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 Abstract. 

 Queuing Processes is a subject that have been overlooked by research in 

economic applications. The objective of this paper is to give some economic insights of 

the queuing applications that have been tried over the years, as well as to propose some 

new ways of tackling the problem. 
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1. Introduction 

This paper is meant to be review of the applications of the queuing theory in 

economic literature, as well as (hopefully) give a new start in this domain. The first part 

of this paper is meant to give a short history of development of queuing theory and to 

familiarize the reader with the specific jargon of this language.  

The second part is devoted to economic applications of queuing theory. The 

classic customer service model is presented and some extensions of this model.  

 Part three is trying to present some queuing applications from a new perspective. 

There are two main development areas in recent queuing literature; unfortunately none of 

them have been fully implemented in economic applications. Consider a resource 

allocation problem, for example, using linear programming to determine how much of 

each product should be made, within the limitations of the resources needed to make the 

products. This is a prescriptive model since it prescribes the optimal course of action to 
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follow. This type of approach to the problem has the generic name of Design and Control 

of queues.  

The other approach to the problem is to observe a real live situation, and to try to 

figure out the parameters involved. This sounds like an old song because all the queuing 

theory is doing just that: put a real live situation into a known mathematical pattern and 

apply formulas. Simulation isn’t just as simple though, because most of the real live 

problems don’t have a definite mathematical model just for that case, and even if there is 

one it might not have closed form solutions. Also, the next step for simulation is to try to 

improve the model by trying diverse “laboratory situations” and see which one improves 

the model the best.  

 

Part I. Basics of queuing theory. 

 

1.1 History   

The theory of queues was initiated by the Danish mathematician A. K. Erlang, 

who in 1909 published “The theory of Probabilities and Telephone Conversation”. He 

observed that a telephone system was generally characterized by either (1) Poisson input 

(the number of calls), exponential holding (service) time, and multiple channels (servers), 

or (2) Poisson input, constant holding time and a single channel. Erlang was also 

responsible in his later works for the notion of stationary equilibrium and for the first 

consideration of the optimization of a queuing system. 

Applications of the theory to the telephony were soon appearing. In 1927, E. C. 

Molina published “Application of the Theory of Probability to Telephone Trunking 
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Problems”, and one year later Thornton Fry printed “Probability and its Engineering 

Uses” which expand much of Erlang’s earlier work. In the early 1930’s Felix Pollaczeck 

did some further pioneering work on Poisson input, arbitrary output, and single and 

multiple channel problems. Other names working in the same field during that period 

included Kolmogorov and Khintchine in Russia, Crommelin in France and Palm in 

Sweden. The work in queuing theory picked up momentum rather slowly in its early 

days, but in 1950 started to accelerate and there have been a great deal of work in the area 

since then. 

 

1.2 Early applications 

 There are many valuable applications of the theory, most of which have been well 

documented in the literature of probability, operations research, management science and 

industrial engineering. Examples include: traffic flow (vehicles, aircraft, people, 

communications), scheduling (patients at the doctor, programs on a computer), and 

facility design (banks, post offices, fast-food restaurants). 

Queuing theory originated as a very practical subject but much of literature up to 

middle 1980’s was of little direct practical value. Since then the emphasis in literature on 

finding the exact solution of queuing problems with clever mathematical tricks is now 

becoming secondary to model building and the direct use of these techniques in decision 

making. Most real problems do not correspond exactly to a mathematical model and do 

not always have closed-form solutions, but most of the time we are able to conduct 

computational analysis and find approximate solutions. We have to thank for this to our 

every day companion, the computer.  
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1.3 Characteristics 

The mechanism of the queuing process is very simple. Customers (not necessarily 

human customers) are arriving for service, waiting for service if it is not immediate, and 

leaving the system as soon as they are served.  

There are six basic characteristics of queuing processes which provide an 

adequate description of a queuing system: (1) arrival pattern of customers, (2) service 

pattern of servers, (3) number of service channels, (4) system capacity and (5) queue 

discipline. 

