Firecycle

A scalable test bed for large-scale LTE security research

Motivation

- No available platform for LTE mobility network security research at a large scale
- No lab sufficiently large to study EPC security and M2M traffic scalability
- No current platform is scalable enough
- Most LTE simulations use traffic models that follow simple arbitrary probabilistic models

Use Cases

- Implement and test security attacks on LTE
- Deploy complex attacks
- Analyze and quantize the impact of attacks
- Compare security architectures
- Design security architectures for future next-generation mobility networks

Scalability

- Scale up the model over the cloud to create a full-scale LTE network
- Portions of the model are distributed over multiple VMs
- Perform rapid and efficient simulations of attacks against realistically large LTE networks

MME-HSS link utilization for M2M subcategory traffic

MME-SGW link utilization for traffic causing frequent RRC state transitions

Scalability Results

Results

	VM1: EUTRAN + EPC	VM1: EUTRAN – VM2: EPC		VM1/2/3: EUTRAN – VM4: EPC
Speed	6950	18800 + 10494	84221 + 88473	66682 + 64713 +
[events/sec]			+ 10065	65530 + 9860
Memory	12174	18227 + 16970	3083 + 3022 +	2161 + 2022 +
[MB]			931	1727 + 847
Duration	24h	10h	46m	30m

