
Pricing Implied Volatility 
 
 Expected future volatility plays a central role in finance theory. Consequently, 

accurate estimation of this parameter is crucial to meaningful financial decision-making. 

Researchers generally on the past behavior of asset prices to estimate volatility, relating 

movements in volatility value with prior volatility and/or variables in the investors’ 

information set. These procedures are by nature backward looking using past behavior to 

predict the future. An alternative approach is to use reported option prices to infer 

volatility expectations. Since option value depends critically on the expected future 

volatility, the volatility expectation of market participants can be recovered by inverting 

the option valuation formula when such a formula exists. 

 The volatility expectation derived from reported option prices depends on the 

assumptions used to valuate the option. For example, the Black-Scholes model assumes 

the asset price follows a Geometric Brownian motion with constant volatility. 

Consequently the options on the same asset, but with different strike prices and maturity 

dates should provide the same implied volatility. In practice, however, the implied 

volatility tens to differ across exercise prices and time to expiration producing the so 

called “volatility smile”. 

 The failure of the Black- Scholes model to describe the structure of reported 

option prices is thought to arise from its constant volatility assumption. It has been 

observed that when stock prices go up volatility goes down and vice versa. If the 

volatility is allowed to depend on the stock price it becomes stochastic and accounting for 

stochastic volatility within an option valuation formula is not an easy task. In the special 



case when the volatility is a deterministic function of asset price and/or time, it is possible 

to valuate options by means of the Black - Scholes partial differential equation. 

 Derman and Kani (1994), Dupire (1994), and Rubinstein (1994) develop 

variations of this deterministic case approach. Their methods attempt to fit a cross section 

of option prices and deduce the future behavior of volatility as anticipated by market 

participants. Rather than give a formula or a structural form for the volatility function, 

they search for a binomial or trinomial lattice that achieves an exact cross-sectional fit of 

reported option prices.  

Bellow I will try to give an approximation algorithm for a stochastic volatility 

function. The method is based on cubic splines interpolation and it is an inverse function 

approximation problem since from the market we observe the option price not the 

volatility itself. 

 

 2. Formulation of the problem 

 

 Assume that the underlying asset follows a continuous 1-factor diffusion process 

with the initial value S0: 
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for some finite horizon T, where Wt is a finite Brownian motion and μ(s,t) and σ*(s,t) are 

deterministic functions sufficiently well behaved to guarantee a unique solution to the 

above equation. We assume for simplicity that the instantaneous interest rate is a constant 

r>0 and the dividend rate is a constant q>0. Given S0, r, and q under the no arbitrage 



assumption, an option with volatility σ(s,t), strike price K, and maturity T has a unique 

price v(σ(s,t), K, T). 

Assume that we are given m market option bid-ask pairs, {(bidj , askj)}j=1,…,m 

corresponding to strike prices / expiration times {(Kj, Tj)}j=1,…,m. Let  
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We want to approximate as accurately as possible, the local volatility function 

, from the requirement: bidj ≤ ++ ℜ→×ℜ ],0[:),(* τσ ts ( )),( tsv j σ ≤ askj , for all j’s. 

Since the observation data is finite and the restriction is on the option values, not on the 

volatility itself, the problem is an inverse approximation problem, from finite data. 

The problem can be written as an optimization problem that is finding: 
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Unfortunately the function to be minimized is not differentiable. To overcome non-

differentiability we can solve the least squares minimization problem: 
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where jv =(bidj+askj)/2. Since the observation data is finite this problem typically has an 

infinite number of solutions. Notice that the option price as a functional of the volatility is 

non-linear. 

