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Abstract—The fusion of images captured from multi-modality
sensors has been studied for many years. It is aiming at combin-
ing multiple sources together to maximize the meaningful infor-
mation and reduce the redundancy. Meanwhile, sparse represen-
tation of images has been attracting more and more attentions. It
has been effectively utilized on image reconstruction, image de-
noising, super-resolution and others. In this paper, we propose
an optimum function based on sparse representation model to
accomplish image fusion tasks. For any pair of input source
images, we first obtain their sparse vectors respectively on a pre-
trained dictionary. Then we pursuit the sparse vector for the
the fused image by optimizing the Euclidean distances between
fused image and each input, weighted by their own gradients.
Optimization penalties are discussed to induce numerical or
analytical solutions. And the experimental results have shown
that the proposed method can effectively combine meaningful
information and outperform traditional wavelet methods.

I. I NTRODUCTION

Image fusion is known as multi-sensor or multi-modality
data fusion, aiming at actively combining multiple sources
together to maximize the meaningful information and reduce
the redundancy. Multi-modality cameras systems are now
adopted by many fields, as remote sensing, medical image
processing, and military applications. Original images could be
captured from multiple optical sensors at different resolutions,
different capturing angles, or different spectrum bands. Most
frequently used systems are, such as, visible light cameras
together with Infra-red cameras, and panchromatic images
together with multi-spectral data.

Image gradient is often used in metrics to evaluate the
quality of a image, since human visions are more sensitive
to sharpen images than blurry ones. Xydeas [1] introduced
an objective metricQAB/F to evaluate how much the fused
imageF keeping from original images gradient weightedA
andB. Inspired by this work, we also adopt the gradients as
the weights in our objective function.

Recently years, compressive sensing and sparse representa-
tion on image applications are very popular since the proof
of ℓ1 norm penalty equivalent toℓ0 norm under certain
circumstance with overwhelmingly high possibility [2], [3]. In
many literatures, sparse representation models are applying to
signal and image processing areas, and are successfully solving
many problems including in blind source separation [4], image
denoising [5], image super-resolution [6] and etc. One crucial
step in our proposed method, is using sparse representationto
reconstruct the original images, hence to obtain their sparse
coding vectors.

Inspired by the aforementioned techniques, we propose
a multi-modality image fusion algorithm based on sparse

representation and optimization theory. In order to fuse two
images together, the new sparse vector should be very ”same”
as the original sparse vectors which are weighted by the their
gradients, and the similarity between fused and the original
images are evaluated by their Euclidean distances.

This paper is organized as following: section II introduces
some related works about image fusion and sparse representa-
tion. Section III gives the mathematic model to bridge image
representations and optimization models. The contributions of
our work are described in section IV, which show in detail
about our proposed objective function as well as discussions on
optimum penalties and solutions. Experiments and comparison
in section V illustrate the advantages of this work besides
the sliding window strategy in our algorithm. Conclusions are
discussed in the last section.

II. RELATED WORK

A. Image Fusion Methods

The task of image fusion is defined as ‘the combination
of two or more different images to form a new image by
using a certain algorithm’, by Pohl and Genderen reviewed
in [7]. It was considered in three processing stages, and they
are categorized in three levels, pixel-level, feature-level and
decision-level. Among them, in [7], pixel-level fusion is most
important stage to perform precise work for later processing.

As developed in decades, wavelet transform [8] has been
used in many works, such as [9]. Wavelet based image fusion
is to transform data into frequency domain and apply certain
fusion rules to corresponding sub-bands. Unlike wavelet-based
fusion algorithms, we are seeking a fusion method not only
working on spatial domain directly and effectively, but also
focus on more generic optimization method.

