
A study about the existence of the leverage

effect in Stochastic Volatility models
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Abstract

The empirical relationship between the return of an asset and the volatility of the
asset has been well documented in the financial literature. Named the leverage effect
or sometimes risk-premium effect, it is observed in real data that, when the return
of the asset decreases, the volatility increases and vice-versa.

Consequently, it is important to demonstrate that any formulated model for the
asset price is capable to generate this effect observed in practice. Furthermore, we
need to understand the conditions on the parameters present in the model that
guarantee the apparition of the leverage effect.

In this paper we analyze two general specifications of stochastic volatility models
and their capability of generating the perceived leverage effect. We derive conditions
for the apparition of leverage effect in both of these stochastic volatility models. We
exemplify using stochastic volatility models used in practice and we explicitly state
the conditions for the existence of the leverage effect in these examples.
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1 Introduction

We have two major objectives in this paper. We wish to demonstrate that
leverage effect can be present in stochastic volatility models even if the two
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Brownian motions driving the processes are uncorrelated. We also wish to show
that even if the two motions are correlated the leverage effect is determined
by more than just the sign of the correlation.

1.1 What is the leverage and what is the leverage effect?

In economic literature, when a simplified approach is used (i.e., neglecting
before/after tax issues), the leverage of a firm is defined using the formula:
Dt/(Dt +Et) where Dt is the amount of the debt that the firm has and Et is
the market value of the company stock (or equity value) both at some time t.
As explained by [1] when the price of equity falls, its leverage rises, increasing
the volatility of returns to equity holders. By the same token, news of increas-
ing volatility reduce the demand for a stock because of risk-aversion of the
potential buyers. The consequent decline in stock value is followed by increase
in volatility as predicted by the news. This is just one possible explanation
for the apparition of the leverage effect. The exact cause of the emergence
of the leverage effect in practice is still an open problem. [2] conduct a con-
trolled laboratory experiment where the leverage of the firm is kept constant
(the debt/equity ratio) and yet they find significant association between the
volatility of the return and the return process. The economical reason for
appearance of the effect is not the subject of the current work.

Fisher Black ([3]) is the first researcher who observed the relationship between
equity and its volatility. He reported that implied volatility and historical
volatility of individual stocks go up when the stock prices go down. The study
was conducted over a fairly large time interval and found that the effect can
be quite significant. He names this observed relationship in his paper the
leverage effect. Since that time, the negative correlation between the return of
a stock and the volatility of the return has been documented over and over in
literature, to mention only some work: [4], [5], [6], [7], [8].

The last article [8] is worth extra mentioning since the authors extend the
study to the relationship between past returns and future volatility. They
discover that the two quantities are also negatively correlated and that the
correlation decays exponentially as the time lag between return and volatility
increases. The peak is obtained as the time delay is small and in the limit it can
be taken as the instantaneous correlation between the return and volatility.

All the research about the correlation between return and volatility of an asset
suggests that any mathematical model approximating the evolution of asset
price should be able to generate the leverage effect (i.e. a negative correlation
between the return and the volatility). [1] stress this point and present other
properties that a good stochastic volatility model should exhibit. Therefore,
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it is imperative to show that any formulated stochastic volatility (SV) model
for the asset price is capable of generating the leverage effect.

It is important to note that the leverage effect and the leverage of a corporation
as defined above and in any economic textbook are different entities. Indeed,
while the leverage in the traditional sense depends on the debt issued by the
firm, the leverage effect can be calculated (or estimated) using only the equity
(asset) value as represented by the shares in the company. The two notions are
obviously related if the debt Dt stays constant or is deterministic, however in
reality the debt value depends on the equity 1 and in the context of stochastic
volatility model this relationship is not easy to study 2 . For this reason, a
study relating the two notions (as conducted for example by [9] in the context
of a simple lognormal model for the asset price) is beyond the purpose of our
work.

1.2 The two Stochastic Volatility Models of the Equity.

Let (Ω,F , {Ft}t≥0,P) be a probability space endowed with the usual hypothe-
ses [10, page 3]. We assume that all the processes defined hereafter are adapted
to the filtration Ft.

The first model in this study presents the equity St as a continuous time
stochastic volatility model where the volatility term is driven by a general Itô
process Yt. Specifically:dSt = µStdt+ σ (Yt)StdWt

dYt = α (Yt) dt+ β (Yt) dZt,
(1)

where the functional form of σ(·), α(·) and β(·) is known, they are well be-
haved functions which obey local Lipschitz and local growth conditions so
that the system admits a unique solution in the strong sense [11, page 367].
In addition we will require that σ(·) is twice differentiable with continuous
second derivative on any closed interval included in (0,∞). The processes Wt

and Zt are standard Brownian motions adapted to the filtration Ft, which in
general may be correlated with correlation parameter ρ.

We mention that varying the specification of the functions σ(·), α(·) and

1 The rates of any loan taken by the company are dependent primarily on the
outside perception of the health of the firm, whose best indicator is the company’s
equity value.
2 Debt can be viewed as options on the asset value in this context. However, options
on the asset modeled using a stochastic volatility process have no exact formulas
(with a number of notable exceptions).
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β(·) covers all the classical continuous time, continuous state space stochastic
volatility models present in literature.

The second model considered specifies directly the return Rt on the equity
using: dRt = µdt+ σ (Yt) dWt

dYt = α (Yt) dt+ β (Yt) dZt.
(2)

The functions α(·), β(·), σ(·) and the Brownian processes W and Z parallel
the specification in (1) above.

Many current empirical studies chose to forego the specification (1) of the
asset’s price in favor of directly modeling the return process as in (2). For
example, to quote only few recent works: [12], [13], [14]. This particular spec-
ification of the return is motivated by the fact that it greatly simplifies the
task of estimating coefficients present in the model, a problem which can be
quite challenging 3 , 4 .

