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Abstract 

 
Regarding fundamental protocols in cryptography, the Diffie-Hellman (Diffie and 
Hellman, 1976) public key exchange protocol is one of the oldest and most widely used 
in today’s applications. Consequently, many specific cryptographic implementations 
depend on its security. Typically, an underlying (finite dimensional) group is selected to 
provide candidates for the key. The study of the security of the exchange as depending 
on the structure of the underlying group is even today poorly understood, with the most 
common approaches relying on the security of the Discrete Logarithm problem or on the 
size of the group. Recent developments bring to attention that the relationship is not 
necessarily valid and that more research is needed that will relate the underlying 
structure of the group and the security of the Diffie-Hellman exchange. In this chapter 
we describe the problem in detail, we present the relationship with the previously 
studied Discrete Logarithm and Computational Diffie-Hellman problems, we expose the 
various concepts of security, and we introduce a new statistical concept specifically 
designed to serve the assessment of the security of the exchange. 
 

Keywords and phrases: public key cryptography, statistical indistinguishability, group theory, prime 
subgroups, group structure. 

 
 
Introduction 
 
A key exchange protocol, is any algorithm through which two parties A and B agree on a common key  

ABK .Once the key is established, any further information shared between the parties is encoded, 
transmitted and decoded using the key . The protocol is secure if any third party C finds it extremely 
hard (almost impossible) to identify the key.  

ABK

 In a public key exchange protocol the two parties agree on a common key pooled from a set S 
while communicating over an insecure channel. The difference is that all the information exchanged over 
the insecure channel as well as the set of possible keys S is known by the perpetrator C. If C cannot tell 
apart from any other value in the set S guarantees that it is computationally unfeasible to gain “any” 
partial information on the key.  

ABK

The Diffie-Hellman key exchange protocol Diffie and Hellman (1976) is a primary example of a 
public key exchange protocol. In its most basic form, the protocol chooses a finite cyclic group ( )⋅,G of 
order N, with generator g, where  denotes the group operation. In what follows we chose the 
multiplicative operation to denote the operation in the group, and thus the group G is generated by the 
powers of g (i.e., 

⋅

{ }NggG ,, 2 K= g, ), symbolically G=<g>. Note that G, g and N are public 
information. 

The participants in the information transfer A and B each randomly chose an integer 
 and  independently. Then A computes , B computes  and 

exchange these elements of G over the insecure channel. Since each of A and B knows their respective 
{ }Na ,,2,1 K∈ { Nb ,,2,1 K∈ } ag bg
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values chosen (a and b) they can both compute , which or a publicly known derivation  of that 
becomes the public key. 

abg ABK

K

abg

Any method of converting to is publicly known, and the security of the key  is 
directly dependent on the security of thus, most articles consider as the established key of the 
exchange. 

abg
abg

ABK AB
abg

In the cryptology literature there are two concepts of security – the core security and the concept 
of semantic security which leads to various security models. The semantic security and the related 
concepts come under the name of “provable security” Koblitz and Menezes (2004). The core security of 
the Diffie-Hellman key exchange protocol depends on the discrete logarithm problem, the computational 
Diffie-Hellman problem and the decision Diffie-Hellman problem. In this article we are concerned with 
the core security of the exchange. We give a brief introduction to the discrete logarithm problem and the 
computational Diffie-Hellman problem, for more on these a reader can look at Koblitz and Menezes 
(2004) or Stinson (2005). 

In the present work we will be concerned with the practical security of this protocol. We will 
investigate the various concepts of security and the known relationships between them. We interpret 
security in a probabilistic manner and devise a statistical test that will “assess” the security of the 
exchange in a given group. Our main objective is to find a test that would determine given two cyclic 
groups and with similar orders but perhaps different structures whether or not the security of the 
key exchange is the same using either group.  

1G 2G

 
 Background 

 
Traditionally the study of the security of the exchange was restricted to the verification of the 

following assumptions: 
 

The Discrete Logarithm Assumption (DL): For a cyclic group G, generated by g, we are given g 
and , n∈N, the challenge is to compute n.  ng

The Computational Diffie-Hellman Assumption (CDH):  Given it is hard to compute .  ba ggg ,, ab

 
Whether or not these assumptions are true in a given group are called the respective problems. For 
example we say that the Discrete Logarithm problem is hard in a given group if the DL assumption is 
satisfied in that group. 

Clearly, if these assumptions are not satisfied then C, an adversary1, can gain access to the key 
. The relationship between these two assumptions has been extensively studied. It is clear that the 

CDH assumption will not be satisfied in a group where finding the solution to the discrete logarithm 
problem is easy. In Maurer and Wolf (1999), Boneh and Lipton (1996), the authors show that in several 
settings the validity of the CDH assumption and the hardness of the Discrete Logarithm problem are in 
fact equivalent. 

abg

Unfortunately, the DL and the CDH assumptions are not enough to ensure security of the Diffie-
Hellman key exchange protocol. Even if these assumptions are true, the eavesdropper C may still be able 
to gain useful information about . For example, if C can predict 90% of the bits in with high 
probability then for all intents and purposes the key exchange protocol is broken. Moreover, there exist 
protocols where the knowledge of even one bit will break its security (Casino electronic games). With the 
current state of knowledge we cannot be confident that assuming only CDH, a scenario like the one 
described above does not exist (Boneh (1998)). 

abg

 
1 There are various concepts of adversary in cryptographic literature, the power and authority they have. In this 
article we assume that our adversary is a passive eavesdropper. 