 There is an obvious solution of the above problem, that is: match the option price 

exactly by finding the local volatility such that ( ) jj vtsv =),(σ  for all j. This method has 

been emphasized in the majority of the papers I read. However, since the problem has an 

infinite number of solutions, a function which matches the finite set of data points will 



tend to over-fit the data and can be very different from the local volatility. Moreover, the 

price jv  generally has error (for example when a bid-ask spread doesn’t exist). In 

addition, in general, the option value vj(σ(s,t)) can only be computed numerically using a 

binomial tree or a PDE approach (the general diffusion equation (1) doesn’t have closed 

form solution). Hence it might not be desirable to insist that the jv ’s are matched exactly. 

For pricing and hedging of exotic options it is more important to compute a local 

volatility function which fits the market as closely as possible but also approximates well 

the “real” local volatility function σ*(s,t) of model (1). 

 Smoothness has long been used as a regularization condition for a function 

approximation problem with limited observation data. A smoothing spline minimizes a 

compromise between goodness of fit and the degree of goodness, that is minimizing the 

functional: 
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          The choice of the regularization parameter λ is crucial here.  

2.1. Choosing the right λ 

 Splines have long been used in approximating smooth curves and surfaces. In a 

typical 1 dimensional spline interpolating settings, m-pairs (xi, Yi) are given according to 

the model: Yi=f(xi)+εi, i=1,…,m with εi ~N(0,σ2). They represent a finite sample of the 

predictor x and of the observable dependent variable f(x). Using this model one estimates 

f(x), using the minimizer of:  
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The first term in Jλ(f) measures the closeness of f(x) to y; the second one adds a 

penalty for the curvature of  f(x). The smoothing parameter λ ≥ 0 controls the tradeoff 

between the two conflicting goals. Small values of λ favor jagged curves that follow the 

data points closely, while when λ → ∞ one has the simple linear regression model 

f(x)=β0+β1 x.  

The freedom of the spline is determined by the degree of the polynomial used for 

approximation, on each segment. Craftsmen and engineers have long used the cubic 

spline as the mechanical spline. It is the smoothest twice-continuously differentiable 

function that matches the observations and the second derivative at fixed points known as 

the knots. It can be shown that for any fixed value of λ, the minimizer of Jλ(f) is a cubic 

spline. 

What value of λ is best for our data? Denote  the function estimate based on 

our data set and a fixed value of λ. If we had new data (x’,Y’) it would be reasonable to 

choose λ to minimize the expected prediction error: 
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How do we compute λ using this principle since in general we don’t have a new 

data set? Fortunately there are methods developed especially for this purpose, namely 

Bootstrap, Cross-validation, and generalized Cross-validation. We will describe these 

methods since we are going to use them in our algorithm. Say our original sample is 

made of n pairs (xi,Yi). 

 The Bootstrap method generates bootstrap samples, which I will denote (x*, Y*). 

A Bootstrap sample is made of n pairs (xi, Yi) drawn from the original data set with 



replacement. Then the method proceeds by computing the curve estimate  based on 

each Bootstrap sample and a fixed value of λ. For each sample, the error that  

makes in predicting the original sample is: 
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Averaging this quantity over B bootstrap samples provides an estimator of the prediction 

error pse(λ).  

 The Generalized Cross-Validation Method divides the data into K roughly equal-

sized parts. For each part k, finds  based on the other K-1 parts of the data, and then 

calculates the prediction error of the fitted model when predicting the kth part of the data. 

Then the Generalized Cross-Validation estimator is the average prediction error over all 

K parts of the data.  
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 Cross Validation is an extreme case of the Generalized Cross-Validation Method, 

here the data is divided into n parts, each containing one data point, the so called “leave-

one-out” cross-validation.   

2.2. How all this apply to our problem.  

 Our problem is slightly more complicated since the function to be approximated is 

two dimensional, and furthermore, is given in implicit form. We overcome these 

difficulties by using a 2 dimensional spline, a so-called bicubic spline, and estimating the 

volatility at given points using the diffusion equation (1), and the observed option values 

from the market. Specifically given jv  for the respective pair (Kj, Tj), we determine the 



local volatility values jσ  by calibrating the market observable prices jv . Then we 

determine the best λ for the data given and fit the respective bicubic spline, which will be 

our estimator of the true local volatility function.  

