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Abstract—This paper provides a probabilistic analysis of 

simple detection systems which are based on thresholding feature 

values extracted from a sensor signal. For such systems, this 

paper explains how to calculate the probability of detection as a 

function of range from the sensor to the object of interest. This 

function is important in that it enables optimal positioning of a 

group of sensors, either maximizing detection rates for a given 

number of sensors or informing the minimum number of sensors 

necessary to achieve a desired probability of detection throughout 

an area. An example case study is presented, based on a novel 

approach to passive acoustic diver detection in noisy 

environments.  

 
Index Terms—Sensor placement, probability of detection, diver 

detection, sensor network optimization. 

I. DISCRIMINATING FEATURES AND RANGE 

ANY sensors detect energy (e.g. sound or light) emitted 

from an object of interest, which decreases with range. 

Often this decrease is modeled as exponential decay (e.g. [1]). 

For object detection, it is usually necessary to extract 

“features”, numbers in some way calculated from the raw 

sensor signal, which correlate with the presence of the object. 

Typically feature values will decrease with range in a similar 

manner to the raw signal strength. For exponential decay, this 

range relationship can easily be linearized by simply replacing 

all feature values with their natural logarithm. Other kinds of 

decay, such as inverse square laws, can also be linearized with 

simple manipulations. 

As an example, our recent work, [2], proposes a technique 

for passive acoustic detection of a diver. Analysis of 

characteristic sounds emitted by SCUBA divers, has identified 

a useful discriminating feature, the “Swimmer Number”, which 

can be calculated from a hydrophone signal. This feature takes 

large values when a diver is present and small values 

otherwise, even in the presence of severe background noise. It 

is observed that the log(Swimmer Number) falls off 

approximately linearly with range (figure 1). 
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II. PROBABILITY OF DETECTION 

A simple approach to automatic detection of object presence 

is to employ a threshold, e.g. for diver detection, any 

log(Swimmer Number) values above the threshold are taken to 

indicate diver presence. Thus, the probability, ( )RDP | , that a 

diver at range, R , is detected, is the probability that the 

log(Swimmer Number), S , exceeds the threshold value, K : 

( ) ( )RKSPRDP || >=        (1) 

We use a simple regression of the swimmer number with 

range which in effect means that the swimmer number at any 

particular range is assumed to be normally distributed, i.e. 

( )RRNS σµ ,~           (2) 

where the mean,
Rµ , and standard deviation,

Rσ , are 

themselves dependent on range. These parameters, and their 

variation with range, can be estimated from experimental 

measurements. For example, our laboratory is currently 

undertaking extensive measurements of this kind, deploying 

expert divers at various known ranges from a hydrophone, 

both in laboratory tanks and the Hudson River by Manhattan, 

under a variety of background noise conditions and using a 

variety of different diving apparatus. 

Mean log(Swimmer Number),
Rµ , can reasonably be 

modeled as linearly decreasing with range according to the 

regression line in figure 1. Similar linear relationships will 

apply to many kinds of sensor signal which decay 

exponentially with range. Note that the probability of detecting 

a diver equals one minus the probability of failing to detect: 
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Fig 1. Drop off in log(Swimmer Number) value with range. Swimmer 

Numbers calculated for sample hydrophone recordings of a diver in the 

Hudson River at various ranges and typical (severe) background noise in the 

river with no diver present. An appropriate detection threshold should be 

chosen to be greater than most background noise values and this implies an 

effective detection range for the system. 
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( ) ( ) ( ) ( )RKSPRDPRKSPRDP |1|1|| ≤−=−=>=  (3) 

Hence, expressing in terms of a normalized Gaussian function: 
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where Φ denotes the distribution function of a standard normal 

random variable. A convenient (though not strictly true) 

simplification is to assume that the standard deviation is 

constant for all ranges, i.e. σσ =R
. In this case, the 

probability of detection will simply decrease with range 

according to the tail of a cumulative normal distribution 

(figure 2). In reality, standard deviation often decreases with 

range in a similar manner to the underlying quantity, i.e. if 

log(Swimmer Number) drops off  linearly then 
Rσ will do so 

too. For arbitrarily complex 
Rσ functions, probability of 

detection vs. range curves can be built numerically (figure 2). 

This description of probability of detection has an 

interesting implication for the maximum detection range. 

Conventionally, the maximum range might be regarded as the 

distance at which the Swimmer Number due to a diver drops 

below the threshold value, i.e. the point of intersection of the 

regression line of figure 1 with the threshold. In contrast, the 

above analysis indicates that there is still a 50% probability of 

detection at this “maximum” range and significant 

probabilities of detection at even greater ranges. 

III. OPTIMAL SENSOR PLACEMENT ALONG A 1D LINE 

As a simple example consider a line of threat detection sensors 

forming a protective boundary. How far apart can any two 

sensors be placed such that the minimum probability of 

detecting a threat, which crosses the boundary at any location 

between the sensors, exceeds a desired minimum probability 

of detection? Since the cumulative normal curve drops off very 

rapidly, the contributions of any other sensors can often be 

neglected. For the two sensors which bound the point of 

crossing, the total probability of detection, ( )RDP
T | , is one 

minus the probability that both sensors fail to detect: 
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T ||1| 21−=        (5) 
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where L is the distance between two consecutive sensors and R 

is the range from one of them (figure 3). 