It is clear that both assumptions are necessary for the security of the exchange but are they 
sufficient? It was evident that a new assumption needed to be formulated.  
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The Decision Diffie-Hellman Assumption (DDH) Given and an element z∈G it is hard to 
decide whether or not the key is more likely to be equal to z or to another random element of G .  

ba ggg ,,
ab

 
In this form the DDH assumption constitutes a sufficient condition for the security of the Diffie-

Hellman key exchange protocol since it directly assesses the established key. 
Furthermore, Joux and Nguyen (2003) construct groups based on elliptic curves where the DDH 

assumption is not satisfied while the CDH and the DL problems are proven to be equivalent and hard. 
This fact shows that the notions are not equivalent and prompts the necessity to directly check the validity 
of the DDH assumption for a given group. 

The DDH assumption is assumed, either implicitly or explicitly in many cryptographic systems 
and protocols. Applications include: the many implementations of the DH key exchange itself (e.g., Diffie 
et al. (1992)), the El-Gamal encryption scheme El-Gamal (1984), the undeniable signatures algorithm 
Chaum and van Antwerpen (1989), Feldsman’s verifiable secret sharing protocol Feldman (1987), 
Pedersen (1991), and most recently an implementation to the SSH file transfer protocol (Friedl 
et al., 2006). For a much more detailed list we point to Naor and Reingold (1997). 

The DDH assumption in the form presented above is a little vague because of the use of the 
predicate, “hard to decide”. Surprisingly, attempts to make the DDH assumption explicit were not made 
until late after its formulation in Diffie and Hellman (1976). The first ventures Boneh and Lipton (1996) 
use standard cryptographic machinery (Yao (1982); Goldwasser and Micali (1984)), to express the 
assumption in terms of computational indistinguishability. Put in this traditional cryptographic form it 
was discovered quickly by Stadler (1996) and independently Naor and Reingold (1997) that if one 
assumes the existence of a polynomial time probabilistic algorithm which distinguishes the real key 

from the other possible values even with a very small probabilityabg 2 (for all the possible inputs), then 
another polynomial time algorithm can be constructed from the first which will output with a very 
large (almost one) probability. The only requirement is that the size of the group is known, requirement 
lessened by Boneh (1998) which only requires finiteness of the group. 

abg

All this work points toward a more specific definition based entirely on the notion of statistical 
significance. Indeed, this fact materialized in a series of papers Canetti et al. (1999); Canetti et al. (2000); 
Friedlander and Shparlinski (2001); Vasco et al. (2004), which call this new form of the assumption the 
Diffie Hellman Indistinguishability assumption (DHI). We note that Gennaro et al. (2004); Joux and 
Nguyen (2003) use the same form except it continues to call it DDH. We point the reader to Håstad et al. 
(1999) for a detailed discussion on the concept of statistical significance versus computational 
significance; in the context of pseudo-random number generation. 

In order to introduce this assumption we give the definition of a discrete uniformly distributed 
random variable.  

 

 
2but not negligible. For the sake of completeness we give here the whole definition. It is presented in the footnote 
since it is not relevant to our approach at all. Suppose that the group G where the exchange takes place has order N 
and . It is said that a probabilistic algorithm A decides on the right key with small (non-negligible) 
probability if there exist a polynomial expression p(⋅) such that for any r∈G:  

Nn 2log=

)(
1)(Pr)(Pr
np

routputsAobgoutputsAob ab >−  
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Definition 1: We say that a variable X has a discrete uniform distribution on the elements of a set 

 if it can take any value in the set S equally likely, i.e., { naaaS ,,, 21 K=
N

aXob i
1)(Pr ==  for any 

i∈{1,2,…,N}. We will use the notation DU(S) to denote this distribution. 
 
For the purpose of studying the security of the Diffie Hellman exchange we use: 

The Diffie-Hellman Indistinguishability Assumption (DHI) Given  the distribution of is 
indistinguishable from the Discrete Uniform distribution on the elements of G (DU(G)). 

ba ggg ,, abg

  
The notion of indistinguishability initially used was the traditional computational one. However, 

herein we use the usual statistical notion: two variables are indistinguishable if they have essentially the 
same distribution, or formally put,  and  are indistinguishable if their distribution functions 

 with i=1,2 have the property: 
1X 2X

)(Pr)( xXobxF ii ≤= ,)(\),()( 2121 AARxxFxF ∪∈∀=  where 
,  are the sets which contain the discontinuity points of , respectively .  1A 2A 1F 2F

In our specific case the state space is finite, therefore the distribution functions  and are just 
step functions with jumps in a compact set included in the real axis R, thus using the right continuity of 
the distribution functions, the usual definition translates here in equality everywhere. We conclude that in 
our context, statistical indistinguishability means that the variables have the same distribution. 

1F 2F

This formulation is perfectly natural for a statistician who tries to express the DDH formulation 
presented above. We note that our version of the DHI assumption requires that the conditional distribution 

gggg baab ,,  be uniform while the previous articles Canetti et al. (1999); Canetti et al. (2000); 

Friedlander and Shparlinski (2001); Vasco et al. (2004); Gennaro et al. (2004); Joux and Nguyen (2003) 
require that the distribution of the entire triple ( )gggg baab ,,  be Discrete Uniform on the elements of 

 (GGGG ××=3 ( )3GDU ). Given an outcome (x,y,z) we may write using the simple multiplicative 
rule:  

),(Pr),,(Pr),,(Pr gygxgobgygxgzgobgygxgzgob babaabbaab =========   (1) 

 
Under the original condition that a and b are DU({1,…,N}) and using the fact that g is a generator for G, 
the distribution of ggg ba , is ( )2GDU , thus the two formulations are perfectly equivalent. 
 

