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Abstract— Our previous work describes a simple algorithm 

for automated detection of diver presence using a single passive 
hydrophone. This technique is based on extracting a single 
feature, the “Swimmer Number”, from the hydrophone signal, 
which correlates with diver presence. At any point in time, diver 
presence can be automatically determined by thresholding the 
incoming Swimmer Number at an appropriate level. For this 
system (and other threshold based detection systems) this paper 
explains how to calculate the probability of detecting a diver at 
various ranges from the hydrophone. This function is then used to 
evaluate the probability of detecting a diver at any point in a 
region, given an arbitrary number of hydrophones which are 
scattered in arbitrary positions over the region. We next show 
how non-linear optimization techniques can be used to find the 
optimal set of sensor positions, which maximize the detection 
probability over a region of interest, for a given number of 
sensors. Lastly we show how this theory can be incorporated into 
tracking systems, which estimate the location of a moving diver at 
any point in time, given the outputs of an arbitrarily positioned 
set of hydrophones. 

I. PASSIVE ACOUSTIC DIVER DETECTION 

One of the most challenging aspects of port security is 
providing the means to protect against threats from under the 
surface of the water, [1]. In particular, it is felt that a 
significant terrorist threat might be posed to domestic harbors 
in the form of an explosive device delivered underwater by a 
diver using SCUBA apparatus, [2]. Although active sonar 
systems exist which can detect and track moving targets, e.g. 
[3], the problem of automatically recognizing which, if any, 
moving entities are human divers is less well understood. This 
recognition problem lends itself to a passive acoustic 
approach, since these techniques can make use of prior 
knowledge of the specific sounds generated by a diver. 

Our previous work, [4], [5], describes a simple algorithm for 
automated detection of the presence of a diver, using a single 
passive hydrophone. SCUBA divers emit sounds in a 
characteristic high frequency range which are associated with 
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breathing. Hence a useful feature, the “Swimmer Number” can 
be extracted from a hydrophone signal which evaluates to 
what extent an entity is present which emits regular pulses of 
sound in the characteristic high frequency range, such that 
these pulses are repeated at a low frequency lying in the range 
of typical human breathing rates (0.3-1Hz). This feature takes 
large values when a diver is present and small values 
otherwise, even in the presence of severe background noise. 
This is because most background sound sources are unlikely to 
share both characteristic frequencies (low and high) with the 
diver. 

The Swimmer Number is calculated as shown in figure 1. 
Firstly the raw hydrophone signal is narrow bandpass filtered 
over a small range of frequencies, Δfhigh, about the 
characteristic high frequency associated with a SCUBA diver’s 
breathing. Secondly, an envelope is fitted to the filtered signal 
by connecting peaks and smoothing. Thirdly, the envelope is 
Fast Fourier Transformed to produce a spectrum for the 
envelope waveform. Lastly, the spectrum is integrated over the 

Figure 1. Procedure for extracting a discriminatory feature from 
hydrophone signals.
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range, Δflow, representing the typical range of human breathing 
rates. This procedure yields a single characteristic number. 
This number is discriminating in that it takes high values when 
a diver is present and low values otherwise, even in severe 
conditions of background noise. The number is also “general” 
in that it works equally well for individuals with different 
breathing rates. 

It is observed that the log(Swimmer Number) falls off 
approximately linearly with range (figure 2). 

 

II. PROBABILITY OF DETECTION 

In practice, as can be seen in figure 2 the swimmer number is 
not purely deterministic (otherwise it would lie on a straight 
line), instead it can be treated as a random variable with a 
distribution which depends on the range to the sensor. A 
simple approach to automatic detection of object presence, in 
the case of a single sensor, is to employ a threshold. Any 
log(Swimmer Number) values above the threshold are taken to 
indicate diver presence. Thus, the probability, ( )RDP | , that a 
diver at range, R , is detected, is the probability that the 
log(Swimmer Number), , exceeds the threshold value, S K : 
 

( ) ( )| |P D R P S K R= >   (1)

   
 We use a simple regression of the swimmer number with 
range which in effect means that the swimmer number at any 
particular range is assumed to be normally distributed, i.e. 
 