We note that the model forms presented in (1) and (2) are just notations for
the corresponding integral equations (see for example [16, Chapter 5, page
61]). We use both notations interchangeably in this work.

1.3 The stated goals of the current work.

Recent work calls the correlation coefficient between the driving Brownian
motions in a SV model (W and Z processes in our notation) as the factor
that captures “the leverage effect” ([17], [18], page 41, [19]). One empirical
study regarding the specification of SV models [20], page 228 defines “the
instantaneous correlation between returns and changes in variance”, and a
formula (formula (4) in the cited paper) for this correlation is provided, with
the sole purpose to connect it with the leverage effect described above. In the
present work we show that looking only at the correlation between the driving
Brownian motions or at the ”instantaneous correlation” is not enough.

The main goals we are trying to accomplish in the current work are:

• Mathematically formulate a quantity that would convey the presence of the
leverage effect in any model.

3 This is one of the motivations of the current work (see Subsection 1.3).
4 We also mention that the weak limit of linear or multiplicative GARCH type
processes is not of the type in (2), rather closer to the type specified in (1) (see [15])
so the motivation of using models of the type (2) is not because they arise as limits
of time series models.
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• Calculate this quantity for the two general Stochastic Volatility models pre-
sented above in terms of the parameters existing in the model and the
functional form of the coefficients.
• Show that the correlation between the sources of randomness present in the

model is not the only determining factor for the apparition of the leverage
effect.
• Find conditions on the coefficients present in the model that would guaran-

tee the presence of the leverage effect.

The initial motivation of the current work arises from the last point above. Es-
timating the parameters in continuous time Stochastic Volatility models from
discrete observations of the asset price is a hard problem. The main prob-
lem is that the Likelihood function for the parameters given only the discrete
asset observations is unknown (i.e., there is a lack of meaningful equations).
For this reason alternative approaches are constructed (e.g., [21], [22], [23]),
all of which assume the existence of a extraneous time series data, either a
derivative (call or put) on the asset or the volatility driving process Yt itself.

In one of the fundamental papers on estimating the volatility process Yt using
a particle filtering method, [24] the authors give rates of convergence under
the assumption that the two driving Brownian motions in (1) are uncorrelated.
The authors mention that the methods could be easily extended to correlated
Brownian Motions but in our experience the extension is not trivial. Therefore,
if we analyze the model (1) and we show that it is capable of producing the
leverage effect even when the two driving Brownian motions are uncorrelated
we show that a simpler model can accomplish what only a more complex model
was thought to be capable off 5 , and furthermore we are capable of using the
methodology developed in [24].

1.4 The structure of the paper.

In the next section (Section 2) we define the quantity used to indicate the
presence of the leverage effect.

Section 3 presents an analysis of the leverage effect when the return is specified
directly as it is in the model (2). In Section 4 we calculate the leverage effect
when the return dynamics are deduced from a specification of the asset price
of the type (1). Both sections 3 and 4 contain examples where calculations for
specific form of models are performed.

Finally, in Section 5 we summarize the key contributions of this work.

5 this essentially means that we eliminate the need to estimate the correlation
parameter – one of the hardest parameters to estimate
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Some technical lemmas are relegated to the Appendix.

2 Leverage Effect.

Definition 1 We define the leverage quantity L(t) over the interval [0, t]
as the correlation between the continuously compounded return of the asset
and the volatility process (defined as the time derivative of the square root of
the quadratic variance of the asset price process) over the interval [0, t].

We say that the leverage effect is observed for such a process if the leverage
quantity defined above is always negative at any moment t.

In addition, if the limit of the leverage quantity L(t) as t→∞, exists and is
finite we say that the long term leverage effect is present.

We note that, unlike the usual interpretation of the leverage as the correlation
coefficient between the Brownian motions Wt and Zt, Definition 1 allows the
leverage quantity to vary in time. In fact, the change in time agrees to the
empirical observations of the leverage effect. The effect of negative news seem
to influence both the return and the volatility, however sometimes the effect
is stronger than other times. The simplified interpretation of leverage effect
as the correlation between the two Brownian motions present is not able to
capture this time varying effect.

Furthermore, the presence of a long term leverage effect is a desirable property
of a model. If the leverage quantity is estimated over a long period (e.g., a
year, 10 years) we would desire that the estimate over an extended period (e.g.
13 months, 11 years) to be approximately the same as the previous estimate.

3 Directly modeling the asset’s return process.

In this section we study this model specification (2) and its potential to gen-
erate a leverage effect. Rewriting the model (2) in its integral form we obtain:Rt −R0 = µt+

∫ t
0 σ (Ys) dWs

Yt − Y0 =
∫ t
0 α (Ys) ds+

∫ t
0 β (Ys) dZs,

(3)

where Wt and Zt are correlated Wiener processes with parameter ρ.
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3.1 Leverage for the directly specified return process

The calculation of the leverage quantity for the general specification in (2) is
a hard task due to the correlation between the two Brownian motions. While
the calculation can be performed and indeed we present the analysis in Lemma
16 on page 21 in the Appendix, the resulting formula is not very useful since
it does not provide simple results when particularized to examples.

Instead we present a calculation on a simpler case that nonetheless covers
many of the specific stochastic volatility models encountered in practice.