In general it is known that statistical indistinguishability implies computational 
indistinguishability, but the reverse is not in general true, Goldreich (2001). The following lemma states 
the same result in our specific case using the assumptions presented in this section: DHI and DDH. 
 
Lemma 1  In a group G of order N, if the DHI assumption is true then the DDH assumption is true as 
well.  

Proof. Assume that DHI is true in G. Then for given , , the probability ag bg

N
ggzgob baab 1),(Pr ==  for any z∈G. This is the hardest possible scenario in the DDH assumption 

and hence the DDH assumption is satisfied.    
 
This lemma says that in any group G, DHI is a stronger3 condition than that of the DDH assumption. If 
we look at the statements in the two assumptions we find that DHI provides a measure of hardness over 
the DDH assumption via the uniform distribution. 
                                                 
3or at least as strong 



 
Testing the Diffie-Hellmann Assumption 
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 or every pair (a,b) there exist unique values ( )ba gg ,  and correspondingly a unique key 
ity enters into the picture? 

distribu

abg  F
the question is: where does the probabil
Note that in this paper we are not considering the tion of ),( ygxgg baab == . Tha

would be irrelevant. We are looking at the distribution 

t 

( )ba gg ,),( baab ggg  and consider  a pair 

e. Since a an hole 
mapping from

of random variables. 
 Look at this issue from the following perspectiv d b span the w

GGG ×=2  range we can see the key assigning process as a  2G to G . Accordingly, 
studying the distribution of ),( baab ggg  and comparing it with the uniform distribution

G amounts to checking whether or not some subsets of valu  in  are more likely
to be the key than others as t span the group. In other words if there exists a subset of 

2G such that the resulting key from that subset puts higher probabilities on certain values then 
the conditional distribution 

 on the 
 

he pair (a,b) 
elements of es G

),( baab ggg  will not be uniform. 
This approach is identical with the approach of Canetti et al (1999).  Canetti et al (2000), 

Friedlander and Shparlinski (2001), Gennaro et al. (2004) and many other papers. The approach in these 
papers i ely s to consider the triple ),,(  and its distribution in . Because the key  uniqu
corresponds to 

abba ggg 3G abg
( )ba gg ,  the points ),,( abba ggg  determine a two-dimensional surface included in a 

space of three dimensions. How rface is randomly scattered in the cube 3G then we can say 
that the key is se other words 3G contains more points than any other similarly size
region in 3G . Owing to the relation (1) the two approaches are equivalent. 
 Why did we choose our approach and not the more traditional (and established) trivariate (joint) 
distribution approach? The reason is that our approach is more convenient for checking. It essentially 
amounts to checking whether a one dimensional distribution is close to the 

ever, if this su
 no region in cure. In d 

DU(G) while the more 

 now introduce some 

 the 
respectively.  

traditional approach would require verifying three-dimensional distributions. 
 For the one-dimensional distribution we have a well defined way to establish measure of 
information present in data: the entropy measure. We note that the same measure exists for 3-dim 
distributions but it is more cumbersome to use in practical problems. We shall
notations and definitions. 
 

Let X, Y, and Z be three discrete random variables taking values in
sets },,,{ 21 nxxx K , ,{ yy },,21 myK , },,,{ 21 lzzz K

Denote ( )kjikji zZyYxXobzyxp ==== ,,Pr),,( , the joint probability function corresponding 

to (X , |,( ji zyxp,Y,Z , etc. for the conditional probability 
functions of 

Definition 2 (Entropy):  We

(2) 

  (3), 

). We continue by using notations )|( ji yxp
X|Y, (X,Y)|Z, etc. Furthermore, assume that 

lications c d

)k

itioning on a
for all k∈{1,2,…,l} the marginal distribution 

0)(Pr)( ≠== kk zZobzp  to avoid comp on  set of measure zero. 

 
 define the joint and conditional measures of uncertainty.  

 

 ),( YXH  =  ),(log),,( ji

n

kji yxpzyxp∑∑∑−  
1 1 1i

m

j

l

k= = =

)|,( ZYXH  =  )|,(log),,(
1 1 1

kji

n

i

m

j

l

k
kji zyxpzyxp∑∑∑

= = =

−
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−∞)=0.  
 
In the above definition we choose to work with the natural logarithm, however any other basis will be 

quivalent for our purpose due to t  co tant in the usual definition of the entropy function (see Shannon 
(1948)). 

Remark 3 In the definition of the entropy functions (2) and (3) we did not use the structure of the group 
G i

 

with the convention 0(

e he ns

 

n any way, only the relative frequency of the elements in the group. This fact makes the methods based 
on the entropy function well suited for comparison between diverse groups. We will take advantage of this 
feature later in this work.  