In usual queuing systems the arrival pattern of customers is stochastic and it is 

thus necessary to know the probability distribution describing the time between 

successive customer arrivals (interarrival times). Also the arrival pattern can change with 

time so we differentiate between stationary and nonstationary arrival patterns. The same 

discussion applies to the service pattern of servers, a probability distribution is needed to 

describe the sequence of customer service times. Queue discipline refers to the manner in 

which customers are selected for service when a queue has formed. The most common 

discipline is first come, first served (FCFS), but there are many others like last come, first 

served (LCFS) which is applicable in many inventory systems as it is easier to reach the 

nearest item; randomly selecting for service (RSS) independent of the arrival time of the 

customer; and a variety of priority schemes, the customers with higher priority being 

served ahead of the lower priority customers regardless of the order in which they arrived 

to the system. 
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 1.4 Notation  

As shorthand for describing queuing processes, a notation has evolved, due to Kendall 

(1953), which is now standard throughout the queuing literature. A queuing process is 

described as A/B/X/Y/Z, where A indicates the interarrival-time distribution, B the service 

pattern described by the probability distribution for service time, X the number of servers, 

Y the restriction on system capacity and Z the queue discipline. Table 1 bellow 

summarizes some of the most common symbols. 

Characteristic Symbol Explanation 
Interarrival time M Exponential 
Distribution (A) D Deterministic 

and Ek Erlang type k (k=1,2,…) 
Service-time Hk Mixture of k exponentials 

Distribution (B) G General distribution 
Number of servers (X) 1,2,…,∞  
Restriction on system capacity 1,2,…,∞  

 FCFS First come first served 
Queue LCFS Last come, first served 

discipline RSS Random selection for service 
 PR Priority 

 GD General discipline 
 

In many situations only the first three symbols are used. Current practice is to 

omit the service capacity symbol if no restriction is imposed (Y=∞), and to omit the 

queue discipline if it is first come first served (Z=FCFS). The symbol G represents a 

general probability distribution; all we know is that the interarrival times are independent 

and identically distributed. 
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Part II. Review of literature. Economic Examples. 

Surprisingly there are not so many economic applications studied yet. Some of the 

latest applications include: 

 

2.1 Customer service  

The classical model of clients waiting for service while incurring waiting cost to get 

reward from service have been implemented extensively but for the practical 

applications it has not surpass the model M/M/1.  There have been attempts to construct 

more complex models.  For example Kleinrock (1968) propose a model M/M/1 with a 

little different service discipline. Instead of FCFS discipline customers are using bribe to 

gain a better position in line. A customer paying a bribe will be served before the ones 

who paid smaller bribes in the queue, but after the people in the queue who paid larger 

bribes.  This model is appropriate to some undeveloped countries where for gaining an 

audience you are encouraged to pay a fee to the clerk doing registration. The model is 

also appropriate to an auction process.  Leff (1970) suggested that such a model may 

have beneficial effects serving as a catalizator for an otherwise sluggish economy.  

Myrdal (1968, chap.  20), argues that the corrupt official may deliberately cause delays 

in order to attract more bribes.  If this is the case then the efficiency argument is gone.  

This opinion is answered by Lui, who in 1985 showed that, if the server does not decide 

the amounts of bribe payments, but the customers themselves are doing that, there exists 

Nash equilibrium.  Under the extra condition, that the server is interested in speeding up 

the process in order to gain more bribes, the outcome is also socially optimal.   
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Luski (1976) discusses the notion of equilibrium in a queuing system with two 

servers (M/M/2 model).  Specifically there are two firms offering the same kind of 

service, each fixing its price as to maximize profit.  The decision of customers in joining 

one of the queues or not joining at all is made according to their cost of waiting, the 

expected waiting time and the price of the service in each firm.  He showed that if the 

firms are not cooperating, and if the service time for each firm μ < λ/2, each firm will 

sell at a different price in order that an equilibrium exists. In the alternate case μ > λ/2 

the firms will sell at the same price (the same mechanism that governs the real life). Not 

only that but he showed that if the firms are cooperating it is possible to raise joint 

profits by playing with prices (again logical: more or less like a monopolistic model).  