Lemma 2 Let {Ft}t denote the standard filtration generated by both Brown-
ian motions Wt and Zt. Assume that the volatility process σ(Yt) obeys an Itô
process of the form:

σ(Yt) = σ(Y0) +
∫ t

0
γ(s)ds+

∫ t

0
δ(t, s, Ys)dZs, (4)

with γ(s) a deterministic function or a F0-adapted random variable and Zs the
Brownian motion in the Yt equation. In these conditions the leverage quantity
can be expressed as:

L(t) = ρ

∫ t
0 E [σ (Ys) δ (t, s, Ys)] ds√∫ t

0 E [σ2 (Ys)] ds
∫ t
0 E [δ2 (t, s, Ys)] ds

(5)

Proof. Given the specifications in the hypothesis we can easily calculate the
covariance function. We have:

E [(Rt −R0)(σ(Yt)− σ(Y0))]

= E
[(
µt+

∫ t

0
σ (Ys) dWs

)(∫ t

0
γ(u)du+

∫ t

0
δ(t, u, Yu)dZu

)]
= µt

∫ t

0
γ(u)du+ µtE

[∫ t

0
δ(t, u, Yu)dZu

]
+ E

[∫ t

0
γ(u)du

∫ t

0
σ (Ys) dWs

]
+ E

[∫ t

0
σ (Ys) dWs

∫ t

0
δ(t, u, Yu)dZu

]
.

The first integral in the above expression is the product of the two expecta-
tions, the middle integrals are zero (expectations of zero mean martingales)
and using Itô’s isometry with the last integral (recall that W and Z are cor-
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related with coefficient ρ), we obtain:

Cov (Rt −R0, σ(Yt)− σ(Y0)) = ρ
∫ t

0
E [σ (Ys) δ (t, s, Ys)] ds,

where we have applied Fubini’s lemma when appropriate. Calculating the vari-
ances of the two processes immediately yields the stated answer.

3.2 Remarks.

Remark 3 It is evident from formula (5) that if the two driving Brownian
motions Wt and Zt are uncorrelated, then the leverage effect does not exist.

Remark 4 From the same formula is also evident that, taking a negative cor-
relation ρ between the two Brownian motions does not automatically guarantee
a leverage effect. We could easily determine conditions on the functions σ()
and δ() that will actually prevent the leverage effect when ρ is negative.

Remark 5 The condition on the form of the process σ(Yt) is needed if we are
to avoid a recursion argument (see Lemma 16 in the Appendix). The condition
is satisfied for many realistic models as the examples bellow are showing.

3.3 Leverage effect in affine volatility models: σ(y) = Ay +B)

Example 6 (SABR model) In this example we use a modified 6 SABR model
[25] where we specify the return equation as:Rt −R0 = µt+

∫ t
0 YsdWs

Yt − Y0 =
∫ t
0 βYtdZs,

(6)

The two Brownian motions are correlated with correlation ρ.

For this model the leverage quantity is constant for any t:

L(t) = ρ sgn(β)

and sgn(·) is the signum function.

The assertion is obtained directly applying the formula (5) with δ(t, s, Ys) =

6 The difference is that the classical model specifies the stock not the return and
therefore in the drift term of Rt there exist an extra term as in Section 4.
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βYs since the conditions of the lemma 2 are clearly satisfied. We have:

L(t) = ρ

∫ t
0 E(YsβYs)ds√∫ t

0 E(Y 2
s )ds

∫ t
0 E(β2Y 2

s )ds
= ρ

β

|β|
= ρ sgn(β)

It is evident that even in this simplest of the examples the leverage effect
depends on more than just the correlation between the Brownian motions.

Example 7 (Stein model) Consider a specification of the model (3) similar
with [26] model: Rt −R0 = µt+

∫ t
0 YsdWs

Yt − Y0 =
∫ t
0 α (m− Ys) ds+

∫ t
0 βdZs,

(7)

with α > 0, m and β constants, and Wt and Zt correlated with parameter ρ.
The leverage quantity is given by:

L(t) =
ρβ
(
(E(Y0)−m)

√
te−αt + m

α
√
t
(1− e−αt)

)
√

β2

2α
(1− e−2αt)

(
m2 + β2

2α
+
(
E[(Y0 −m)2]− β2

2α

)
1−e−2αt

2αt
+ 2mE[Y0 −m]1−e−αt

αt

) .
From this expression we see that we have two distinct cases.

(1) If the distribution of Y0 is such E[Y0] 6= m then the leverage effect is
present in the model if and only if the sign of ρβ (E(Y0)−m) is negative.

(2) If the mean of Y0 is E[Y0] = m then the leverage effect is present if and
only if the sign of ρβm is negative 7 .

In either case the long term leverage quantity is:

lim
t→∞

L(t) = 0,

To prove the formula in the example we verify that the hypothesis of the lemma
2 is satisfied. Then we apply the formula (5). Using equation (19) in the
Appendix we see that we can write:

Yt − Y0 = (m− Y0)
(
1− e−αt

)
+
∫ t

0
βe−α(t−s)dZs

Thus σ(Yt) = Yt has a representation of the form (4) in the hypothesis of
the Lemma 2 with γ(t) F0-adapted and δ(t, s, Ys) = βe−α(t−s). Thus we can
compute the leverage quantity directly using formula (5):

7 recall that α > 0.
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L(t) = ρ

∫ t
0 βe

−α(t−s)E [Ys] ds√∫ t
0 β

2e−2α(t−s)ds ·
∫ t
0 E [Y 2

s ] ds

Now using the formulas (20) and (24) in the Appendix after regular integra-
tions we obtain the provided formula for the leverage quantity L(t).

The two comments about the sign of the leverage quantity and the limiting
behavior as t → ∞ are also straightforward from a simple analysis of the
dominating term in the numerator of the expression for L(t).