The idea is to use the entropy function (3) in the sense of Kullback-Leibler divergence (Kullback and 
Leibler, 1951) as a measure of departure from the entropy calculated under the hypothesis of Uniform 
distribution. Specifically, using earlier notation, we wish to construct a statistical test that will check the 
validity of the following hypotheses: 
 

:0H The distribution of ),( baab ggg  is DU(G)     

               :aH The distribution of ),( baab ggg  is NOT DU(G)     (4) 

Let us denote the elements of G as{ }Nggg ,...,, 21

} take all the pos

apped into N
ent Ggk

. Suppose we can look at all the possible triples 

 when a,b∈{1,2,…,N sible values. Clearly, there are N2 such possible 
ming 
he t  ( e elem ts of Thus, some 

),, abba ggg
triples and assu
last em
val

(
that a and b are chosen at random, each such triple will have probability 1/N2. The 

 el ent in t riple abg  will get m  possible values th en G). 
ues in G will be repeated. For an elem ∈  denote km  the number of times kg  appears for 

 the abg among all N2 triples. We have then 2Nm
k

k =∑ . For any pair ),( ba gg  that corresponds to 

k
ab gg =  we can then calculate the following conditional probability as: 

 ( ) ),1 kA
km

where  the notation 
denote the

,,(1,Pr jik
ab

j
b

i
a gggggggggob ====  

A is the set of all possible N2 triples ) , and we have used )(1 x  to 
 indicator function of the set A⊂ Ω, i.e., }1,0{:1 →

,,( abba ggg A

ΩA  is given by:  

⎩
⎨
⎧

∉
∈

=
Axif
Axif

xA 0
1

)(1   

We can continue:  
 

( )abba gggH , ),(log),,(
1 1 1

kji

N N N

i j k
kji gggpgggp∑∑∑

= = =

−=  

rk not defined. ),,(11log1
1 1,

2 kjiA
k

N

k

N

ji
ggg

mN∑ ∑
= =

−=   Error! Bookma

∑
=

−=
N

k k

k

mN
m

1
2

1log Error! Bookmark not defined.     (5) 
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e distribution of Under the null hypothesis 0H , th ), g  is , therefore we should have ( baab gg  uniform

all the mk multiplicities equal. This automatically implies that mk=N for all k’s and then the entropy 
fun

       

ction in (5) is:  
 

            ( ) N
NN

gggH
N 11

k

abba loglog,
1

∑
=

=−=  

The testing statistics is defined as:  

( ) Nm
N
m

NgggHT
N

k
k

kabba
N logloglog,

1
2 −=−= ∑

=

 (6) 

This test is based on the whole set of values in G2. Accordingly, if the value o
the null hypothesis is true, any other value of the test will support the alternative hy

if 

f the test equals zero then 
pothesis. We 0H

summarize this result in the following: 
 
Lemma 4 (Testing Procedure) Using the previous notations 0=NT  then the DHI assumption is 
atisfied in a given group G.  

 this testing procedure.  

emark 4 In practice if we wish to calculate T  we have to calculate all the possible values for (ga,gb) 
Thus calculating TN is not practical, instead we 

s
 
Remark 3 certainly applies for

R N
and this will take longer than an exhaustive search. 
would have to estimate it. However, estimating statistics means that we have to calculate the distribution 
associated with the test statistic. We detail the estimation in the following.  
 
Assume that we can obtain a sample of n pairs ( ){ } },...,1{, niii ba ∈  from {1,2,…,N}×{1,2,…,N}. For each pair 

 the sample we calculate the triple  be the set of all the triplets in the sample. )iibag . Let An,,( ii ba gg

Using (5) we calculate an estimate of 

in

( )abb gg,  usin

  

agH g: 

),,( kjin gggp̂ ),,(1An n kji ggg=    (7) ijkk

  )|,( kjˆ in gggp ),,(1 kjiA
ijk ggg
n

k
n

=  

where once again  denotes the multiplicity of , but in the given sample of n observations. We took 
servations in the samp  by multiplying with the 

 

k

into account the possibility of obtaining repeated ob le
m kg

factor ijkk ; which represents the number of times we see the same observation ),,( kji ggg  in our sample. 
 
 

The test statistic is:  

ngggpgggp kji

n

i

n

j

n

k
kji log),(ˆlog),,(ˆ

1 1 1
−−= ∑∑∑

= = =
nT  (8) 

Now we need to investigate the distribution of Tn under the null hypothes

are the multiplicities of s in a sample of size n drawn from the set 
where each element in the group G is repeated N times. 

isH0. Under the null km ’s 

kg ’
}N,...,,...,,...,,,...{ 2211 N gggggg



 8

 si

multivariate hypergeometric distrib

Let us denote by M1,M2,…,MN  the multiplicities of the elements },...,{ 1 Ngg  in a sample of ze 

n. It is not hard to show that the joint probability distribution of ),...,( 1 NMM  is the so called 
ution:  

 ( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

===
m
N

m
N

m
N

mMmMob N
NN

21
11

...
,...,Pr  

n
N 2

The test statistic under H0 is: 

 nM
n

M
T

N

k
k

k
N loglog

1

−= ∑
=

    (9) 

If we would be able to c culate the distribution of Tn knowing that  is distributed as a 
ultivariate hypergeometric random vector then we  in position to

test of uniformity (4) by calculating the p-value of the test statistic (8) using this distribution. 
inding the distribution of the test statistic under H  in (9) is however not an easy task. This is the 

rea dge of this 

Multivariate 
hy

Tn under the 

er the hypothesis H0 using (9), and then we construct 

mpirical distribution found 

atisfied in the given group G.  
Exte
 

We 

 
al  ),...,( 1 NMM

m would be  reach the conclusion of the 

F 0
son we propose the use of permutation testing for which knowle distribution is not 

necessary. 
The permutation testing procedure generates samples ),...,( MM  from the 1 N

pergeometric distribution. For each sample, it calculates the corresponding value of the test statistic 
under the null hypothesis as in (9). These values are obtained from the assumption that H0 is true; this 
allow us to calculate the empirical distribution of our sample statistic null hypothesis. The p-
value of our test is given by the proportion of values as extreme or more than the one calculated in (8) 
using the group G. 

