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SYSTEM MODEL
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M transmitters with modulations approximated 
 by finite sum of linear modulations (AM, OFDM, etc.):
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i.i.d. symbols pulse shape

Transmissions are discontinuous in time (periods of time 
where transmitter is “off”, am,r,k = 0 for some k).

Sensor receives:

PROBLEM STATEMENT

• M transmitters are broadcasting in a bandwidth W 
• Their transmissions are discontinuous in time 
• Their transmissions are non-orthogonal in both time and 

frequency 
• Goal: estimate each transmitter’s signal parameters 

(activity in time, PSD, kurtosis) using a single sensor node

Signal 1 Signal 2 Signal 3

TRISPECTRUM SLICES

After preprocessing to find Icl groups whose samples in-time 
have statistically similar signal contributions [1] we have a 

slice of the trispectrum for each group i=1,…, Icl:
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Trispectrum slice of symbols of sub-signal r of signal m:
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BLOCK TENSOR STRUCTURE
After discretizing the trispectrum slices 

into Nfb frequency bins !
 we see the tensor has a rank-(Rm, Rm, 1) 

block-partitioned tensor structure
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• Decomposing the tensor will allow us to estimate the 
desired parameters: 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Fm ! PSD, cm ! active/inactive sequence, km ! kurtosis

• Block partition decomposition algorithms [2] assume 
prior knowledge of the partitioning. 

• Our scenario: partitioning unknown, so we reformulate 
the tensor structure as  
 
 
where W is a sparse block-diagonal selection matrix. 

• Estimate factor matrices and partitions by solving:  
 
 

• For each column, wr, fix   
• Redo minimization to find final estimates of F, C, and k 

FACTOR MATRIX ESTIMATION

Y = Jk;F,F,CVK = JF,F,CWK

SIMULATION
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FUTURE WORK
• Improve decomposition speed and scalability 
• Selection of L1 regularization coefficient 
• Extensive Monte Carlo simulations to quantify algorithm 

performance.

• We ran limited simulations at high SNR with an 8-tap 
random Rayleigh fading channel to test the operation of 
the algorithm. 

• Algorithm successfully estimated signal parameters for 
appropriately selected L1 regularization coefficient for 
overlapping signals using Root Raised Cosine pulse 
shape (W=80Mhz).  

• Tested Configurations: 
‣ M=2, Rm={1,1}, identical bandwidths, different fc 
‣ M=4, Rm={1,1,1,1}, identical bandwidths, different fc 
‣ M=2, Rm={3 narrowband ,2 wideband}, different fc 

‣ More simulations need to be run to fully quantify the 
algorithm performance.

wmr = 0 if m 6= max

m
|wmr|
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