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Abstract— Visual tracking algorithms have important robotic
applications such as mobile robot guidance and servoed wide
area surveillance systems. These applications ideally require
vision algorithms which are robust to camera motion and scene
change but are cheap and fast enough to run on small, low
power embedded systems. Unfortunately most robust visual
tracking algorithms are either computationally expensive or
are restricted to a stationary camera.

This paper describes a new color based tracking algorithm,
the Adaptive Background CAMSHIFT (ABCshift) tracker and
an associated technique, mean shift servoing, for efficient
pan-tilt servoing of a motorized camera platform. ABCshift
achieves robustness against camera motion and other scene
changes by continuously relearning its background model at
every frame. This also enables robustness in difficult scenes
where the tracked object moves past backgrounds with which
it shares significant colors. Despite this continuous machine
learning, ABCshift needs minimal training and is remarkably
computationally cheap. We first demonstrate how ABCshift
tracks robustly in situations where related algorithms fail, and
then show how it can be used for real time tracking with pan-tilt
servo control using only a small embedded microcontroller.

Index Terms— ABCshift, CAMSHIFT, Meanshift, tracking,
servoing, adaptive background model.

I. INTRODUCTION

Robot vision has important applications to mobile robots
and wide area surveillance. For example, consider a robot
vehicle which is visually guided to follow a moving target,
or the use of a large number of cheap pan-tilt surveillance
cameras scattered over a region of interest to monitor pedes-
trians or vehicles. For military and other operations we can
envisage a combination of these tasks, (e.g., sending out
a large number of small, cheap mobile surveillance units
to penetrate and survey a hostile area). In these kinds of
applications, we need a visual tracking system that is robust
to scene change associated with motion of the camera as
well as the target. However, the vision algorithm must also
be fast and computationally inexpensive so that it can be
implemented at real time frame rates on cheap, lightweight,
low power embedded systems.

Popular methods of tracking moving targets include vari-
ations on the theme of background subtraction. Research in
this area has focussed on methods of adaptively updating the
background model to cope with gradual scene changes [1],
[2], [3] . Unfortunately these methods fail unless the camera
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is stationary. The background model is only relearned very
slowly over many frames, so that when the camera moves
and the scene changes instantly, large parts of the image will
be falsely detected as “moving target regions”. Thus, these
methods are unsuitable for robotic vision systems which
involve motorized camera motion.

Fundamental work in visual servoing [4], [5] detect mov-
ing targets from a moving camera system by segmenting
coherent regions of optical flow. This research demonstrated
impressive speed and robustness, but tended to rely on
expensive hardware, because the optical flow calculations
are computationally intensive and because accurate rotation
sensors are needed in order to accurately measure the camera
motion which is then subtracted from the motion field
observed by the camera. In contrast, our method is robust
to arbitrary, unknown camera motion. Other visual servoing
work, [6], is also robust to camera motion, but is limited to
tracking flat, non-deforming targets.

Other researchers have also attempted to control a moving
camera on robot arm arrangement with respect to a tracked
object. The method in [7] relies on best fitting a model of the
tracked object to segmented lines and edges. The method of
[8] avoids the need for high resolution edges by fitting the
object model directly to segmented image regions. However,
both of these methods depend on detailed 3D models of
the tracked object, so are not suited to applications where
new objects must be rapidly detected and learned without
human intervention. These methods are also unable to track
deformable objects. Other research ([9], [10]) approximates
deformable bodies (of known types) to kinematic chains of
rigid bodies, but at considerable additional computational
expense and the same need for prior knowledge of the
tracked object.

Other popular and effective approaches to tracking moving
targets include various approaches to tracking deformable
blobs. This type of tracking eliminates the need for a 3D
model of the object (which may be unavailable in practice)
and generally uses the features of the object read from the
image itself. To quote only some of the recent algorithmic
development we mention color blob tracking (CAMSHIFT
[11], [12], Mean Shift[13]), deformable boundary tracking
(active contour model [14], CONDENSATION algorithm
[15]) and many others. Of these, CAMSHIFT stands out as
the fastest and simplest. CAMSHIFT was designed for close
range face tracking from a stationary camera but has since
been modified for a variety of other tracking situations[16],
[17].