3.4 Leverage effect in root type volatility models: σ(y) =
√
y

Example 8 (Hull-White model) In this example we use return dynamics
of the type found in [27]:Rt −R0 = µt+

∫ t
0

√
YsdWs

Yt − Y0 =
∫ t
0 αYsds+

∫ t
0 βYsdZs,

(8)

The leverage quantity is in this case

L(t) = ρ sgn(β)
E
[√
Y0

]
+ 2

αt

(
e
αt
2 − 1

)
√

E [Y0] + 1
αt

(eαt − 1)

From this expression we see that the parameter α is important for the long term

behavior of the process. The limiting value as t→∞ is always ρ sgn(β)
E[
√
Y0]√

E[Y0]
,

but the behavior of the limit is different depending on the sign of α

(1) If α = 0 we obtain a constant leverage quantity for any t much as in the
case of the SABR model.

(2) If α < 0 the convergence is very fast to the limiting value (exponential
order)

(3) If α > 0 the convergence is very slow to the limiting value (of order
√
t)

In all these cases the leverage effect is present if and only if sgn(ρβ) < 0.

We need to express the process σ(Yt) =
√
Yt in the form of the lemma 2.

To this end let Vt = exp(−β2

4
t + β

2
Zt). The Novikov condition is satisfied for

this process and Vt is an exponential martingale with equation dVt = β
2
VtdZt.
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Applying Itô’s lemma to the process
√
Yt we obtain:

d
√
Yt =

1

2
√
Yt
dYt +

1

2

(
− 1

4Yt
√
Yt

)
d < Y, Y >t

=
1

2

(
α− β2

4

)√
Ytdt+

β

2

√
YtdZt

We can solve this resulting equation very easily to obtain the solution:

√
Yt −

√
Y0 = e

(
α
2
−β

2

8
−β

2

8

)
t+β

2
Zt

= e
αt
2 Vt

Since we know the solution for Vt we can write:

√
Yt =

√
Y0 + e

αt
2

(
1 +

∫ t

0

β

2
VsdZs

)
=
√
Y0 + e

αt
2 +

∫ t

0
e
αt
2
β

2
VsdZs

Thus the process σ(Yt) could be put in the form (5) with δ(t, s, Ys) = β
2
e
αt
2 Vs =

β
2
e
αt
2 e−

β2

4
s+β

2
Zs. Now note that both Vt and V 2

t = exp(−β2

2
t+βZt) are martin-

gales with respect to the filtration Ft with means E[V0] = E[V 2
0 ] = 1 = V0.

We can calculate the numerator after this observation:∫ t

0
E [σ (Ys) δ (t, s, Ys)] ds =

∫ t

0
E[
√
Ys
β

2
e
αt
2 Vs]ds =

β

2
e
αt
2

∫ t

0
E
[(√

Y0 + e
αs
2 Vs

)
Vs

]
ds

=
β

2
e
αt
2

∫ t

0

(
E
[√
Y0E[Vs|F0]

]
+ e

αs
2 E

[
V 2
s

])
ds

=
β

2
e
αt
2

∫ t

0

(
E
[√
Y0

]
+ e

αs
2

)
ds =

=
β

2
e
αt
2

(
E
[√
Y0

]
t+

2

α

(
e
αt
2 − 1

))
We can then calculate the terms in the denominator as:∫ t

0
E[Ys]ds = E [Y0] t+

1

α

(
eαt − 1

)
∫ t

0
E[
β2

4
eαtV 2

s ]ds =
β2

4
eαtt

Using the formula (5) after simplifications we reach the leverage equation
given.
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3.5 Leverage Effect in an exponential type volatility model: σ(y) = ey

The only popular continuous time volatility models that contains an exponen-
tial type volatility are the [28] and later [29] models. Unfortunately, putting
the volatility process σ(Yt) in the form (5) for those particular models is not
that easy and we have to use a slight modification for the volatility process to
analyze the model.

Example 9 Consider a specification of the model (3) with σ(y) = ey and Yt
a special case of the mean-reverting process of [30] type. Mathematically:Rt −R0 = µt+

∫ t
0 e

YsdWs

Yt − Y0 = αt−
∫ t
0
β2

2
Ysds+

∫ t
0 β
√
YsdZs,

(9)

with α > 0, β constants, and Wt and Zt correlated with parameter ρ.

Then the leverage effect is present if and only if the product βρ < 0.

We note that the Yt process above is a particular case of a Heston driv-
ing volatility with the rate of mean return proportional to the parameter β.
We mention that using the Heston model directly produces a square root type
volatility and the approach proceeds exactly as in the Example 8. We have:

eYt = eY0+αt−
∫ t
0

β2

2
Ysds+

∫ t
0
β
√
YsdZs = exp (Y0 + αt)Vt

where Vt = exp
(
−
∫ t
0
β2

2
Ysds+

∫ t
0 β
√
YsdZs

)
. Again, Vt is an exponential mar-

tingale that solves dVt = β
√
YtVtdZt. Therefore we can write:

eYt = eY0+αt + eY0+αt
∫ t

0
β
√
YsVsdZs

We can now apply Lemma 2 with δ(t, s, Vs) = βeY0+αt
√
YsVs. The leverage

in not easy to calculate exactly but we can assess its sign by looking at the
numerator of L(t). We see that:

E [σ (Ys) δ (t, s, Ys)] = βE
[
eYs eY0+αt

√
Ys e

−
∫ t
0

β2

2
Ysds+

∫ t
0
β
√
YsdZs

]

We see immediately that the the terms in the expectation are always positive
and that the sign of the leverage quantity is given by the sign of the product
ρβ.

Finally, we mention an example of practical use of the formula (5). [14] com-
pares a discrete time version of the model in the Example 9 (denoted there
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ASV1), and the discrete time stochastic volatility model of [13] (dubbed in
the paper ASV2). The author obtains estimates for ρ the correlation coeffi-
cient between the Brownian motions in both models, the numbers published
are ρ1 = −0.3179 in the ASV1 model and ρ2 = −0.2599 in the ASV2 model.
He then concludes that one specification is better than the other partly due
to the fact that the leverage effect is underestimated in the ASV2 model. In
the light of this section, it is entirely possible that the correlations in the two
models be completely different and yet, the leverage quantities as defined in
Section 2 to be similar.