A small p-value is evidence against the null hypothesis in (4) that the sample comes from a uniform 
distribution. We summarize the procedure bellow: 

 
Testing procedure to determine validity of DHI for a group G  

i. We take a sample of size n and we calculate the test statistic as in (8).  
ii. We generate many test statistic values und

their empirical distribution.  
iii. We calculate the p-value of the test as the proportion of values in the e

in (ii) lower than the test value found using G in (i).  
iv. If the p-value is small we reject the DHI assumption. If the p-value is big we did not find 

evidence that the DHI is not s
nsion to two or more groups  

note that the absolute value of the test NT  and its estimate nT  represent a measure of departure 
tion. The bigger the estimate the furtherfrom the Discrete Uniform distribu

niform distribution and the weaker is
 is the distance from the 

 the validity of the DHI assumption. Remark 3 also tells us that the 
ature of the group operation is irrelevant for the testing procedure. Therefore, we can use the test as a 

to

u
n
tool to compare the strength of the Diffie-Hellman key exchange pro col in two or more groups. In order 
to do so the order of the groups in the comparison needs to be similar and, more importantly, the sample 
size on the basis of which we calculate the permutation test needs to be the same. We take advantage of 
the ability to compare different groups in the next section. 
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esting the Diffie-Hellmann indistinguishability assumption in the multiplicative group 

e note that the simplest groups cannot be tested with the current procedure since the discrete 

rocedure for the finite gro with the multiplicative operation. We present the following 

isher against DDH (Gennaro et al. 
004)).  

We curr

s conjectured that in a subgroup of order q  the DDH assumption holds.  

ion towards the 
security of the Diffie-Hellman key exchange protocol in that group. 

 

o this we need to calculate the true 
value of  and thus we have to look at small group  

example we need a larger sample size for  than we need for *Z

re eas e Legendre symbol, it is also assumed 
re secure. 

 the other two groups is not 

indica

*
pZ  T

 

),( +pZ

ups included in 

W
logarithm problem is trivial in these groups. We are going to look at the efficiency of the testing 
p *

pZ
examples as a way for checking the validity of the testing procedure. 
 

Example 1 (A group where the DDH assumption does nothold.)  Consider *
pZG =  with p prime. It is 

known that computing Legendre symbol in this group gives a distingu
(2

Example 2 (A group where the DDH assumption is conjectured tohold)  ently do not know 
any DDH distinguisher for a prime order subgroup of *

pZ . Therefore, given p and q prime with q divisor 

of p−1 it i of *
pZ

 
We start with a given group G and using the test presented in the previous section we will test for the 
validity of the DHI assumption in that group G. This should provide a strong indicat

 The rate of convergence of the testing procedure 

 Firstly, we investigate is the rate of convergence for our test. To d
T s.N

We plot in Figure 1 the evolution of the test values with the size of the sample. This figure 
suggest that to get a good estimate for NT  the sample size will depend on the size of the group, for 

*
11903Z 1193 .  

The figure points out another interesting fact. Following example 5.1 we know that *
pZ  is not 

secure. It is also conjectured that some groups are more secure than others. Looking at the problem from 
that perspective, for which groups are mo ily broken using th
that by increasing the size of the group one can make the group mo

We can see from the image presented that the second assertion is not true. Just increasing the size 
of the group does not make it more secure. Remembering that a smaller relative distance corresponds to 
closeness to the Discrete uniform distribution on the elements of G, we see from the Figure 1 that while 

*
11903Z , the largest group, is the most secure of the three, the situation between

what we would have expected looking at the size of the group alone. Even though *
2131Z  is the larger 

group (almost twice the size), it is also less secure from the DHI assumption perspective than *
1193Z . This 

tes that the choice of the group G rather than its size is essential for the security of the Diffie-
Hellman key exchange protocol. 
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Figure 1: Comparison of the test values for different sample sizes and s 

 
 

Comparison of the DHI assumption across groups

ext we wanted to give an indication of groups that are more secure than others. It is known that 

 We tested this theory for a large set of groups with varying p’s. We looked at all primes 
between

imilar with the 
primes 

e 
primes 

in the range 9000 to 11000, the subgroups are of order 4500 to 5500. 

*
pZ ’

 
 
N
considering only the Legendre symbol criterion the safest groups among *

pZ  are the ones obtained when 
p is a safe prime i.e., of the form p=2q+1 where q is another prime Menezes et al. (1996). We shall call 
any such group a safe group. 

*
pZ

 2000 and 4000, and again for primes between 9000 and 11000. The reason for the two separate 
segments of primes is that we expect some sort of consistency between them. We show the distribution of 
the test values for these groups separated into safe and not safe primes in Figures 2 and 3. 

First, we notice that the behavior of primes in the range 2000 to 4000 is very s
for the higher range 9000 to 11000. Second, in both ranges we see the same conclusion applies, 

the safe prime groups are more secure than any other groups. However, the test estimate obtained for each 
of the safe prime groups is significantly different from zero therefore there is no safe group in the ranges 
given for which the DHI assumption is verified. This seems to confirm the assertion in the Example 5.1. 