Robust and flexible tracking algorithms, requiring minimal
training and computational resources, are highly desirable for



applications such as robot vision and wide area surveillance,
both of which necessitate moving cameras. Unfortunately
CAMSHIFT often fails with camera motion, figure 3, since
it relies on a static background model which is unable to
adequately represent changing scenery. We address these dif-
ficulties by introducing a flexible background representation
which can be continuously relearned. The resulting algo-
rithm, which we call the Adaptive Background CAMSHIFT
(or ABCshift) algorithm, tracks robustly in two situations
where CAMSHIFT fails; firstly with scenery change due to
camera motion and secondly when the tracked object moves
across regions of background with which it shares significant
colors, figures 1–4. Other recent work, [18], also attempts
to track the target based on finding image regions that are
not only ”target-like” but are also different from the local
background. This approach appears to be significantly more
computationally expensive than our method. It is not clear
if the approach has been made to work at real time frame
rates or if this method would be appropriate for the very
large camera motion, and associated extreme scene changes,
which we attempt to tackle in this paper.

Despite its continuous machine learning and relatively
sophisticated tracking, ABCshift is surprisingly computation-
ally cheap. We have managed to implement the ABCshift
algorithm on a cheap camera endowed with a very simple
embedded Arm7 processor capable of only integer level
computations and with very small memory. We demonstrate
the utility of the algorithm by using it on such a rudimentary
platform and we view this work as a small contribution
towards creating viable vision guided robots.

II. BAYESIAN MEAN SHIFT TRACKING WITH COLOR

MODEL

For each frame of an image sequence, the meanshift type
trackers look at pixels which lie within a subset of the image
defined by a search window (represented by the green box
in figures 1–4. Each pixel in this window is assigned a
probability that it belongs to the tracked object, creatinga 2D
distribution of object location over a local area of the image.
The tracking problem is solved by mean shifting [20], [13]
towards the centroid of this distribution to find an improved
estimate of the object location. The search window is now
repositioned at the new location and the process is iterated
until convergence.

The tracked object is modeled as a class conditional color
distribution,P(C|O). Depending on the application, 1D Hue,
3D normalized RGB, 2D normalized RGB, Luv or Lab
histograms may all be appropriate choices of color model, the
important point being that these are all distributions which
return a probability for any pixel color, given that the pixel
represents the tracked object. These object distributionscan
be learned offline from training images, or during initializa-
tion, e.g. from an area which has been user designated as
object in the first image of the sequence. Alternatively, the
ABCShift algorithm can be initialized by using a stationary
camera with a background subtraction approach (e.g. [1],[2],

[3]) to detect and learn the color features of a new moving
target.

The object location probabilities can now be computed for
each pixel using Bayes’ law as:

P(O|C) =
P(C|O)P(O)

P(C)
(1)

whereP(O|C) denotes the probability that the pixel repre-
sents the tracked object given its color,P(C|O) is the color
model learned for the tracked object andP(O) and P(C)
are the prior probabilities that the pixel represents object and
has the colorC respectively.

The denominator of equation (1) can be expanded as:

P(C) = P(C|O)P(O) + P(C|B)P(B) (2)

whereP(B) denotes the probability that the pixel represents
background.

Bradski[11], [12] recommends values of 0.5 for bothP(O)
andP(B). We find this choice difficult to justify since we
take these terms to denote the expected fractions of the
total search window area containing object and background
pixels respectively. Hence we assign values to object priors
in proportion to their expected image areas. If the search
window is resized to ber times bigger than the estimated
tracked object area, thenP(O) is assigned the value1/r and
P(B) is assigned the value(r − 1)/r.

Bradski[11], [12] suggests learning the expression (2)
offline (presumably building a staticP(C|B) histogram from
an initial image). While it is often reasonable to maintain a
static distribution for the tracked object (since objects are not
expected to change color), a static background model is un-
realistic when the camera moves. The CAMSHIFT algorithm
can rapidly fail when the background scenery changes since
colors may exist in the new scene which did not exist in
the original distribution, such that the expressions in Bayes
law will no longer hold true and calculated probabilities no
longer add up to unity.

Particular problems arise with CAMSHIFT if the tracked
object moves across a region of background with which it
shares a significant color. Now a large region of background
may easily become mistaken for the tracked object, figure 1.