4 Using a directly specified asset process and deducing the return
dynamics.

In this section we deduce the formulation of the return process Rt = logSt
directly from the dynamics of the asset process as specified in (1). We show
that the behavior of the leverage quantity (while more difficult to calculate)
is essentially different than the analysis presented in the previous section.

If we apply the Itô formula in (1), for the function F : R2 → R2, F (x, y) =
(log x, y), we obtain:dRt =

(
µ− σ2(Yt)

2

)
dt+ σ (Yt) dWt

dYt = α (Yt) dt+ β (Yt) dZt,
(10)

regardless of the two Brownian motions being correlated or not. We rewrite
the system in an integral form:Rt −R0 =

∫ t
0

(
µ− σ2(Ys)

2

)
ds+

∫ t
0 σ (Ys) dWs

Yt − Y0 =
∫ t
0 α (Ys) ds+

∫ t
0 β (Ys) dZs.

(11)

In this model we keep the two Brownian motions Wt and Zt uncorrelated. We
would love to to calculate the leverage quantity in the more general case of
correlated Brownian motions but the reality is that such calculation is very
complicated.

Nevertheless, we are able to show that even in this case the leverage effect can
still be present.

Lemma 10 (The leverage condition) Assume that an asset process has
dynamics specified by (1) and correspondingly its return dynamics are as in
the system (10). Assume that the two driving Brownian motions Wt and Zt
are uncorrelated.
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The following is a sufficient condition for the leverage effect to be present in
the model at any time t.

E
[
σ2(Ys)σ

′(Yu)α (Yu) +
1

2
σ2(Ys)σ

′′(Yu)β
2 (Yu)

]
≥ E

[
σ2(Ys)

]
E
[
σ′(Yu)α (Yu) +

1

2
σ′′(Yu)β

2 (Yu)
]
, (12)

for every u, s ∈ [0, t], with strict inequality on a set A ⊆ [0, t]×[0, t] of non-zero
Lebesque measure .

Remark 11 Before we prove the lemma let us make two simple observations.

First, the fact that the leverage effect can be present even if the two Brownian
motions are uncorrelated is very good news for the estimation of coefficients.
Indeed, having uncorrelated Brownian motions means one less parameter to
be estimated. And in fact this correlation is one of the hardest parameters to
estimate.

Second, the inequality presented represents a sufficient condition for the lever-
age effect. In fact, since the numerator of the leverage quantity in definition
1 is the integrated expression above with respect to s and u on the interval
[0, t]× [0, t] it is possible that the condition stated is violated and still the inte-
grated quantity is negative at every t. We could also state the leverage quantity
L(t) by integrating the expression in (12) and dividing by the square root of the
product of variances, but the resulting expression is very long and the reader
can calculate it very easily once the underlying principle is understood. Fur-
thermore, to actually calculate the integral terms in the resulting expression is
a chore in all but the simplest models.

Proof of the Lemma 10. Recall that σ(·) ∈ C2(R). Itô’s lemma gives:

σ(Yt)− σ(Y0) =
∫ t

0
σ′(Ys)dYs +

1

2

∫ t

0
σ′′(Ys)d < Y, Y >s

=
∫ t

0

(
σ′(Ys)α (Ys) +

1

2
σ′′(Ys)β

2 (Ys)
)
ds+

∫ t

0
σ′(Ys)β (Ys) dZs

=
∫ t

0
σ1(Ys)ds+

∫ t

0
σ′(Ys)β (Ys) dZs, (13)

where we have introduced the notation:

σ1(y) = σ′(y)α (y) +
1

2
σ′′(y)β2 (y) . (14)
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We calculate:

E [(Rt −R0)(σ(Yt)− σ(Y0))]

= E

[(∫ t

0

(
µ− σ2(Ys)

2

)
ds+

∫ t

0
σ (Ys) dWs

)(∫ t

0
σ1(Yu)du+

∫ t

0
σ′(Ys)β (Ys) dZu

)]

= E

[∫ t

0

(
µ− σ2(Ys)

2

)
ds
∫ t

0
σ1(Yu)du

]

=
∫ t

0

∫ t

0
E

[(
µ− σ2(Ys)

2

)
σ1(Yu)

]
ds du,

using Fubini’s lemma, the fact that two terms are stochastic integrals with
expectation zero and that in the model (11) the two Brownian motions Wt

and Zt are independent.

From the equations in (11) and (13) we obtain the expectations for Rt − R0

and σ(Yt)− σ(Y0) and then we can calculate the covariance as:

Cov (Rt −R0, σ(Yt)− σ(Y0)) =
∫ t

0

∫ t

0
E

[(
µ− σ2(Ys)

2

)
σ1(Yu)

]
ds du

−
∫ t

0

∫ t

0
E

[
µ− σ2(Ys)

2

]
E [σ1(Yu)] ds du

=
∫ t

0

∫ t

0
E

[(
µ− σ2(Ys)

2

)
σ1(Yu)

]
− E

[
µ− σ2(Ys)

2

]
E [σ1(Yu)] ds du

= −
∫ t

0

∫ t

0

(
E

[
σ2(Ys)

2
σ1(Yu)

]
− E

[
σ2(Ys)

2

]
E [σ1(Yu)]

)
ds du (15)

Noting that the sign of the correlation is determined by the sign of the co-
variance and replacing σ1(·) with its formula in (14), after simple algebra we
obtain the result stated.

4.1 Leverage effect for affine volatility models. The return process is deduced
from the stock price specifications.

Let us remark that if one chooses a specific volatility model with fixed func-
tional form of the functions σ(·), α(·), β(·), the condition in Lemma 10 is
not easy to verify. However, to make sure that the condition is valid and not
purely academic, we give an example where the condition is verified. The next
example uses the model of [26].

