the fusion result

the problem (2) can be proved to equivalent to solving the from the source.

following ¢; minimization problem: . The difference between the source and the fused image
should be kept as small as possible.

. ) N Sharpened images will be more impressive than blurry ones.
min |z — Dallz, + Aledle,  where,  [ledle, = Z | i | And inside the sharpness, it is the clarity of edges between
i=1 3) color or shape changes. Moreover the gradients are the math-

In our task, the dictionanyD is collected from both two emgtlcal features of the edges N a image. T_hereforg, we are
a%mmg to preserve those highest gradients informatiomfro

input images, and also is the dictionary which the fuset e original ones. Our optimization function is the evailomt

image is learned from. Dictionary leaming is the process 8 the information preserved from the inputs in terms of the
updating atoms from raw image date to near orthonormal basis . b P

(Since the dictionary is over-complete, it cannot be orthad. yve|ghted local gradlen_t er each Image. Furthermore, thedu
image should be as similar as their source images. Hence the

But with RIP property, each subset of basis works very IIIﬁ'guclidean distances are used for describing the diffeence

orthonormal [2], [3].) . 2
- . L . between the result and either one of the original images.
The dictionary learning problem, at each updating iteratio S o
Based on these, we proposed our objective function:

t, can be stated as following:
Lt y" = arg min Va1 (y — z1)l|7, + [Va2(y — z2)[7, (5)
D, = in — —|l@; — Dal|7, + Aoy 4 i
R ; <2||T' ille, + Alle “1) @ wherex, and z, are the source data, angdis the fused
o o ) ) result. The residuey — x; and y — x5 characterize the
Dictionary learning algorithms have been introduced ifjgerence between the original data and the result whictse
many I|terat_ures, for instance, _MOD [10], K-svd [11], anq0 be minimized. Andvz;, V&, € R™*" here are the weights
online learning [5]. In our experiments, we have adopted th¢ ihe residues. Intuitively, in this minimization fundtipthe
online dictionary learning algorithm in SPAMS [12]. one with higher gradient will leagy more similar to it.

lIl. M ATHEMATIC MODEL Now consider the sparse representation of images, we define

= Da, z2 = D3 andy = D~ in (5),
For any given image, one could always be decomposed inwtﬂi % *2 p Y vin ()

a data vector. Consider a data vectoE R™, there exists a J =|Vz1D(y — a)|;, + |[Vz2D(v - B)|I;, (6)
nxk
span of a subspacP € R"*", such that, Let &) = Vay D, and®y = Vap D, then (6):
p
=Y a;D; = Do J = ||®17 — 17, + || P2y — 22017, (7)

=1 This objective function can be viewed as a quadratic form,

For this subspac®, it can be either a typical orthonormaland to be more analytically, it can be rewritten as:

space or a nonorthogonal space such as an over-complete B T T T
dictionary. In this paper, we adopt the later form. Undestht = 7 (®1 @1+ D3 Bo)y — 2((P100)” @1 + (228)" P2)y

particular D, for any givenz, there exists a sparse vector +(Pra)" @1+ (928)T 28
a € R¥. Sparsity means that < k, where = TPy —2QTy+C (8)
L £ ||lallg, £ #{i s.t.afi] # 0} Where we defineP, Q, andC as:
Assumea and 3 are the sparse vectors of the original P = o7, +ol0, (9)
images. Suppose the fused data is also sparse under this Q = @mq)lTJr@zﬁ@g (10)

dictionary which is trained by the original images. In aresth _ T T
word, for the fusion resulF", it will exist a sparsey such that C = (Pr0) Q1o+ ($28) 8208 (1)
F = D~. Therefore, the image fusion problem can be solved Now the optimum selectoy* is,

as an optimization problem which optimally selecfrom «

% 1 1
and 3 under the dictionaryD. v = argmin §7TP7 -Q'y+ §C
IV. OBJECTIVE FUNCTION AND OPTIMUM MODEL subjectto :  |[[vlle, < L (12)
A. Objective function B. Sparse Regularity

Performance metrics are playing very important role in In (12), a norm¢, is applied to the inequality constraint.
any image fusion system. The metrics evaluate how muéimd here we will discuss the following three kinds of regu-
information the fused image is keeping from each sour¢arizer, whenp = 0,1, or 2.