III. A DAPTING THE BACKGROUND

We address these problems by using a background model
which can be continuously relearned. Rather than using an
explicit P(C|B) histogram, we build aP(C) histogram (of
all pixels within the search window) which is recomputed
every time the search window is moved.P(C) values, looked
up in this continuously relearned histogram, can now be
substituted as the denominator for the Bayes’ law expression,
equation (1), for any pixel. Since the object distribution,
P(C|O), remains static, this process becomes equivalent to
implicitly relearning the background distribution,P(C|B),
becauseP(C) is composed of a weighted combination of
both these distributions, equation (2). Relearning the whole
of P(C), rather than explicitly relearningP(C|B), helps



Fig. 1. A simple blue and red checkered object, moving from a region of white background into a region of red background. CAMSHIFT fails as soon as
the object moves against a background with which it shares a common color. Frames 350, 360, 380, 400, and 450 shown. Green and red squares indicate
the search window and estimated object size respectively. This movie, RedWhite1CAMSHIFT.avi, can be viewed at our website[19].

Fig. 2. ABCshift tracks successfully. Frames 350, 360, 380,400, and 450 shown. Green and red squares indicate the searchwindow and estimated object
size respectively. This movie, RedWhite1ABCshift.avi, can be viewed at our website[19].

Fig. 3. Person tracking with CAMSHIFT from a moving camera ina cluttered, outdoors environment. Frames 1, 176, 735, 1631, and 1862 shown. Since
the tracked person wears a red shirt, CAMSHIFT fixates on red regions of background, including brick walls and doors, and repeatedly loses the tracked
person. Green and red squares indicate the search window andestimated object size respectively. This movie, PeopleTracking1CAMSHIFT.avi, can be
viewed at our website[19].

Fig. 4. ABCshift successfully tracks throughout the sequence and is not distracted by red regions of background, despite being initialised in image 1
which contains no red background. Frames 1, 176, 735, 1631, and 1862 shown. Green and red squares indicate the search window and estimated object
size respectively. This movie, PeopleTracking1ABCshift.avi, can be viewed at our website[19].

ensure that probabilities add up to unity (e.g. if there are
small errors in the static object model).

Adaptively relearning the background distribution helps
prevent tracking failure when the background scene changes,
particularly useful when tracking from a moving camera,
figure 4 on page 3. Additionally, it enables objects to be
tracked, even when they move across regions of background
which are the same color as a significant portion of the
object, figure 2 on page 3. This is because, onceP(C) has
been relearned, the denominator of Bayes’ law, equation (1),
ensures that the importance of this color will be diminished.
In other words, the tracker will adaptively learn to ignore
object colors which are similar to the background and instead
tend to focus on those colors of the object which are most
dissimilar to whatever background is currently in view.

It is interesting to note that the continual relearning of the
P(C) histogram need not substantially increase computa-

tional expense. Once the histogram has been learned for the
first image it is only necessary to remove from the histogram
those pixels which have left the search window area, and add
in those pixels which have newly been encompassed by the
search window as it shifts with each iteration. Provided the
object motion is reasonably slow relative to the camera frame
rate, the search window motion will be small, so that at each
iteration only a few lines of pixels need be removed from
and added to theP(C) histogram.

If the P(C) histogram is relearned only once every
frame, the speed should be similar to that of CAMSHIFT.
However, if the histogram is relearned at every iteration,
some additional computational expense is incurred, since
to properly exploit the new information it is necessary to
recompute theP(O|C) values for every pixel, including
those already analyzed in previous iterations. Theoretically,
updating at each iteration should produce more reliable



tracking, although we have observed good tracking results
with both options.

In practice, ABCshift often runs significantly faster than
CAMSHIFT. Firstly, the poor background model can cause
CAMSHIFT to need more iterations to converge. Secondly,
the less accurate tracking of CAMSHIFT causes it to au-
tomatically grow a larger search window area, so that far
greater numbers of pixels must be handled in each calcula-
tion.