This procedure will give us a way to estimate the local volatility function for any 

option with strike price and maturity date set. Finding the local volatility will allow us to 

estimate a fair price for the premium of an option and then compare this estimate with the 

premium prices currently on the market.  

2.3. Assumptions and Applications 

 Approximating the local volatility function by a spline is particularly reasonable if 

the local volatility function is smooth. Is this a reasonable expectation for the local 

volatility function? Assume that the underlying follows the 1-factor diffusion process (1). 

Let v(K,T) be observable arbitrage-free market European Call prices, for all strikes 

K∈[0,∞) and all maturities T∈[0,τ]. From the diffusion equation of the European Call 

with dividends (see for example Hull 1997) the local volatility function is given uniquely 

by: 
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This formula suggests that, assuming v(K,T) is sufficiently smooth (note that 2

2

K
v

∂
∂  and 

T
v

∂
∂  already exist) and 02

2

∂
∂

≠
K

v , the [ ]2),(* TKσ  is sufficiently smooth in the region 

(0,∞)× (0,τ] as well. 



 Another issue to be considered here is the fact that the dependence of the option 

premium of the volatility values is not uniform in the region (0,∞)× (0,τ]. The option 

value depends little on the volatility values with small T and K far from Sinit (see Figure 

1). It is convenient to view this as follows: there exists a region centered on Sinit within 

which the volatility values are significant in pricing and hedging (region D in the picture 

bellow). We can at most expect to approximate well the local volatility function in this 

region from the market option data. 

 

 
FIGURE 1. The local volatility in the orange region D is significant for pricing and 

hedging  

 

 3. The computational procedure. 

 We want to approximate the local volatility surface σ*(s,t) with a cubic spline by 

solving (4) for the vector σ = ( 1σ , 2σ ,…, mσ ). The values of the vector σ are determined 

by fitting the observable option values as closely as possible. Although, in theory, the 

volatility for any option can be approximated using this procedure, using anything else 



than European Options requires approximation of the volatility by means of PDE 

discretization techniques or binomial tree approach. Since we don’t want to complicate 

things too much we will concern ourselves only with the European case. 

The freedom in the problem consists in the choice of λ in equation (4). To get to 

this end one might use one of the three criterions described in Section 2.1. It is notable to 

observe that all three methods give approximately the same estimate for λ, though the 

speed with which each converges is different with the bootstrap being the slowest. Once 

λ has been chosen, the local volatility is approximated by the corresponding bicubic 

spline. 

 For the European case we will observe jv ’s from the market and assume that they 

are the true price perturbed by normal errors εj. Then we will find the vector σ  inverting 

these values using a modified bisection method, and use the found values to fit a bicubic 

spline. 

 4. Computational Examples 

 We now describe some computational experience with the proposed method for 

reconstructing the local volatility function σ*(s,t) from limited observation data. The 

method is implemented in R (a open source, clone of S-plus).  

4.1. Reconstructing Local Volatility, a synthetic example. 

 We will consider an artificially constructed example. We consider European calls 

with different strike prices and maturity dates (it is the same example used by Lagnado & 

Osher 1997, and by Coleman & all 1999).  

 In this example the underlying is assumed to follow the diffusion process (1), 

where the volatility function σ*(s,t) is a function of the underlying only, σ*(s,t) = α/s, 



with α =15. Let the initial underlying price be Sinit = 100, the risk-free interest rate 

r=0.05, and the dividend rate q=0.02. 

 We consider as market option data, 22 European call options on S. Eleven options 

have half-year maturity with strike prices ranging from 90 to 110 in increments of 2 units 

and another eleven options have one year maturity with the same strikes. Thus the option 

and maturity vectors are:  

 K = [ 90, 92,…, 110, 90, 92, …, 110] ∈ R22 

 T = [ 0.5, 0.5,…, 0.5, 1, 1, …, 1] ∈ R22 

 For the European Call Option with continuous paid dividends an analytic formula 

exists, and we set the market European call price jv  equal to this value plus a random 

error. That is:  

jv = Exact price of optionj + εj  

where εj’s are normally distributed with variance 1. 