( )RRNS σμ ,~   (2)
   

where the mean, Rμ , and standard deviation, Rσ , are 
themselves dependent on range. These parameters, and their 

variation with range, can be estimated from experimental 
measurements. For example, our laboratory is currently 
undertaking extensive measurements of this kind, deploying 
expert divers at various known ranges from a hydrophone, 
both in laboratory tanks and the Hudson River by Manhattan, 
under a variety of background noise conditions and using a 
variety of different diving apparatus. 

Mean log(Swimmer Number), Rμ , can reasonably be 
modeled as linearly decreasing with range according to the 
regression line in figure 2. Similar linear relationships will 
apply to many kinds of sensor signal which are often modeled 
as decaying exponentially with range, e.g. [6]. Note that the 
probability of detecting a diver equals one minus the 
probability of failing to detect: 
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Hence, expressing in terms of a normalized Gaussian function: 
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where Φ denotes the distribution function of a standard normal 
random variable. A convenient (though not strictly true) 
simplification is to assume that the standard deviation is 
constant for all ranges, i.e. σσ =R . In this case, the 
probability of detection will simply decrease with range 
according to the tail of a cumulative normal distribution (figure 
3). 

Figure 2. (Reproduced from [5]). Drop off in log(swimmer number) value
with range. Comparison with log(swimmer number) calculated for various
ambient noise conditions. Noise level 1: River noise with low traffic levels, at
night time. Noise level 2: River with ferry and helicopter noise. Noise level 3:
Rough surface conditions, large waves and two helicopters present. Noise
level 4: Severe background noise sources including airplane and helicopter
traffic, speed boat and ferry. 
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Figure 3. For constant σ, Probability of detection drops off with range 
according to the tail of a cumulative normal distribution. Similar drop off 
curves can be computed for more complex functions of σ which 
themselves vary with range, see [7]. 

More complex (and more realistic) functions of Rσ  can also 
be handled numerically, as described in [7]. Often standard 
deviation will itself decrease with range in a similar fashion to 
the underlying value. 

This description of probability of detection has an 
interesting implication for the maximum detection range. 
Conventionally, the maximum range might be regarded as the 
distance at which the Swimmer Number due to a diver drops 
below the threshold value, e.g. “Range 1” in figure 2. In 
contrast, the above analysis indicates that there is still a 50% 
probability of detection at this “maximum” range and 
significant probabilities of detection at even greater ranges. 



 
 

 

III. OPTIMAL SENSOR PLACEMENT ALONG A 1D LINE 

Consider the question: how do we optimally place a certain 
number of sensors of the type described thus far. As a simple 
example consider a line of diver detection sensors forming a 
protective boundary. How far apart can any two sensors be 
placed such that the minimum probability of detecting a diver, 
who crosses the boundary at any location between the sensors, 
exceeds a desired minimum probability of detection? Since the 
cumulative normal curve drops off very rapidly, the 
contributions of any other sensors can often be neglected. For 
the two sensors which bound the point of crossing, the total 
probability of detection, ( )RDP T | , is then one minus the 
probability that both sensors fail to detect: 
 

( ) ( ) ( RDPRDPRDP T ||1| 21−= )        (4) 
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where L is the distance between two consecutive sensors and R 
is the range from one of them (figure 4). 

 For practical purposes, an engineer may wish to determine 
the minimum number of sensors required in order to achieve a 
desired minimum detection probability anywhere along this 
boundary. This can be achieved by preparing a graph, figure 5, 
showing how detection probability varies with position 
between the two sensors, for various different sensor spacings. 
 

 

IV. OPTIMAL SENSOR PLACEMENT ON A 2D PLANE 

In the previous section the sensors were constrained to a linear 
protective boundary. Accordingly the influences of other 
sensors except the two closest to each point along the 
boundary were considered negligible. For the extension to 
optimal placement of sensors over a 2D surface we have to 
consider all the sensors as a system. More specifically, given n 
sensors, how should they be positioned in order to maximize 
the probability of detecting a diver in some region of interest? 
For an arbitrary arrangement of n independent sensors on a 
plane, the total probability (due to the combined efforts of all 
sensors) of detecting a diver at a particular position   is given 
by: 

x
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i.e. one minus the probability that none of the sensors detect 
the diver. The probability that the ith sensor detects the diver is 
given by equation 5, i.e.: 
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where  is the position of the ith sensor and ix

iRμ is found from 

the regression line of figure 2. Fig. 4. A diver crosses a boundary at a point somewhere between two diver
detection sensors. 