IV. F INDING THE CENTROID POSITION

At the beginning of each iteration we calculate the proba-
bilities for each pixel in the search window, of representing
the tracked object, according to the formula (1). Then we
calculate:

M0 =
∑

i

P (O|C = ci), (3)

wherei runs through all the pixels in the search window and
ci is the color of respective pixeli. Then we calculate the
position of the centroid at the current iteration accordingto:

{

xc = 1

M0

∑

i xiP (O|C = ci)

yc = 1

M0

∑

i yiP (O|C = ci),
(4)

where(xi, yi) is the position of pixeli in the search window.
At the end of the iteration the center of the search window
is shifted to the new position(xc, yc) and the procedure is
repeated until two consecutive center positions are within
ε of each other. This final position is the output center
position of the object in the current frame. This is in fact the
mathematical expectation of the object location, conditional
on the color information within the new image frame.

The ABCshift algorithm is summarised as:

1) Identify an object region in the first image and train
the object model,P(C|O).

2) Center the search window on the estimated object
centroid and resize it to have an arear times greater
than the estimated object size.

3) Learn the color distribution,P(C), by building a
histogram of the colors of all pixels within the search
window.

4) Use Bayes’ law, equation(1), to assign object proba-
bilities, P(O|C), to every pixel in the search window,
creating a 2D distribution of object location.

5) Estimate the new object position as the centroid of this
distribution and estimate the new object size (in pixels)
as the sum of all pixel probabilities within the search
window.

6) Repeat steps 2-6 until the object position estimate
converges.

7) Return to step 2 for the next image frame.

V. A PPLICATION OF THEABCSHIFT ALGORITHM TO

ROBOTICS

The algorithm we created adapts itself to the background
changes, therefore it would be particularly suitable to specific
applications where the camera is moving. Such applications

Fig. 5. Conventional pan tilt servoing using ABCshift.After several
iterations the algorithm converges on a new object centroidand the camera
is redirected to point in this direction.

might include robot vision tasks such as automatic servoing
of a motorized pan-tilt camera platform or vision based
guidance of a robotic vehicle where due to the construction
the camera is moving constantly. We describe next a con-
ventional approach and a different one where we make full
use of the previously described center positioning method.

A. Conventional servoing for pan/tilt tracking

Once a vision system is capable of tracking an object, it
is a relatively simple matter to servo a motorized pan/tilt
platform to keep the camera targeted on the object as it
moves. Conventional servoing with the ABCshift tracker
would involve multiple iterations of shifting the object win-
dow or template region across the image until convergence,
and then repositioning the camera so that its optical axis
is pointed directly towards the final estimate of the object
centroid (see figure 5).

If sophisticated hardware is available, with accurate rota-
tion sensors and either spare processing power or dedicated
control circuits, then a conventional approach such as PID
control should work well for controlling the motors. Instead,
we attempt to use extremely cheap and simple hardware,
such as $10 hobbyist servo motors, partly due to our lack of
budget and partly to demonstrate the robustness of the vision
algorithm. We have thus made use of a simple speed control
rule:

θ̇x ∝ arctan

(

xt − x0

f

)

θ̇y ∝ arctan

(

yt − y0

f

)

,

where (xt, yt) are the converged centroid position of the
moving target in image coordinates,(x0, y0) is the center
of the image andθx and θy are angles of rotation about
motor axes which are aligned with the optical center of the
camera. If the focal length of the camera is unknown, then
these equations can be reasonably approximated with:



Fig. 6. Meanshift servoing.Now only one ABCshift iteration is performed
for each frame. The camera itself is meanshifted with a search window
which remains centered in the middle of each image.

θ̇x ∝ (xt − x0)

θ̇y ∝ (yt − y0) ,

since angles are typically small, and this avoids the need for
any camera calibration.

B. Meanshift servoing

Unfortunately, when attempting real time tracking on
a very small embedded system, especially with the kind
of continuous machine learning inherent in the ABCshift
tracker, the cpu may not be fast enough to process more
than one meanshift iteration per frame and still achieve useful
frame rates. Instead we need to find a way of minimizing the
image analysis for each frame. We solve this problem with
a simple technique which we call ”mean shift servoing”.