1) ¢y norm: This represents the original concept of the spaan atom in the initial dictionary. The window is in the size of
sity, which is illustrating the restriction of non-zero elent 8 x 8 pixels, with half window length sliding step.
in given vector. Basis pursuit is usually the method of savi  Sliding window strategy is designed to obtain more mean-
it, however the studies show that theregularity is NP-Hard ingful information (specifically, image gradient is as the
which means it is less practical to solve this problem. weight,) from both modalities. A pair of original images

2) ¢, norm: This is the heuristic approximation of theshould have different performance at same place, but one can
sparsity, as we have discussed in section II-B. Although/the not always win at everywhere. Therefore evaluations onlsmal
norm is not differentiable at every point, as a convex pnoble patches are much more objective than to perform on the entire
it is practical to solve. In addition, the feasible set skdoubt images. Biases will be highly eliminated by averaging the
be empty, meanwhilé is required to be as small as possibleoverlapping parts while reconstructing the results.
Thus, we use a bi-criterion function to take the place. Equoat

(12), can be written as following: C. Fusion Results

] 1 In our experiments, we have testéd and /> regularizer
~* =argmin =y Py - QTy+ =C + Alle, (13) optimization for our problem, due t is a less practical NP-

v 2 2 hard problem. To solve th& regularizer which is a LASSO
where A > 0 represents the trade-off between the sparsity pfoblem, we use well developed numerical optimization tool
~ and fitting the data. This is also known as LASSO [13FVX [15] to find the optimum fusion strategy. For thig
problem, therefore it can be solved using some off-thefshelptimization, it is already been deduced to a Tikhonov Regu-
convex optimization algorithms. larization problem. Hence we could have analytical closenfo

3) ¢, norm: The Euclidean norm constrain can not holgolution from (16) for any of the given data.
the sparsity well, however it have the good convexity and dif As shown in Fig. 1 and Fig. 2, in infra-red images, Fig. la
ferentiable property. Following previous discussion, the bi- and 2a, a person can be seen clearly in a bright spot, but not
criterion can be applied to trade-off the two-fold minintiza. in the visible ones. On the other hand, the visible images,

Consider theZ; norm, Fig. 1b and 2b show some details of the fences, leaves and
1, . 1 ) the building, which are very blurry in IR image. The fusion
v = arg min 5y Py - Q v+ 50+ A1z, (14)  results Fig. 1c, 1d, 2c, 2d, not only keep the important perso

1 . 1 information , but also add those details in the scenes.
= a in — P+ M)y — +=-C (15 i ) .
'8 Hgn 27 ( =Qy 2 (15) D. Fusion Evaluation and Comparisons

This can be formulated to Tikhonov Regularization problem, We use the fusion metric [1] to evaluate and compared our

therefore have analytic solution, method to the others. In (17), th@;, 5, and Q5% denote
d 1 1 the edge preservation from the original dataand B to the
@(?YT(P + Ay - QT + 50) =0 (16) fusion result at the specifig, m) pixel. And theg;*; denote

the gradient of the data at the (s, j) pixel.

N M AF A BF B

Each of these three regularizer has the different perfocman  Q45/F = L=t Z;{}ﬂ QAZ””Q"”” @G
to hold the sparsity. Thé;, norm have the greatest sparsity 2im Zj:l(gfj +gfj)
holding property, but need to solve a NP-Hard problem. The|n TABLE I, we have tested our results as well as a typical
> norm have the lowest holding, however have the analyfigavelet fusion methods [8] through (17). The higlggfB/*
solution. And for the eclecti¢, approach, it not only have yajue is, the better preservation the fused image obtaired f
heuristic ability to hold the sparsity, but also can be sdlbg the source images. In this comparison, our results arelglear
numerical method. better than traditional fusion method. Moreover, the resi;
norm optimization outperform th& one. However¢, penalty
has an analytical solution instead of the numerical appnexi
A. Image Gradient tion which make this problem computationally efficient.

As the data here is image data, therefore the 2-D gradients
are including magnitudes and angles. Here Sobel operator is
applied to take the edges from the image. And in this algo-
rithm, the magnitudes will be take consider in as the weight, QAB/F wavelet £; norm ¢ norm

; ; ; Experiment 1 0.3469 0.4296 0.4296
where we get from the horizontal and vertical gradients. Experiment 2 03391 04218 04218

v = (P+A)7'Q

17)

V. EXPERIMENTS AND COMPARISONS

TABLE |
FusioN COMPARISONS

B. Siding Window Strategy

Our experiments are using thermal images and visible VI. CONCLUSIONS
images from TNO dataset [14]. In order to collect an over- In this paper, we have proposed an optimum image fusion
complete dictionary, we are using a sliding window to scamethod. Based on the sparse coding technique, the data has
ning through the whole image. Each small patch is used foeen translated into a sparse representations and cancksgo



(c) £1 norm
Fig. 1.

(a) Infra-red image

(b) Visible image (c) £1 norm

Fig. 2.

basis in the dictionary. An optimization model is designea i

two-fold objective function, fitting original data and pesging

(6]

gradient. Furthermore, in this paper, we discussed threesty 7]

of optimization regularities(y, ¢1, and¢, norm, in this model.
By introducing a trade-off factoi to a bi-criterion form, it
is not only in consistency with types of penalties, but alsgg

keeping a form of quadratic convex function. Then, with the
help of numerical techniques, we conducted experiments wit[9]

outperform results by solving the objective function with
norm, and deduced the analytical solution for thenorm.
Finally, the experiments and comparisons illustrated ower

ments and advantages of the performance by our propomqi

optimization model.
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