Given a criterion for the “net sensor coverage” of the 
region, optimal sensor positions can be found as those which 
maximize this criterion. One such criterion could be the 
minimum probability of detection anywhere in the region. 
However this choice of criterion is hard to maximize because 
it causes many optimization strategies to converge on sub-
optimal local maxima. The reason for this is that, for many 
sensor arrangements, there will be sizeable areas of almost 
zero detection probability. Gradient based optimizers which 
arrive at one of these arrangements will be unable to escape as 
they have become trapped on a region of local maximum. 

 

A better optimization criterion is the expected (i.e. mean) 
probability of detection over the region. We optimize this 
second criterion, noting that this simultaneously improves the 
first criterion. 

Many standard non-linear optimization strategies could be 
used. We prefer Powell’s non-linear least squares method, [8], 
due to its strong performance in high dimensional spaces, 
since N sensors on a 2D plane require a 2N dimensional search 
space. 

Figure 6 shows an example of optimizing the positions of 
fifteen sensors in order to best protect a square region. These 
simple techniques can also be used to best position an arbitrary 
number of sensors over an arbitrarily shaped region. For 
example, a captain may wish to deploy diver detection sensors 
to best monitor an exclusion zone around his ship, figure 7. 

Fig. 5. Probability of detection at all positions between two sensors for 
various different sensor separation distances. Optimum sensor separation 
is that distance for which the central minimum is equal to the minimum 
desired probability of detection at any point.  



 
 

 

Note that the optimal sensor positions do not simply lie on an 
equi-spaced regular square lattice, figure 8. 

It is useful to determine the minimum number of sensors 
required in order to achieve a desired level of protection over a 
region. This can be achieved by preparing a graph, figure 8, 
showing how minimum detection probability (after 
optimization) varies with the number of sensors. 

 
Note that the above technique for optimal sensor placement 

finds the set of sensor positions for which False Negative 
errors are minimized. False Negative (FN) errors occur when 
the system fails to detect a diver that is present.  In contrast, 
we have not addressed the problem of minimizing false 
positive (FP) errors. 

FPs occur when no diver is present, hence no “range” exists. 
FP errors do not depend on range but on the choice of 
threshold and the level of background noise. In contrast, given 
a particular choice of threshold, this paper has shown how to 
optimize sensor positions to minimize false negative (FN) 
errors. Since FNs depend on range and FPs do not, during 
position optimization, FNs are reduced without increasing 
FPs. This is interesting, since FNs and FPs usually present an 
unavoidable tradeoff – decreasing one usually comes at the 
expense of increasing the other. 

 
Fig. 6. Fifteen diver detection sensors, initialized with random positions 
(left) and after optimization (right). Square box denotes the region to be
protected. Brightness denotes probability of detection. Minimum probability
of detection = 0.005 (left) and 0.28 (right). Expected probability of detection
= 0.67 (left) and 0.78 (right). 

Fig. 7. Optimized sensor positions 
for odd shaped regions – e.g. 
monitoring an exclusion zone.  

V. EXTENSION TO LOCALIZATION AND TRACKING 

We now briefly outline a way in which the function of 
probability of detection versus range, derived above, can be 
incorporated into a probabilistic tracking scheme. This kind of 
tracking will be a focus of future work. 

Consider a set of N sensors, positioned arbitrarily across a 
region of water to be protected. Each sensor consists of a 
hydrophone with additional hardware and software for 
calculating and thresholding Swimmer Number values to 
determine diver presence in the region local to each sensor. 

At any given instant, the ith sensor produces a binary output, 
, which takes one of two Boolean states (“true” or “false”), 

indicating whether or not it detects diver presence (i.e. whether 
or not the Swimmer Number measured at that sensor exceeds 
the designated detection threshold). The tracking problem is to 
estimate the location, , of the diver at any time, t, given the 
set of all sensor outputs,
instant. 
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Fig. 8. Optimal positions for 20 
sensors to protect a square region. 
This is not a square lattice, the lines 
of sensors are distinctly curved. 
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The probability that the diver is at a particular candidate 
location, , can be evaluated using recursive Bayesian 
filtering. From Baye’s law: 

tx
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Assuming that the sensors all perform independently, the 
conditional term can be evaluated as: 
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Equations 10 and 11 can be evaluated using equation 7. 