Next, we look to Example 5.2. We will use our test for the prime subgroups of each of the saf
in the range 9000 to 11000. More specifically, we look at each *

pZ  with p a safe prime, and we 
construct the prime subgroup of order q in each such group. Then we test the DHI assumption in each 
subgroup thus constructed. The values obtained for the distances are plotted in the upper histogram of 
Figure 4. We mention that the behavior of the test values for primes between 2000 and 4000 was very 
similar, and for space consideration we omit the corresponding plot. All the values are obtained using the 
same sample size 6108×=n . The reason for this particular value is that while the groups themselves are 



 

  
Histogram of all the test values for *

pZ with 2000<p<4000. Values closer tFigure 2: o zero represent 
safer groups for DH exchange. 

 
 Histograms of test values obtained for *

pZ with 9000<p<11000. ValuFigure 3: es closer to zero 
represent safer groups for DH exchange.  
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It  cl y other 
groups plo  confirm the conjecture in the Example 5.2. The actual 
test of u

  

is remarkable to see that these subgroups are early safer for the DH exchange than an
tted in the picture. The results seem to

niformity was rejected, but we needed a very large sample size almost equal to the maximum 
value 2N . 

 

  
Figure 4: Comparing values of the test for different type of groups when 9000<p<11000. On top, we plot 
values for prime subgroups of  when p is a safe prime. Middle, we plot values fo  when p is a safe 

exc

5 only the values obtained for the prime subgroups 
of the with p a safe prime (top) and the histogram of the values obtained for the groups, p a safe 
prime b

It  or
iation in size. This is an encouraging fact, which suggests that 

 *
pZ r *

pZ

prime. On bottom, we plot values for all the other groups *
pZ in the range given. Values closer to zero 

represent better groups for DH hange.   
 
 
 For a better comparison we plotted in Figure 

*
pZ *

pZ
etween 9000 and 11000 (bottom). 

is remarkable the closeness of these values to each other considering that the der of the group 
varies between 9000 and 11000 a 20% var
for even larger p’s we will see the same sort of consistency in the values. This will imply that groups with 
the same operational structure will have similar behavior from the point of view of the Diffie-Hellman 
security. However, there is a variation in the values as illustrated in the Figure 6 plotting the histogram of 
the values obtained for the prime subgroup of *

pZ  groups, with p a safe prime varying between 9000 and 
11000. 



  
Figure 5: A more detailed comparison of the previous image (Fig. 4). We compare the prime subgroups 
with the corresponding safe groups. Values closer to zero represent safer groups for DH exchange.  

 
  

 

  
Figure 6: A blowup of the histogram of the values for the prime subgroups in the safe primes. Note the 
values are close to zero but not equal to zero.  
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Furthermore, in Figure 7 we plot the test values versus the size of the group from which the prime 
subgroup originated. We can immediately see that as the size of the group increases the exchange tends to 
become more secure as measured by our test. This increases our belief in the test results and brings 
evidence that as the size of the group increases and the structure of the underlying group remains the 
same the security of the exchange increases as well. 

  
Figure 7: Here we are showing that as the size of the group increases the values of the test do in fact 
decrease. Here we plot the corresponding values for the histogram in Figure 6. We note that the test values 
for this part were estimated using the same sample size (8 million) to insure that the test values are 
comparable and that variability of the test values is the same regardless of the size of the group.  

 

A look at the relationship with the Discrete Logarithm problem 

In this section we study in more depth the distribution of the test values as p varies in the ranges 
considered. We calculate the test values for each such group (for such small groups we do not need to 
estimate or construct statistical distributions for the test values), with the idea to compare the groups 
themselves from the perspective of the test and identify (if possible) patterns. To our knowledge this is the 
first approach of this kind. 
 

We first look to ( )⋅,*
pZ , for p primes in the two ranges p∈(2000,4000) and p∈(9000,11000). We plot the 

test values in the Figure 8.  
 It is known – due to the existence of the Pohlig-Hellman algorithm4 that in all of these groups the 

Discrete Logarithm problem is easy and therefore the Diffie Hellman exchange should be breakable. It is 
also conjectured that the actual security depends on the size of the largest factor in the decomposition of 
p−15. For this reason it is believed that the “most secure” groups among ( )⋅,*

pZ  are the ones generated by 
the safe primes.  

                                                 
4which computes the Legendre symbol in these groups and therefore gives a distinguisher against DDH (see Genaro 
et al. (2004)) 
5This is due to the nature of the algorithm 
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(a) Test values for p∈(2000,4000)           (b) Test values for p∈(9000,11000) 

Figure 8: On the x axis we plot the biggest factor in the decomposition of p−1. Values closer to zero on the 
y-axis represent safer groups for DH exchange. 

 
In our case we consider the security of the Diffie Hellman exchange. Since the Discrete 

Logarithm assumption is a necessary condition for this security we expect that our test will identify these 
assertions and by using our test we will be able to answer questions related to the DL problem. 

Figure 8 presents the test values vs. the size of the largest prime factor in the decomposition of 
. We can immediately see that the structure of the test values for the two ranges is very 

similar. In both of these images, points corresponding to values closer to 0 on the y axis represent groups 
that are more secure for the DH exchange. 

k21 qqqp ...1 =−

 

 
(a) Test values for p∈(2000,4000)   (b) Test values for p∈(9000,11000) 

Figure 9: On the x axis we plot the number of factors in the decomposition of p−1. Values closer to zero 
represent safer groups for DH exchange. 
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Note that while the points in the lower right corner of the image correspond indeed to the safe 
primes and they are clearly more secure than the other groups as the popular belief would tell us, we can 
also see that there exist certain groups which have a small factor (lower left corner) and yet they are 
comparably secure. 