B. Sparse Representation on Image

Sparse representation is a method to model image process-
ing problems. Suppose there is a linear system:

Dα = x where D ∈ R
n×k and α ∈ R

k (1)

WhereD ∈ R
n×k is an over-complete dictionary (n ≪ k)

trained by the given samples, and each column is named as
atom. α ∈ R

k is the sparse coding vector for a given test
sample obtained from the dictionaryD, with L ≪ k suffi-
ciently small nonzero elements. Inducted from the traditional
compressive sensing theory, the sparse representation model
in signal processing can be written as following:

min
α

‖α‖ℓ0 subject to x ≈ Dα (2)



Here ‖α‖ℓ0 is a pseudo norm which counts the number of
nonzero elements inα. Actually, this standardℓ0 optimization
form is a NP-hard problem. However ifα is sufficiently sparse,
ℓ0-norm can be approximated byℓ1-norm [3]. Therefore,
the problem (2) can be proved to equivalent to solving the
following ℓ1 minimization problem:

min
α

‖x−Dα‖2ℓ2 + λ‖α‖ℓ1 where, ‖α‖ℓ1 =

N
∑

i=1

| αi |

(3)
In our task, the dictionaryD is collected from both two

input images, and also is the dictionary which the fused
image is learned from. Dictionary learning is the process of
updating atoms from raw image date to near orthonormal basis.
(Since the dictionary is over-complete, it cannot be orthogonal.
But with RIP property, each subset of basis works very like
orthonormal [2], [3].)

The dictionary learning problem, at each updating iteration
t, can be stated as following:

Dt = argmin
D

1

t

t
∑

i=1

(

1

2
‖xi −Dαi‖

2

ℓ2 + λ‖αi‖ℓ1

)

(4)

Dictionary learning algorithms have been introduced in
many literatures, for instance, MOD [10], K-svd [11], and
online learning [5]. In our experiments, we have adopted the
online dictionary learning algorithm in SPAMS [12].

III. M ATHEMATIC MODEL

For any given image, one could always be decomposed into
a data vector. Consider a data vectorx ∈ R

n, there exists a
span of a subspaceD ∈ R

n×k, such that,

x =

p
∑

i=1

αiDi = Dα.

For this subspaceD, it can be either a typical orthonormal
space or a nonorthogonal space such as an over-complete
dictionary. In this paper, we adopt the later form. Under this
particular D, for any givenx, there exists a sparse vector
α ∈ R

k. Sparsity means thatL ≪ k, where

L , ‖α‖ℓ0 , #{i s.t.α[i] 6= 0}.

Assumeα and β are the sparse vectors of the original
images. Suppose the fused data is also sparse under this
dictionary which is trained by the original images. In another
word, for the fusion resultF , it will exist a sparseγ such that
F = Dγ. Therefore, the image fusion problem can be solved
as an optimization problem which optimally selectγ from α

andβ under the dictionaryD.

IV. OBJECTIVE FUNCTION AND OPTIMUM MODEL

A. Objective function

Performance metrics are playing very important role in
any image fusion system. The metrics evaluate how much
information the fused image is keeping from each source

image and how well it is combining many different source
images together. In order to generate a good fusion result, we
perform a two-side criteria to evaluate our result,

• The higher gradient should be kept in the fusion result
from the source.

• The difference between the source and the fused image
should be kept as small as possible.

Sharpened images will be more impressive than blurry ones.
And inside the sharpness, it is the clarity of edges between
color or shape changes. Moreover the gradients are the math-
ematical features of the edges in a image. Therefore, we are
aiming to preserve those highest gradients information from
the original ones. Our optimization function is the evaluation
of the information preserved from the inputs in terms of the
weighted local gradient for each image. Furthermore, the fused
image should be as similar as their source images. Hence the
Euclidean distances are used for describing the differences
between the result and either one of the original images.

Based on these, we proposed our objective function:

y⋆ = argmin
y

‖∇x1(y − x1)‖
2

ℓ2 + ‖∇x2(y − x2)‖
2

ℓ2 (5)

wherex1 andx2 are the source data, andy is the fused
result. The residuesy − x1 and y − x2 characterize the
difference between the original data and the result which needs
to be minimized. And∇x1,∇x2 ∈ R

n×n here are the weights
of the residues. Intuitively, in this minimization function, the
one with higher gradient will leady more similar to it.