Example 12 (Stein&Stein) Assume that the asset price follows the follow-
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ing model: dSt = µStdt+ YtStdWt

dYt = α(m− Yt)dt+ βdZt,
(16)

where the Brownian motions Wt and Zt are uncorrelated, µ, β are any con-
stants, and the process Yt starts from the variable Y0 ∈ L3(Ω).

We assume that the parameter α is strictly positive (so that the distribution of
Yt is stationary for any t). Then the following conditions on parameters are
sufficient for the presence of leverage effect at any moment t > 0:

(1) m < 0
(2) E[Y 3

0 ]− E[Y 2
0 ]E[Y0] < 0

(3) E[Y0] ≤ −2m

Remark 13 We note that the condition appearing in the exercise is a suf-
ficient condition arising from our calculations. The leverage effect may be
present even under weaker conditions than the ones presented. Note that m
is negative and thus E[Y0] ≤ −2m implies an upper positive bound for the
expectation.

To verify whether the estimated coefficients can generate the leverage effect
one has to check the exact condition in equation (17) bellow.

Proof. We apply the Lemma 10 to directly verify that the leverage effect is
present. We have that σ′(y) = 1, σ′′(y) = 0, and α(y) = α(m− y). Therefore,
the condition (12) simplifies to:

E
[
Y 2
t α(m− Ys)

]
≥ E

[
Y 2
t

]
E [α(m− Ys)]

−αE
[
Y 2
t Ys

]
≥ −αE

[
Y 2
t

]
E [Ys]

α
(
E
[
Y 2
t Ys

]
− E

[
Y 2
t

]
E [Ys]

)
≤ 0,

where we have used t and s for the times replacing s and u in the lemma to
simplify the notation a little bit. In the Appendix (Section 6 formula (25) on
page 21) we calculate this difference and we substitute it here to obtain the
condition:

α
(
E[Y 3

0 ]− E[Y 2
0 ]E[Y0]

)
+ 2mαV (Y0)

(
eαt − 1

)
+ β2E(Y0)

(
e2αt∧s − 1

)
+ 2mβ2

(
e3αt∧s

3
− e2αt∧s

2

)
≤ 0, (17)

with strict equality on a set of non-zero Lebesque measure.

The formula above gives us a clear criterion for the choice of parameters in
the Stochastic Volatility models. If the condition is true, then the leverage
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effect is present in the model. Furthermore, under the conditions specified in
the hypothesis for a time t large enough all the terms in the expression are
negative therefore the leverage effect is going to be present in the model.

5 Contributions of the paper

In conclusion, we would like to summarize what we have accomplished in this
work.

We have defined in Section 2 a leverage quantity that indicates the presence
or absence of the leverage effect at any moment in time.

We have analyzed two general stochastic volatility models and their capability
of generating the leverage effect.

First, we study a directly specified return model (2) in Section 3 which is
very popular in practice. We show that in this case the leverage quantity is
related with the correlation between the driving Brownian motions but it is
not entirely determined by it. If the correlation is zero the leverage effect is
absent, however if the correlation is positive it is still possible for the leverage
effect to be present in the model. We calculate the exact expression in several
examples.

Second, we analyze an alternative specification for the return, directly deduced
from dynamics of the the model (1) in Section 4. In this case, even if the
driving Brownian motions are uncorrelated we show that the leverage effect
can still be present in the model and that this fact is determined entirely by
the parameters present in the model.

In fact, the formulae that we gave are useful from the perspective of the
estimation of the coefficients present in the model. [18] mention that the asset
data is not sufficient for the estimation of all the parameters present in the
model. The usual estimation techniques are performed using asset data and
some other extraneous derivative data (such as call options etc.). However,
this essentially prevents applying the stochastic volatility model to any other
data but finance. For example, earthquake modeling, signal processing and
even utilities data have no derivatives whose value or strength is determined
outside the original signal model. Therefore, a method that does not use these
derivatives needs to be devised.

The formulae we give here could serve to limit the space of possible parameters
to only such values that allows the model to exhibit features similar to the
observations from the real world.
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6 Appendix.

6.1 Formulae for the mean reverting Ornstein-Uhlenbeck process

In the appendix, we present all the calculations needed for the examples pre-
sented earlier. They are more appropriate to be presented in a separate section
to avoid distracting from the logical flow of the paper. We mention also that
although apparently simple, with the exception of the expected value of the
mean-reverting Ornstein-Uhlenbeck process, we could not find references to
the complete formulae we give bellow.

Let Yt denote a mean-reverting Ornstein-Uhlenbeck process formulated as:

dYt = α(m− Yt)dt+ βdZt, (18)

with α, m, and β real constants and Zt a standard Brownian motion adapted
to Ft.

Applying the Ito’s rule to the function f(t, y) = yeαt we can obtain the explicit
solution:

Yt = e−αtY0 +m
(
1− e−αt

)
+ e−αt

∫ t

0
βeαsdZs. (19)

Clearly:
E[Yt] = E[Y0] e

−αt +m(1− e−αt) (20)

The next formulae are hard to find in literature, and we choose to state them
as separate results.

Lemma 14 With the process Yt a mean-reverting OU process specified as in
(18) we have the covariance function of the process given by:

Cov(Yt, Ys) = e−α(s+t)

[
V (Y0) +

β2

2α

(
e2α t∧s − 1

)]
, (21)

where V (Y0) denotes the variance of the initial variable Y0 and t ∧ s denotes
the minimum of the two numbers t and s.