Now, the ABCshift search window remains permanently
fixed in the center of the image. Instead of iteratively shifting
the search window to be centered on the expected target
centroid, we simply use motors to move the entire camera
(see figure 6). In effect, we have saved cpu time by devolving
effort from the vision system to the motors. We need only
use the center part of each image and the remaining portion
can be discarded. Effectively, this reduced image has become
the ABCshift search window, and, in essence, we are now
meanshifting the entire camera over a motion space rather
than meanshifting a window inside an image. For added
robustness, while conserving efficiency, the size of this
centered search window area can be updated at each frame
to be proportional to the speed of the moving target.

Summary of mean shift servoing procedure:

1) Define a search region to be centered at the middle
of the image (i.e. the point of intersection of the optic
axis with the image plane).

2) Assign target probabilities to all pixels in the search
region according to the Bayes law of equation 1 on
page 2.

Fig. 7. CMUcam mounted on servo motor for automatic panning using
ABCshift tracking algorithm and meanshift servoing procedure. With ABC-
shift, robust tracking with a moving camera can be performedwith very little
computational expense.

3) Find the centroid of this distribution according to
equation(4).

4) Move the camera to be centered at this centroid
position.

5) Capture new image and repeat.

Note that in this case also, a simple speed control rule,
similar to that described above can be used. Note also that
this servoing technique should work for other meanshift
based tracking techniques such as [12] or [13].

VI. PROOF OF CONCEPT

We have implemented the meanshift servoing technique
with the ABCshift tracking algorithm, on the tinyCMUcam3
embedded vision system [21], incorporating a smallArm7
processor which has very limited memory and can only run
integer arithmetic C programs (figure 7). At present, this
system is able to track objects of around50 pixels by 50
pixels at176×144 resolution, at around6 frames per second,
while continuously relearning the background model, and
can control a servo motor to automatically pan the camera
to follow a moving target. We hope to improve this frame
rate substantially in the near future by finding more efficient
ways to access the frame buffer. Using the conventional
servoing approach, with multiple mean-shift iterations per
frame (section A), we have also tracked/servoed comfortably
at 30fps using a laptop computer and USB webcam (figure
8). For simplicity of coding, we currently relearn every pixel
of the P(C) histogram at every iteration, instead of only
relearning the small number of pixels that change with each
small shift of the search window. Since there are typically
four such shifts per frame, we hope to achieve better than
100fps once this is re-coded more efficiently.



Fig. 8. USB webcam mounted on servo motors for automatic tilt-pan
using ABCshift tracking algorithm and conventional servoing procedure.
For servoing movie please see the video associated with thispaper

VII. C ONCLUSIONS AND EXTENSIONS.

In this article we presented a novel, simple yet robust
algorithm, the ABCshift which can track objects in the pres-
ence of background changes. We implement the algorithm
on a very rudimentary platform to demonstrate its capability
to work even with very small CPU designs. We present a
new method of steering the platform (meanshift servoing)
to continuously follow the object tracked which is a direct
result of the simplicity of the algorithm.

Future work will concentrate in both developing further
the algorithm as well as modifying the platform and the
mechanical issues involved.

In terms of algorithmic developments, we are currently
investigating a way to resize the search window to cope
with variations in size of the object, this in turn will provide
better performance (by processing only as many pixels as are
needed) as well as a better estimate of the object itself and the
changes that may subsequently occur. The CAMSHIFT algo-
rithm which is designed for situations when the background
does not change interprets the quantityM0 in (3) as the
expected number of pixels that contains the object and then
re-scales the search window accordingly. In our situation,
because of the innovation we introduced in order to adapt
to the changes in the background distribution as the camera
moves makesM0 lose its nice interpretation and introduce
numerical instabilities with time. The video associated with
figure 4 shows our partially successful attempts to employ
this kind of resizing while also correcting for some of the
sources of instability (see [22]). This work is ongoing and
will be the subject of future papers.

Related with this last part we are also investigating ways of
relearning the tracked object’s color distribution, in addition
to relearning the background distribution. This will allowus
to cope with situations when the object changes its color
distribution (due to changes in illumination, viewpoint, etc.)
thus improving the robustness of the algorithm. However, this
improvement will no doubt come at additional computational
expense.

In terms of future robotics applications of ABCshift, we
plan to mount a pan tilt unit on a mobile robot platform and
explore combinations of ABCshift with steering algorithms
to enable a robotic vehicle to follow a tracked object.
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