 For practical purposes, an engineer may wish to determine 

the minimum number of sensors required in order to achieve a 

desired minimum detection probability anywhere along this 

boundary. This can be achieved by preparing a graph, figure 4, 

showing how detection probability varies with position 

between the two sensors, for various different sensor spacings. 

IV. OPTIMAL SENSOR PLACEMENT ON A 2D PLANE 

Given n sensors, how should they be positioned in order to 

maximize the probability of detecting a diver in some region of 

interest? For an arbitrary arrangement of n independent 

sensors on a plane, the total probability (due to the combined 

efforts of all sensors) of detecting a diver at a particular 

position  x  is given by:  
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i.e. one minus the probability that none of the sensors detect 

the diver. The probability that the i
th

 sensor detects the diver is 

given by equation 4, i.e.: 
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where 
ix  is the position of the i

th
 sensor and 

iRµ is found from 

the regression line of figure 1. 

Given a criterion for the “net sensor coverage” of the 

region, optimal sensor positions can be found as those which 

maximize this criterion. One such criterion could be the 

minimum probability of detection anywhere in the region. 

However this gives large regions of local minima (since for 

  

 
Fig. 2. Three different functions of 

Rσ versus range (left), and the 

corresponding curves for probability of detection versus range (right). 

Constant 
Rσ , linearly decreasing 

Rσ and arbitrarily varying 
Rσ . 
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Fig. 3. A threat crosses a boundary at a point somewhere between two threat 

detection sensors. 

 
Fig. 4. Probability of detection at all positions between two sensors for 

various different sensor separation distances. Optimum sensor separation 

is that distance for which the central minimum is equal to the minimum 

desired probability of detection at any point.  
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many sensor arrangements there will be sizeable areas of 

almost zero detection probability), making gradient based 

optimization prone to local minima convergence. A better 

optimization criterion is the expected (i.e. mean) probability of 

detection over the region. We optimize this second criterion, 

noting that this simultaneously improves the first criterion. 

Many standard non-linear optimization strategies could be 

used. We prefer Powell’s non-linear least squares method, [3], 

due to its strong performance in high dimensional spaces – N 

sensors on a 2D plane require a 2N dimensional search space. 

Figure 5 shows an example of optimizing the positions of 

fifteen sensors in order to best protect a square region. These 

simple techniques can also be used to best position an arbitrary 

number of sensors over an arbitrarily shaped region. For 

example, a captain may wish to deploy diver detection sensors 

to best monitor an exclusion zone around his ship, figure 6. 

Note that the optimal sensor positions do not simply lie on an 

equi-spaced square lattice, figure 7. 

It is useful to determine the minimum number of sensors 

required in order to achieve a desired level of protection over a 

region. This can be achieved by preparing a graph, figure 8, 

showing how minimum detection probability (after 

optimization) varies with the number of sensors. 

V. DISCUSSION 

Note that this paper has not addressed the problem of 

minimizing false positive (FP) errors. FPs occur when no diver 

is present, hence no “range” exists. FP errors do not depend on 

range but on the choice of threshold and the level of 

background noise. In contrast, given a choice of threshold, this 

paper has shown how to optimize sensor positions to minimize 

false negative (FN) errors. Since FNs depend on range and FPs 

do not, during position optimization, FNs are reduced without 

increasing FPs. This is interesting, since FNs and FPs usually 

present an unavoidable tradeoff – decreasing one usually 

comes at the expense of increasing the other. 

The theory presented here is very simple, but useful and 

fundamental. While there is a body of literature which 

discusses the optimal choice of threshold, we have not 

encountered elsewhere a simple and concise presentation of 

how to calculate probability of detection versus range or use it 

to optimize sensor placements – the aim of this paper. We also 

have not encountered discussions of standard deviations which 

themselves vary with range in this context. 

VI. CONCLUSIONS AND FUTURE WORK 

This paper has derived a simple function of probability of 

detection versus range, which is applicable to many detection 

systems which threshold feature values derived from sensor 

signals. This kind of function is important as it enables optimal 

positioning of multiple sensors over a region of interest or 

along a protective boundary. To perform this optimization with 

respect to additional knowledge of the detected object or its 

environment, see [4] and [5]. 

 Future work will examine more complex models of the 

detected objects and sensor signals. For example, passive 

acoustic signals from a diver may actually vary with 

orientation as well as with range. We are also exploring ways 

of incorporating these ideas into probabilistic tracking 

algorithms, i.e. for recursively estimating the location of a 

diver moving across an arbitrarily distributed field of sensors. 
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Fig. 5. Fifteen diver detection sensors, initialized with random positions 

(left) and after optimization (right). Square box denotes the region to be 

protected. Brightness denotes probability of detection. Minimum 

probability of detection = 0.005 (left) and 0.28 (right). Expected probability 

of detection = 0.67 (left) and 0.78 (right). 

Fig. 6. Optimized sensor positions 

for odd shaped regions – e.g. 

monitoring an exclusion zone.  

Fig. 7. Optimal positions for 20 

sensors to protect a square region. 

This is not a square lattice, the lines 

of sensors are distinctly curved. 

Fig. 8. Improvement in detection rate with increasing numbers 

of sensors, for the square region shown in figures 5 and 7. 
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