Proof. Using (19) and (20) we can write:

Yt − E[Yt] = (Y0 − E[Y0]) e
−αt + e−αt

∫ t

0
βeαudZu,

18



and we can calculate:

Cov(Yt, Ys) = E [(Yt − E[Yt]) (Ys − E[Ys])]

= e−α(t+s)E
[(
Y0 − E[Y0] +

∫ t

0
βeαudZu

)(
Y0 − E[Y0] +

∫ s

0
βeαvdZv

)]
= e−α(t+s)

(
V (Y0) + E

[
(Y0 − E[Y0])

∫ s

0
βeαvdZv

]
+ E

[
(Y0 − E[Y0])

∫ t

0
βeαudZu

]
+ β2E

[∫ t

0
eαudZu

∫ s

0
eαvdZv

])
= e−α(t+s)

(
V (Y0) + β2

∫ t∧s

0
e2αudu

)
.

To obtain the last equality, we use the Itô isometry in the last integral, and for
the two middle integrals the fact that a stochastic integral is a martingale with
zero expectation. Finally, computing the sole remaining integral we obtain the
result stated in the lemma.

Next we calculate a stochastic differential equation for Y 2
t which allow us to

verify the condition appearing in Example 12. We apply Itô’s lemma to the
function f(t, y) = y2e2αt and the process Yt.

d(Y 2
t e

2αt) = 2αe2αtY 2
t dt+ 2Yte

2αtdYt +
1

2
(2e2αt)d < Y, Y >t

= e2αt
(
2αmYt + β2

)
dt+ 2βYte

2αtdZt.

Therefore, we can express the equation in integral form as:

Y 2
t = Y 2

0 e
−2αt+2αme−2αt

∫ t

0
e2αuYudu+

β2

2α

(
1− e−2αt

)
+2βe−2αt

∫ t

0
e2αuYudZu

(22)

Lemma 15 The second moment of a mean-reverting OU process Yt specified
as in (18) is given by:

E[Y 2
t ] = e−2αt

[
E[Y 2

0 ] +
β2

2α

(
e2α t − 1

)
+ 2mE[Y0]

(
eα t − 1

)
+m2

(
eα t − 1

)2
]
.

(23)
Furthermore, the integrated second moment is given by:

∫ t

0
E[Y 2

s ]dt = t

(
m2 +

β2

2α

)
+

(
E[(Y0 −m)2]− β2

2α

)
1− e−2αt

2α
+2mE[Y0−m]

1− e−αt

α
.

(24)

Proof. The proof is an exercise in simple calculus, all we have to do is apply
expectations in both sides of (22), substitute E[Yu] with the expression (20),
and finally integrate with respect to u. The expected value in (23) is integrated
to yield after another series of calculations the expression in (24).
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We need to calculate an expression of the form

E
[
Y 2
t Ys

]
− E

[
Y 2
t

]
E [Ys]

To this end we first calculate:

E
[
Y 2
t Ys

]
= e−2αte−αsE

[(
Y 2

0 + 2αm
∫ t

0
e2αuYudu+

β2

2α

(
e2αt − 1

)
+

2β
∫ t

0
e2αuYudZu

)(
Y0 +m (eαs − 1) +

∫ s

0
βeαvdZv

)]
= e−α(2t+s) (I + II + III + IV ) ,

where:

I = E

[(
Y 2

0 + 2αm
∫ t

0
e2αuYudu+

β2

2α

(
e2αt − 1

))
(Y0 +m (eαs − 1))

]

= E(Y 3
0 ) + 2αm

∫ t

0
e2αuE[YuY0]du+

β2

2α

(
e2αt − 1

)
E(Y0) +m (eαs − 1) E(Y 2

0 )

+ 2αm2 (eαs − 1)
∫ t

0
e2αuE[Yu]du+

β2m

2α

(
e2αt − 1

)
(eαs − 1)

II and III are expectations of the cross-product terms which are both zero
and for economy of space we neglect to write them, and

IV = 2β2E
[∫ t

0
e2αuYudZu

∫ s

0
eαvdZv

]
= 2β2

∫ t∧s

0
e3αuE(Yu)du

From this expression we need to subtract E [Y 2
t ] E [Ys] which is calculated

using (20) and (22) as:

E
[
Y 2
t

]
E [Ys] = e−α(2t+s)

(
E(Y 2

0 ) + 2αm
∫ t

0
e2αuE(Yu)du+

β2

2α

(
e2αt − 1

))
(E[Y0] +m(eαs − 1))

= e−α(2t+s)

(
E(Y 2

0 )E[Y0] + 2αm
∫ t

0
e2αuE(Yu)E[Y0]du+

β2

2α

(
e2αt − 1

)
E[Y0]

+m(eαs − 1)E(Y 2
0 ) + 2αm2(eαs − 1)

∫ t

0
e2αuE(Yu)du+

β2m

2α

(
e2αt − 1

)
(eαs − 1)

)

We are finally in position to calculate the E [Y 2
t Ys]−E [Y 2

t ] E [Ys]. Taking the
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difference of the expressions calculated above, after simplifications we obtain:

e−α(2t+s)
(
E(Y 3

0 )− E(Y 2
0 )E[Y0] + 2αm

∫ t

0
e2αu(E[YuY0]− E(Yu)E[Y0])du

+2β2
∫ t∧s

0
e3αuE(Yu)du

)

Noting that in the first integral we have the term Cov(Yu, Y0) which we know
from (21) is equal to e−αuV (Y0), and that in the second integral we have the
expectation of the mean revering OU process which we calculated in (20), we
can substitute these terms, and integrate them to finally obtain the following
expression:

E
[
Y 2
t Ys

]
− E

[
Y 2
t

]
E [Ys] = e−α(2t+s)

(
E(Y 3

0 )− E(Y 2
0 )E[Y0] (25)

+ 2mV (Y0)
(
eαt − 1

)
+
β2

α
E(Y0)

(
e2αt∧s − 1

)
+

2mβ2

α

(
e3αt∧s

3
− e2αt∧s

2

))

6.2 A more general version of Lemma 2

To obtain a general formula for the leverage having the usual conditions for
existence and uniqueness of the solution of stochastic differential equations do
not suffice anymore. We require that the functions α(·), β(·) and σ(·) are in
C∞(0,∞). We note that all the stochastic volatility models used in practice
have this property.