 

2.2 Derivatives of the Customer Service Model: Bottleneck model.  

This model is an extension of the previous M/M/1 model. Customers are arriving at a 

facility and are faced with the decision of entering or not in the system (balking 

phenomenon). Each customer has a cost per unit of service and waiting time, c, and 

receives a benefit R if he is served by the facility. In addition to the previous models the 

system charges a fee θ for the service and this toll determines a critical queue size. This 

model is pertinent with some real life situations, like today’s Internet providers or toll 

paying highways. P. Naor (1969) has shown that the critical length of the queue, which 

maximizes the social welfare function is greater then the one which maximizes the 

expected revenue per unit time. In other words, the revenue-maximizing toll exceeds the 

socially optimal toll. Edelson and Hildebrand (1975) have shown that this is not the case 

if no balking is permitted and the same toll is Nash and Pareto Optimal.  
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R. Arnott, A. de Palma and R. Lindsey (1995-1996), basing their work on a model 

initially developed by Vickrey (1963,1969) and similar with the previous one, 

generalized this problem. They allowed multiple servers (service time is deterministic), 

and also the customer, instead of just deciding whether or not to enter the system, now 

has the extra choice of when to use the facility. The decision is made accordingly to 

information that each client has, information that is stochastic with some distribution. The 

authors define better information from the social efficiency of the model point of view. 

The model is very applicable. Roads with today’s severe congestion problems and with 

the information that each driver can obtain (listening radio, information panels etc…) are 

the best example of such application. Arnott et all have shown that, if the customers 

decide only whether or not to use the facility, better information is more efficient. They 

have shown also that if the customers decide both whether and when to use the facility 

then the above result doesn’t hold anymore and better information can be harmful when 

the congestion is unpriced. However if efficient tolling (different toll prices during the 

congestion hours) is applied the above result holds. 

Another extension of the M/M/1 model is an article by Joseph Daniel (1995). He 

applies this queue to an airport, modeling arrivals and service time until departures as 

stochastic. Also he is applying his thus constructed model to a real life case using data 

from the Minneapolis-St. Paul Airport during the firs week of May 1990. He allows the 

arrival rate to be modeled by a time dependent Poisson Process, in fact dividing the time 

into equal intervals during which the arrival rate is constant. The costs incurred are the 

usual ones: queuing cost and service cost, where by service cost he understands the price 
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paid for the difference from the scheduled time of departure. The social planner can 

impose a congestion fee, which will depend of the scheduled time of operation.  

What is remarkable about this article is that it estimates the parameters of the model 

and then uses those parameters to simulate the data. Using simulation allows him to find 

the optimal congestion toll and the optimal number of servers (i.e. by building additional 

runways). 

 

Part III. Examples in mathematical form 

 

3.1 Insurance risk 

We make the following assumptions regarding the business of an insurance company: 

(i) The number of claims arising in a time interval (0,t] has a Poisson Distribution 

with parameter λ, 0≤ λ≤ ∞. 

(ii) The amounts of successive claims are independent random variables with 

common distribution B(x) (-∞< x< ∞), where x can take negative values in the 

case of ordinary whole-life annuities.  

We can consider this model as a M/G/1 queuing system where the input process A(t) is 

just a simple Poisson process with parameter λ giving us the moments of claims. We will 

consider the service as being the amount of each claim, and let X(t) the total amount of 

claims arising in (0,t]. Assuming X(t)=0 we have: 

(3.1) X(t) = ζ1 + ζ2 + … + ζA(t) ,  

where ζ1 , ζ2 ,… are the successive claims. Because A(t) is a Poisson process, the 

distribution function of X(t) is given by: 
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This is the compound Poisson distribution. We have:   
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(iii) The totality of policyholders pays the company premiums at a constant rate β. We 

call β the gross risk premium rate. We will assume that α and β have the same 

sign. 

The company’s reserve fund at time t is given by Z(t) = x + βt – X(t) , with initial 

value Z(0) = x ≥ 0. Here Z(t) may assume positive or negative values. 

The objective of the company is to choose the initial reserve x large enough to 

avoid ruin over a finite or infinite horizon.  

So, the company is concerned with the stopping time: 

(3.4) T(x) = inf { t > 0 : x + βt – X(t) < 0 }, 

 and wants to evaluate the probability of avoiding ruin over a finite or an infinite 

horizon, that is,  

(3.5)  P{T(x) > t} (for some 0 < t <∞) or P{ T(x) = ∞}. 

Prabhu (1998) showed that the storage process Z(t) is a Markov process and he 

computed the limit probabilities (3.5) when t goes to ∞. 

 

In the model described above we have seen the basic process, which is the 

compounded Poisson Process. An important feature of this model is that at any moment 

of time only a finite number of events have occurred (namely customer claims). The 
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resulting property of the resulting process is that its sample function takes only a finite 

number of jumps in each finite interval. However this description of the input is very 

unrealistic in certain situations. Which brings us to the next model: 

  

3.2 Storage Model 

 

Consider a model of a granary with a large enough (effectively infinite) capacity. 