Now consider the sparse representation of images, we define
x1 = Dα, x2 = Dβ andy = Dγ in (5),

J = ‖∇x1D(γ −α)‖2ℓ2 + ‖∇x2D(γ − β)‖2ℓ2 (6)

Let Φ1 = ∇x1D, andΦ2 = ∇x2D, then (6),:

J = ‖Φ1γ − Φ1α‖2ℓ2 + ‖Φ2γ − Φ2β‖
2

ℓ2 (7)

This objective function can be viewed as a quadratic form,
and to be more analytically, it can be rewritten as:

J = γT (ΦT
1
Φ1 +ΦT

2
Φ2)γ − 2((Φ1α)TΦ1 + (Φ2β)

TΦ2)γ

+(Φ1α)TΦ1α+ (Φ2β)
TΦ2β

= γTPγ − 2QTγ +C (8)

Where we defineP , Q, andC as:

P = ΦT
1
Φ1 +ΦT

2
Φ2 (9)

Q = Φ1αΦT
1
+Φ2βΦ

T
2

(10)

C = (Φ1α)TΦ1α+ (Φ2β)
TΦ2β (11)

Now the optimum selectorγ⋆ is,

γ⋆ = argmin
γ

1

2
γTPγ −QTγ +

1

2
C

subject to : ‖γ‖ℓp < L (12)

B. Sparse Regularity

In (12), a normℓp is applied to the inequality constraint.
And here we will discuss the following three kinds of regu-
larizer, whenp = 0, 1, or 2.



1) ℓ0 norm: This represents the original concept of the spar-
sity, which is illustrating the restriction of non-zero element
in given vector. Basis pursuit is usually the method of solving
it, however the studies show that theℓ0 regularity is NP-Hard
which means it is less practical to solve this problem.

2) ℓ1 norm: This is the heuristic approximation of the
sparsity, as we have discussed in section II-B. Although theℓ1
norm is not differentiable at every point, as a convex problem,
it is practical to solve. In addition, the feasible set should not
be empty, meanwhileL is required to be as small as possible.
Thus, we use a bi-criterion function to take the place. Equation
(12), can be written as following:

γ⋆ = argmin
γ

1

2
γTPγ −QTγ +

1

2
C + λ‖γ‖ℓ1 (13)

whereλ > 0 represents the trade-off between the sparsity of
γ and fitting the data. This is also known as LASSO [13]
problem, therefore it can be solved using some off-the-shelf
convex optimization algorithms.

3) ℓ2 norm: The Euclidean norm constrain can not hold
the sparsity well, however it have the good convexity and dif-
ferentiable property. Following previousℓ1 discussion, the bi-
criterion can be applied to trade-off the two-fold minimization.
Consider theℓ2 norm,

γ⋆ = argmin
γ

1

2
γTPγ −QTγ +

1

2
C + λ‖γ‖2ℓ2 (14)

= argmin
γ

1

2
γT (P + λI)γ −QTγ +

1

2
C (15)

This can be formulated to Tikhonov Regularization problem,
therefore have analytic solution,

d

dγ
(
1

2
γT (P + λI)γ −QTγ +

1

2
C) = 0 (16)

γ⋆ = (P + λI)−1Q

Each of these three regularizer has the different performance
to hold the sparsity. Theℓ0 norm have the greatest sparsity
holding property, but need to solve a NP-Hard problem. The
ℓ2 norm have the lowest holding, however have the analytic
solution. And for the eclecticℓ1 approach, it not only have
heuristic ability to hold the sparsity, but also can be solved by
numerical method.

V. EXPERIMENTS AND COMPARISONS

A. Image Gradient

As the data here is image data, therefore the 2-D gradients
are including magnitudes and angles. Here Sobel operator is
applied to take the edges from the image. And in this algo-
rithm, the magnitudes will be take consider in as the weight,
where we get from the horizontal and vertical gradients.