  Note that this is not quite the same example as from the articles cited above where 

the market option price is set exactly equal to the value given by the formula and all the 

discussion and results look like taken from a fairy tale. 

 Figure 2 presents the true volatility function together with the estimated volatility. 

The next plot (Figure 3) is an interesting one, it plots the estimated accuracy of the 

reconstructed volatility function. I did not use the true data that is unknown in the general 

case, but used bootstrap again to estimate it. We can see, as we expected, that the best 

accuracy is attained in the region D described in Section 2.3. The fit has the same level of 

accuracy for a fixed level of maturity simply because the original volatility is not 

dependent on it.  



 

 

 FIGURE 2: The true and the reconstructed local volatility 

 

Next we looked to sections in the volatility surface for fixed levels of Maturity: at T=0, 

T=0.518, and T=1. The fit looks alike for all three Maturity dates proving that the fitted 

function recognized no dependency of volatility on time. 



 

 
FIGURE 3: The estimated standard error 

  

 

FIGURE 4: Comparison of volatility 
fit for different levels of T  



  

  

  

 FIGURE 5: Comparison of hedging factors using the true, reconstructed and implied volatilities 



Next we looked to the hedge factors and the option price computed for an option 

with Maturity 0.5 years (because there we can compute the implied volatility). We used 

true, reconstructed and implied volatility. The plots are given in Figure 5. 

The findings are remarkable. Not only we can use the reconstructed volatility to 

predict the price way outside the range of the implied volatility but the predicted values 

using the reconstructed volatility are way better than using the implied volatility (the 

current market practice). 

4.2. An S&P 500 Example  

Here we used a more realistic example of reconstructing the local volatility using 

real data example specifically S&P 500 index European call options from October 1995. 

It is the same data given in Anderson & Ratcliffe (1998) and Coleman & all (1999). 

The initial index, interest rate and dividend rate are set as in the cited articles: 

Sinit  = $590, r = 0.06,  q = 0.0262. 

Using all the data with maturities ranging from .175 years (2 months) to 5 years we fit the 

local volatility function and the result is given in Figure 6. Also the estimated standard 

error is plotted in Figure 7. We note from these plots two interesting facts. Although the 

original data (implied volatility) varies a little with the Maturity, the difference is very 

small, and for the fitted volatility function practically disappears.  We can see this 

phenomenon from the plots in Figure 8. 

Also from the estimated standard error we see once again that the best fit is obtained in a 

region of type D as stipulated in Section 2.3. Noteworthy is the large error of the fit for 

large values of strike price (deep out of the money). We kind of expected this since there 

is a large uncertainty regarding those types of options. 



 

 FIGURE 6: Plot of the estimated volatility surface 

 

FIGURE 7: The estimated Standard error of the fit 



  

FIGURE 8: Comparison of the fitted curve for fixed 
values of Maturity 

 

 

 

 5. Concluding remarks 

 Assuming the 1 factor diffusion model we reconstructed the local volatility 

surface using 2 dimensional splines. We showed using a synthetically constructed 

example that the method gives better results than just using the implied volatility (the 

current practice on the market). The largest error that the implied volatility induces is 

observed in the option price and the hedging factors, where it counts the most from the 

practical reasons. Furthermore, our results look better than the ones previously published, 

considering the large deviation of prices from their assumed true values.   

 All the computer work necessary was done on a home, midrange value computer 

using R (freeware clone to Splus) and an optional package GSS (General Smoothing 

Splines) courtesy of the author Professor Chong Gu (Dept. Statistics, Purdue University). 

This fact emphasizes the practical value of this paper.  
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