Let X(t) denote the input of grain into it during a time interval (0,t]. 

In order to formulate such a process let’s suppose that X(t) has stationary and 

independent increments i.e.: 

(i) For 0≤t1≤…≤tn with n≥2 we have X(t1), X(t2)- X(t1),…, X(tn)-X(tn-1) are 

independent 

(ii) Distribution of increment X(tp)-X(tp-1) depends only on tp-tp-1 

Suppose furthermore that the process X is right continuous, the quantity X(t)-X(t-) being 

the jump at time t with only a finite number of jumps allowed.  

 Under these regularity conditions X the input process is a Levy process (a broad 

family containing Brownian Motion and Compounded Poisson Process among others). In 

particular Z(t)=Z(0)+X(t)+  is a semimartingale so all the theory of Stochastic 

integration can be applied (see Protter 1988).  

{ }∫ =

t

sZ ds
0 0)(1

 Again we are concerned with T(x)= inf{t : Z(t)=0}the period until the first 

shortage appears (here x=Z(0))and again Prabhu (1998) found the distribution of T under 

the assumption T(0)=0. 
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3.3 Livestock problem: 

 Suppose that we have an animal farm that grows pigs. We want to put this into a 

queuing model. To do this we will make the following assumptions: 

Each time a new animal is born we have to pay a fixed amount of money β for doctor and 

other costs. In addition each animal costs us money until we service it. C denotes this cost 

per unit time. We will consider this model as a M/M/1/K queue where the last number K 

is the finite capacity of the model.  

 As usual arrival rate is λ service rate is μ. We want to find the optimal truncation 

value k, which maximizes the expected profit rate. Mathematically this problem is to 

find: 

  ( )Wpcp kkKk
)1()1(max

1
−−−

≤≤
λβλ  

, where the quantities pk and W are given by: 

pk= Kkfor
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 3.3.1 Another option for livestock model (M/M/1 queue with controlled 

service rate): 

 Suppose now that we have an unlimited storage capacity but we can control the 

rate of service μ in an interval [0,μ&&& ]. We can change the rate of service after servicing 

each pig. Let S(μ) be the cost per unit time for using rate μ and let  C(i) be the cost per 

unit time when there are i pigs in the system (queue plus service). We want to cut down C 

by choosing a faster service rate, which costs more; in other words we want to find 

optimal tradeoff between service cost and system cost. 
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Assumptions: 

1. There is a μ such that μ > λ 

2. C is positive, nondecreasing and “convex”: C(i+2) - C(i+1) ≥ C(i+1) – C(i)  

3. S is nonnegative and continuous on [0, μ&&& ]; S(0)=0 

 Here the state variable is the number of customers in the system. The control 

variable is the choice of service rate after a customer departs. 

 Take ν = λ + μ&&&  the uniform transition rate. Bertsekas(1987) shows that the 

problem can be reduced to this transition rate. The cost per stage is: C(i) + S(μ). Then the 

Bellman equation is: 

J(0)= [C(0) + (ν- λ)J(0) + λJ(1)] 
μ

min

 J(i)= [C(i)+S(μ) + μJ(i-1) + (ν- λ -μ)J(i) + λJ(i+1)] 
μ

min

So we get the optimal policy: use at state i the service rate that minimizes:  

S(μ) - μ [J(i) - J(i-1)] 

 

 3.3.2 M/M/1 model with controlled arrival rate  

 We will look to the same problem from yet another perspective. Suppose that the 

service rate is fixed λ but we can control now the birth rate into an interval [0, ]. The 

only thing that modifies from the previous model is that we have now a cost S(λ) per unit 

time associated with the specific rate of birth chosen instead of the cost specific to 

different service rates.  

λ&&&

 Again let ν =  + μ, the uniform transition rate. In this case Bellman equation 

becomes  

λ&&&
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 J(0) = [C(0) + S(λ) + (ν- λ)J(0) + λJ(1)] 
λ

min

 J(i)=  [C(i)+S(μ) + μJ(i-1) + (ν- λ -μ)J(i) + λJ(i+1)] 
λ

min

 Maximizing this time with respect to λ gives us the optimal policy: use at state i 

the birth rate that minimizes S(λ) + λ [ J(i) – J(i-1)]. 
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