B. Sliding Window Strategy

Our experiments are using thermal images and visible
images from TNO dataset [14]. In order to collect an over-
complete dictionary, we are using a sliding window to scan-
ning through the whole image. Each small patch is used for

an atom in the initial dictionary. The window is in the size of
8× 8 pixels, with half window length sliding step.

Sliding window strategy is designed to obtain more mean-
ingful information (specifically, image gradient is as the
weight,) from both modalities. A pair of original images
should have different performance at same place, but one can
not always win at everywhere. Therefore evaluations on small
patches are much more objective than to perform on the entire
images. Biases will be highly eliminated by averaging the
overlapping parts while reconstructing the results.

C. Fusion Results

In our experiments, we have testedℓ1 and ℓ2 regularizer
optimization for our problem, due toℓ0 is a less practical NP-
hard problem. To solve theℓ1 regularizer which is a LASSO
problem, we use well developed numerical optimization tool
CVX [15] to find the optimum fusion strategy. For theℓ2
optimization, it is already been deduced to a Tikhonov Regu-
larization problem. Hence we could have analytical close form
solution from (16) for any of the given data.

As shown in Fig. 1 and Fig. 2, in infra-red images, Fig. 1a
and 2a, a person can be seen clearly in a bright spot, but not
in the visible ones. On the other hand, the visible images,
Fig. 1b and 2b show some details of the fences, leaves and
the building, which are very blurry in IR image. The fusion
results Fig. 1c, 1d, 2c, 2d, not only keep the important person
information , but also add those details in the scenes.

D. Fusion Evaluation and Comparisons

We use the fusion metric [1] to evaluate and compared our
method to the others. In (17), theQAF

n,m and QBF
n,m denote

the edge preservation from the original dataA andB to the
fusion result at the specific(n,m) pixel. And thegAi,j denote
the gradient of the dataA at the(i, j) pixel.

QAB/F =

∑N
n=1

∑M
m=1

QAF
n,mgAn,m +QBF

n,mgBn,m
∑N

i=1

∑M
j=1

(gAi,j + gBi,j)
(17)

In TABLE I, we have tested our results as well as a typical
wavelet fusion methods [8] through (17). The higherQAB/F

value is, the better preservation the fused image obtained from
the source images. In this comparison, our results are clearly
better than traditional fusion method. Moreover, the result of ℓ1
norm optimization outperform theℓ2 one. However,ℓ2 penalty
has an analytical solution instead of the numerical approxima-
tion which make this problem computationally efficient.

TABLE I
FUSION COMPARISONS

QAB/F wavelet ℓ1 norm ℓ2 norm
Experiment 1 0.3469 0.4296 0.4296
Experiment 2 0.3391 0.4218 0.4218

VI. CONCLUSIONS

In this paper, we have proposed an optimum image fusion
method. Based on the sparse coding technique, the data has
been translated into a sparse representations and corresponding



(a) Infra-red image

(b) Visible image (c) ℓ1 norm (d) ℓ2 norm

Fig. 1. Experiment 1

(a) Infra-red image

(b) Visible image (c) ℓ1 norm (d) ℓ2 norm

Fig. 2. Experiment 2

basis in the dictionary. An optimization model is designed in a
two-fold objective function, fitting original data and preserving
gradient. Furthermore, in this paper, we discussed three types
of optimization regularities,ℓ0, ℓ1, andℓ2 norm, in this model.
By introducing a trade-off factorλ to a bi-criterion form, it
is not only in consistency with types of penalties, but also
keeping a form of quadratic convex function. Then, with the
help of numerical techniques, we conducted experiments with
outperform results by solving the objective function withℓ1
norm, and deduced the analytical solution for theℓ2 norm.
Finally, the experiments and comparisons illustrated improve-
ments and advantages of the performance by our proposed
optimization model.
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