The prior probability term, , can be evaluated from  
the posterior term at the previous time step via a motion and 

( )tP x

Fig. 8. Improvement in detection rate with increasing numbers
of optimally positioned sensors, for the square region shown in
figures 5 and 7. 
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diffusion model as in Kalman filtering or particle filtering 
techniques. We suggest a particle filtering approach as in [9], 
[10], since the distributions are highly non-gaussian and may 
often be oddly shaped and/or multi-modal. 

The following figures show how the binary output of diver 
detecting sensors can be used to infer diver location based on 
the conditional probability term, , described above 
(equations 9, 10, 11). In each case, green dots represent 
sensors whose output is “false - no diver detected” and red 
dots represent sensors whose output is “true - diver detected”. 
Based on these sensor outputs, all locations are assigned a 
probability of diver presence. White denotes high probability, 
black denotes low probability, with continuous shades of grey 
in between. 

( ttP xO | )

Figure 10 shows how the binary states of a single sensor 
place probabilistic constraints on diver location. 

Figure 11 shows a simulation of a diver moving through a 
field of sensors. At each time step, the binary outputs of all 
sensors are combined to infer the likely location of the diver. 

Note, that by using only the binary (thresholded) output of 
each sensor, we are arguably discarding information. 
Therefore, future work may also examine techniques which 
make use of the actual Swimmer Number value itself to 
determine location. In this case we would seek, for each 
candidate diver location, to evaluate: 

 
( ) ( ) ( )ttttt PPP xxSSx || ∝          (12) 

 
where { }tNit SSSS ,...,,...,, 21=S  is the set of Swimmer 
Numbers output by the sensors. It is possible that this 
alternative approach might outperform the simple approach 
described above, however the Swimmer Number versus range 
function is highly noisy. The non-linearity of the previously 
described approach (above), which utilizes only binary 
thresholded outputs, may serve to provide added robustness 
against noise. Future work will implement, test and compare 
these two potential tracking methods. 
 

VI. CONCLUSIONS AND FUTURE WORK 

This paper has derived a simple function of probability of 

detection versus range for passive acoustic diver detecting 
sensors. This analysis may also be applicable to many other 
detection systems which also rely on thresholded feature 
values derived from sensor signals. 

1 2 

3 4 

Fig. 10. Binary state of a sensor probabilistically informs diver location. 
Left: “diver detected” implies diver is near to sensor. 
Right: “diver not detected” implies diver is far from sensor. 
Brightness denotes likelihood of diver presence. 

6 5 

Fig. 11. A diver moves across an arbitrarily spaced field of sensors. At 
each time step, each sensor either detects diver presence in its local 
vicinity (red) or fails to detect diver presence (green). Based on this 
combination of sensor responses, and a curve of detection probability 
versus range for each sensor, it is possible to reason about the diver’s 
location. For all points, brightness denotes likelihood of diver presence. 
Note that diver location distributions are not symmetrical and are 
significantly non-gaussian. Such odd shaped distributions are best 
represented by “factored sampling” and can be tracked using particle 
filtering techniques. 

The probability of detection versus range function is 
important because it enables optimal positioning of multiple 
sensors over a region of interest or along a protective 
boundary. To perform this optimization with respect to 
additional knowledge of the detected object or its 
environment, see [11] and [12], in which diver detection 
sensors are optimally positioned with respect to river currents 
forecast by a computational estuarine model. 
 The probability of detection versus range function is also 
informative about diver location, and can be used to localize 
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 Future work will examine more complex models of divers 
and their corresponding sensor signals. For example, passive 
acoustic signals from a diver may actually vary with 
orientation as well as with range. In this case we will examine 
probability distributions of Swimmer Numb r 
posi ent ( )tttt yxP θ,,|S  
and ( )tttt yxP S|,, θ . 
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