This is investigated further in the Figure 9 where we plot the test values obtained for each group 
versus the number of factors in the decomposition of p−1. While we can see more clearly now that the 
groups corresponding to the safe primes (x=2 factors in the plot) are indeed more secure than all the other 
groups, we also find that generally as the number of factors in the decomposition increases the security 
decreases. 

 Once again we remark the closeness of the two plots in Figure 9. Based on the two pair of plots it 
would seem that both the number of factors and the size of the largest factor are important elements when 
considering the security of the exchange. 

But now we are dealing with a statistical problem: trying to relate two determining factors to the 
variable that quantifies the security of the exchange. There probably exist other factors that are important 
but let us concentrate on these two for the current work. We know from the statistical theory that if there 
would be no interaction between the number of factors in the decomposition and the size of the largest 
factor then we should see points inside each category close to parallel lines. For exemplification we 
plotted in Figure 10 the same image as in Figure 9(b), but with the points separated by the number of 
factors in each group. We eliminated the safe groups from the comparison and we only made the picture 
for p∈(9000,11000) since for the other range the image looks very similar. 

 

  
Figure 10: This is the same image as Figure 9(b) but with points corresponding to number of factors 
in the decomposition of p−1 identified.  

We can start to see that there must be interaction between the two factors. To exemplify better we 
separated the points depending on the number of factors and we plotted them in Figure 11. We see better 
that the determining elements for the security of the DH exchange seem to be correlated (they are 
interacting). 
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(a) Test values for 3, 4, and 5 factors in the 
decomposition of p−1 

(b) Test values for 6, 7, and 8 factors in the 
decomposition of p−1

 
 
 

(c) Test values for 9, 10, and 11 factors in the 
decomposition of p−1  

Figure 4: If the two determining elements (number of factors and the size of the largest factor in the 
decomposition of p−1 are independent we should see points of the same color close to parallel lines. 

 

As an example of such discrepancy the group  which is of the order 
9473−1=2×2×2×2×2×2×2×2×37, and whose biggest factor in the decomposition is 37 is more secure (test 
value 0.2) than both groups:  and , whose decompositions of p−1 are 9421−1=2×2×3×5×157 
and 9781−1=2×2×3×5×163 respectively

9473Z

9421Z 9781Z
6. 

                                                 
6the test values obtained for these two later groups are very close to each other 0.3475897 and 0.3476914. 



Next we analyze statistically the relationship between the test values that quantify the strength of 
the relationship and the size of the largest factor in the decomposition of p−1 (treated as a quantitative 
variable) and the number of factors in the same decomposition (treated as a categorical variable). We 
included interaction terms in the model and we present the ANOVA table in Table 1.  

Table 2 presents the estimated coefficients of the regression lines for each level, and for each, a 
test of whether the mean is actually zero. There are 218 primes between 9,000 and 11,000. We note that 
there was only one prime within the range whose p−1 decomposition had 10 factors thus the interaction 
for that level could not be estimated. 
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Table 1: ANOVA table for the relationship between the size of the largest factor, the number of 
factors, and the test values 

Factors df Deviance df Residual Deviance 
Largest factor size 1 0.37997 216 0.77629 
Number of factors 9 0.41977 207 0.35652 
Interaction term 8 0.08881 199 0.26772 

Error   217 1.15626 
 
 
 
 

 

Table 2: Effects for each level of factor. The semicolon denotes the levels of the interaction term. 
The individual factors have to be included even though they appear not significant since the 
interaction is. 

Factor levels Estimate Std. Error t-values p-values 
(Intercept) 1.322e-01 2.221e-01 0.595 0.552573 

Largest factor -2.718e-07 4.353e-05 -0.006 0.995025 
Nr factors=3 2.794e-02 2.223e-01 0.126 0.900116 
Nr factors=4 1.098e-01 2.222e-01 0.494 0.621938 
Nr factors=5 1.766e-01 2.223e-01 0.795 0.427804 
Nr factors=6 2.202e-01 2.224e-01 0.990 0.323292 
Nr factors=7 2.406e-01 2.225e-01 1.082 0.280778 
Nr factors=8 2.462e-01 2.253e-01 1.093 0.275831 
Nr factors=9 2.459e-01 2.248e-01 1.094 0.275293 
Nr factors=10 2.475e-01 2.249e-01 1.100 0.272574 
Nr factors=11 1.798e-01 2.329e-01 0.772 0.440964 

maxFact:N.fact=3 2.375e-05 4.399e-05 0.540 0.589972 
maxFact:N.fact=4 -7.348e-06 4.505e-05 -0.163 0.870586 
maxFact:N.fact=5 -1.260e-04 5.954e-05 -2.115 0.035637 * 
maxFact:N.fact=6 -4.137e-04 1.140e-04 -3.629 0.000362 *** 
maxFact:N.fact=7 -9.027e-04 2.112e-04 -4.274 2.98e-05*** 
maxFact:N.fact=8 -1.609e-03 1.060e-03 -1.518 0.130544 
maxFact:N.fact=9 -4.757e-03 1.525e-03 -3.119 0.002087 ** 
maxFact:N.fact=10 NA NA NA NA 
maxFact:N.fact=11 6.041e-03 1.297e-02 0.466 0.641823 
                                                         Signif. codes: ’***’ = 0.001; ’**’= 0.01; ’*’ = 0.05; ’.’ = 0.1

 
 

We can see very clearly from the table that the interaction between the two factors analyzed is 
significant. We do not present the results for the other range of primes studied 2000−4000 since they are 
entirely similar. 