Lemma 16 Given the asset process with return dynamics specified as in the
system (3), assuming in addition that the functions α, β and σ are of class
C∞, the leverage quantity L(t) is:

L(t) = ρ
A(t)√
B(t)C(t)

(26)

where the quantities in the expression are:

A(t) =
∞∑
i=0

∫ t0

0

∫ t1

0
. . .
∫ ti

0
E
[
σ′i(Yti+1

)β
(
Yti+1

)
σ
(
Yti+1

)]
dti+1dti . . . dt1
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B(t) =
∫ t

0
E
[
σ2 (Ys)

]
ds

C(t) = V
(∫ t

0
σ1(Yu)du

)
+
∞∑
i=0

ai

∫ t0

0

∫ t1

0
. . .
∫ ti

0
E
[
σ′i(Yti+1

)β2
(
Yti+1

)
σ′
(
Yti+1

)]
dti+1dti . . . dt1,

where t = t0 > t1 > t2 > . . ., and the functions σi(y) are calculated using the
recursive expression:σi(y) = σ′i−1(y)α (y) + 1

2
σ′′i−1(y)β2 (y)

σ0(y) = σ(y)
(27)

Consequently, while providing explicit expressions this lemma is not useful
from the applications perspective. Note that the presence of the equations (27)
makes its applicability limited even in the simplest of cases.

Proof. We have already calculated the σ(Yt) dynamics in (13).

To obtain the covariance between these two processes let us calculate:

E [(Rt −R0)(σ(Yt)− σ(Y0))]

= E
[(
µt+

∫ t

0
σ (Ys) dWs

)(∫ t

0
σ1(Yu)du+

∫ t

0
σ′(Yu)β (Yu) dZu

)]
= µt

∫ t

0
E[σ1(Yu)]du+ µtE

[∫ t

0
σ′(Yu)β (Yu) dZu

]
+ E

[∫ t

0
σ (Ys) dWs

∫ t

0
σ1(Yu)du

]
+ E

[∫ t

0

∫ t

0
σ′(Yu)β (Yu)σ (Ys) dWsdZu

]
.

The first integral in the above expression is the product of the two expecta-
tions, the second integral is expectation of a zero mean martingale and using
Itô’s isometry with the last integral (recall that W and Z are correlated with
coefficient ρ), we obtain:

Cov (Rt −R0, σ(Yt)− σ(Y0)) = ρ
∫ t

0
E [σ′(Ys)β (Ys)σ (Ys)] ds+

∫ t

0
E
[
σ1(Yu)

∫ t

0
σ (Ys) dWs

]
du,

where we have applied Fubini’s lemma when appropriate. The second integral
in the covariance expression above is nonzero since the the two Brownian
motions are correlated. Calculating this term requires repeated applications
of the Itô rule. Using the fact that the functions α, β and σ are in C∞(0,∞)
we obtain similarly with (13):
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σ1(Yt) = σ1(Y0) +
∫ t

0

(
σ′1(Ys)α (Ys) +

1

2
σ′′1(Ys)β

2 (Ys)
)
ds+

∫ t

0
σ′1(Ys)β (Ys) dZs

= σ1(Y0) +
∫ t

0
σ2(Ys)ds+

∫ t

0
σ′1(Ys)β (Ys) dZs, (28)

where similarly with (14) we have used the notation

σ2(y) = σ′1(y)α (y) +
1

2
σ′′1(y)β2 (y) .

We substitute (28) in the second integral in the covariance expression and we
obtain three new terms:∫ t

0
E
[
σ1(Y0)

∫ t

0
σ (Ys) dWs

]
du =

∫ t

0
E
[∫ t

0
σ1(Y0)σ (Ys) dWs

]
du = 0∫ t

0
E
[∫ u

0
σ′1(Yv)β (Yv) dZv

∫ t

0
σ (Ys) dWs

]
du =

∫ t

0

∫ u

0
E [σ′1(Yv)β (Yv)σ (Yv)] ρdvdu∫ t

0
E
[∫ u

0
σ2(Yv)dv

∫ t

0
σ (Ys) dWs

]
du =

∫ t

0

∫ u

0
E
[
σ2(Yv)

∫ t

0
σ (Ys) dWs

]
dvdu

The first term above is due to Y0 being adapted to the entire common filtration
Ft, the second is a simple application of conditional expectation and the third
is similar with the integral we started with. A simple induction argument
provides the following expression:

Cov (Rt −R0, σ(Yt)− σ(Y0)) = ρ
(∫ t

0
E [σ′(Ys)β (Ys)σ (Ys)] ds

+
∞∑
i=1

∫ t

0

∫ t1

0
. . .
∫ ti

0
E
[
σ′i(Yti+1

)β
(
Yti+1

)
σ
(
Yti+1

)]
dti+1dti . . . dt1

)
,

with σi(y) as in (27).

Repeating the argument above to calculate the variance of the process σ(Yt)−
σ(Y0 produces a similar result:

V ar (σ(Yt)− σ(Y0)) = V
(∫ t

0
σ1(Yu)du

)
+
∫ t

0
E
[
β2 (Ys) (σ′(Ys))

2
]
ds

+ 2
∞∑
i=1

∫ t

0

∫ t1

0
. . .
∫ ti

0
E
[
σ′i(Yti+1

)β2
(
Yti+1

)
σ′
(
Yti+1

)]
dti+1dti . . . dt1,
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using the same notation as above.
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