So what is the conclusion to be drawn from these numbers?  



These numbers show that the interaction between the number of factors in the decomposition of 
p−1 and the size of the largest factor in the decomposition is statistically significant for the security of the 
Diffie-Hellman security as quantified by our test. 

In plain terms, it would seem natural that as the size of the largest factor in the decomposition 
increases the group becomes more complex and therefore it is more secure. Likewise, as the number of 
factors in the decomposition increases, there are more equations to solve modulo each factor therefore 
having a larger number intuitively would also increase the security. 

However, as the results in the table show that is not necessarily so, and since the interaction 
between the two is significant the combination of the two factors is important and the seemingly logical 
statements presented are not necessarily true. 

 
Future Trends 
 
The papers studying statistical aspects of the distribution of the key of the Diffie-Hellmann exchange are 
generally concerned with the limiting distribution as the size of the underlying group converges to 
infinity. However, in practice we do not work with infinite groups and the question of how fast the key 
distribution converges to infinity is valid and of significant interest. We hope with convinced the reader 
that the rate of convergence is not uniform across types of the groups and that some group structures lead 
to a much faster convergence than others.  

However it would be much more interesting if we could follow the analysis and observe similar 
conclusions for very large primes, typically used in cryptography (of the order comparable with ). 
The use of our testing procedure, ad-literam as in the current work prevents us from analyzing such large 
groups directly.  

10242

In the future we plan to investigate directions of circumventing the permutation testing approach, 
thus eliminating the need for the sample generation process and transforming the methodology into a 
practical procedure applicable to big size groups. For this purpose several directions are possible. One 
direction is to approximate the distribution of the test in (9) with a multinomial distribution, then use a 
multivariate normal distribution as a second approximation. This would give us an approximate 
distribution of the test statistic under the null hypothesis, which should allow us to calculate the p-value 
of the test directly without the need of the permutation testing. 

 Another direction is to put together outcomes into coarser groups and look at the distribution of 
these groups of outcomes. This idea is similar with the approach of Canetti et al. (1999) and Banks et al. 
(2006), and will allow us to speed up the procedure in order to apply it to much larger groups.  

A third direction is to look at the distribution of the binary representation of prime subgroups of a 
large group and compare the new resulting groups. 

If the computing power suffices or if any of these directions would prove valid the resulting test 
procedure will allow a comparison between the prime subgroup of a large ( )⋅,*

pZ  which we asserted to be 
secure and a similarly sized finite group defined using elliptical curves. This would answer a question of 
undeniable importance: are the groups constructed using elliptical curves potentially more secure than 
simpler structure groups? 
 
Conclusion 
 
This paper does not break or gives an algorithm to break the Diffie-Hellman exchange. What we do is 
analyze empirically how hard would it be to break the exchange, on average, on any random inputs 
drawn from the underlying group. The groups under study were small in order (very far from the typical 
cryptographic groups used in practice), but we give compelling evidence that the security of the exchange 
tends to be dependent on the structure of the underlying groups. That structure can be recovered and 
rediscovered over and over as the group size increases. 
 
We have studied the relationship between the security of the Diffie Hellman public key exchange protocol 
and the structure of the underlying group. We looked at groups were the protocol is provable not secure 
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(of the type ( )⋅,*
pZ ). We have found compelling evidence that breaking it (in the sense of actually finding 

the key) is dependent not only on the size of the largest factor in the decomposition of p-1 but also on the 
number of terms in the decomposition. Furthermore, the relationship is not straightforward (as either one 
increases the security increases) since the interaction between these two determining factors is statistically 
significant. This means that it is entirely possible to have a group with large prime factor in the 
decomposition and a large number of terms in the decomposition of p-1 and yet to be easier to break (on 
average for random inputs) than another groups where both these factors are smaller but they interact in a 
different way. 
We show using statistical arguments that the prime subgroups of the groups of type ( )⋅,*

pZ  are the most 
secure groups we have studied. Furthermore, if one assumes that the structure of the group from which 
the subgroups are drawn remains the same, increasing the group’s size indeed translates into increasing 
the security of the Diffie-Hellman exchange as well. 
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Key Terms and Their Definitions 
Generator of a cyclic group: is an element g such that all the elements of the group are generated by 
successive applications of the group operation to g itself. Not all the elements in a group are generators. 
Subgroup of a group: a set of elements from the initial group which together form a smaller goup 
structure included in the original group (i.e, the operation stays in the subgroup, the identity and the 
inverse elements are in the subgroup) . An example is the trivial subgroup . }1̂{
Prime group: a group that contains no subgroups except for the trivial subgroup. A prime subgroup is a 
subgroup of a group that contains no further subgroups except for the trivial subgroup. An example is 

included in}4̂,1̂{ ( )⋅,*
5Z  

p-value of a test: the probability of obtaining as extreme or more extreme values as the result of the 
experiment assuming that the null hypothesis is true. Numbers close to 0 are evidence against the null 
hypothesis (it is unlikely to see such numbers if the null hypothesis would be true). 
Statistically indistinguishable random variables: are two or more random variable whose distribution is 
identical almost everywhere (with the possible exception of a set of probability measure zero). 
Cryptographic key:  a piece of information that controls the operation of a cryptographic algorithm.  
Encryption key: a piece of information used to specify the particular transformation of plaintext into 
ciphertext, or vice versa during the encryption/decryption process. 
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