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Abstract— Visual tracking algorithms have important robotic  is stationary. The background model is only relearned very
applications such as mobile robot guidance and servoed wide slowly over many frames, so that when the camera moves
area surveillance systems. These applications ideally rage and the scene changes instantly, large parts of the image wil

vision algorithms which are robust to camera motion and scea be falsely detected w ina t t . " Th th
change but are cheap and fast enough to run on small, low € lalsely detected as "moving target regions-. 1hus, these

power embedded systems. Unfortunately most robust visual Methods are unsuitable for robotic vision systems which

tracking algorithms are either computationally expensiveor  involve motorized camera motion.

are restricted to a stationary camera. _ _ Fundamental work in visual servoing [4], [5] detect mov-
This paper describes a new color based tracking algorithm, ing targets from a moving camera system by segmenting

the Adaptive Background CAMSHIFT (ABCshift) tracker and . . .
an associated technique, mean shift servoing, for efficient coherent regions of optical flow. This research demonstrate

pan-tilt servoing of a motorized camera platform. ABCshift impressive speed and robustness, but tended to rely on
achieves robustness against camera motion and other sceneexpensive hardware, because the optical flow calculations
changes by continuously relearning its background model at are computationally intensive and because accurate ootati
every frame. This also enables robustness in difficult scese gan50rs are needed in order to accurately measure the camera

where the tracked object moves past backgrounds with which . . - . -
it shares significant colors. Despite this continuous mache motion which is then subtracted from the motion field

learning, ABCshift needs minimal training and is remarkably ~ Observed by the camera. In contrast, our method is robust
computationally cheap. We first demonstrate how ABCshift to arbitrary, unknown camera motion. Other visual servoing

tracks robustly in situations where related algorithms fai, and  work, [6], is also robust to camera motion, but is limited to
then show how it can be used for real time tracking with pan-tit tracking flat, non-deforming targets.

servo control using only a small embedded microcontroller.

Index Terms— ABCshift, CAMSHIFT, Meanshift, tracking, Other researchers have also attempted to control a moving

servoing, adaptive background model. camera on robot arm arrangement with respect to a tracked
object. The method in [7] relies on best fitting a model of the

|. INTRODUCTION tracked object to segmented lines and edges. The method of

Robot vision has important applications to mobile robot$8] avoids the need for high resolution edges by fitting the
and wide area surveillance. For example, consider a robebject model directly to segmented image regions. However,
vehicle which is visually guided to follow a moving target,both of these methods depend on detailed 3D models of
or the use of a large number of cheap pan-tilt surveillandde tracked object, so are not suited to applications where
cameras scattered over a region of interest to monitor pedé®w objects must be rapidly detected and learned without
trians or vehicles. For military and other operations we cahuman intervention. These methods are also unable to track
envisage a combination of these tasks, (e.g., sending dlgformable objects. Other research ([9], [10]) approxésat
a large number of small, cheap mobile surveillance unitdeformable bodies (of known types) to kinematic chains of
to penetrate and survey a hostile area). In these kinds @gid bodies, but at considerable additional computationa
applications, we need a visual tracking system that is tobuexpense and the same need for prior knowledge of the
to scene change associated with motion of the camera #gcked object.
well as the target. However, the vision algorithm must also Other popular and effective approaches to tracking moving
be fast and computationally inexpensive so that it can bargets include various approaches to tracking deformable
implemented at real time frame rates on cheap, lightweigHejobs. This type of tracking eliminates the need for a 3D
low power embedded systems. model of the object (which may be unavailable in practice)

Popular methods of tracking moving targets include variand generally uses the features of the object read from the
ations on the theme of background subtraction. Researchifmage itself. To quote only some of the recent algorithmic
this area has focussed on methods of adaptively updating tevelopment we mention color blob tracking (CAMSHIFT
background model to cope with gradual scene changes [{}1], [12], Mean Shift[13]), deformable boundary tracking
[2], [3] . Unfortunately these methods fail unless the camer(active contour model [14], CONDENSATION algorithm

[15]) and many others. Of these, CAMSHIFT stands out as
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applications such as robot vision and wide area surve#land3]) to detect and learn the color features of a new moving
both of which necessitate moving cameras. Unfortunatetarget.

CAMSHIFT often fails with camera motion, figure 3, since The object location probabilities can now be computed for
it relies on a static background model which is unable teach pixel using Bayes' law as:
adequately represent changing scenery. We address tlfiese di P(C|0)P(0)
ficulties by introducing a flexible background representati PO|C) = ——L—~—~ (1)
which can be continuously relearned. The resulting algo- P(C)

rithm, which we call the Adaptive Background CAMSHIFT yhereP(0|C) denotes the probability that the pixel repre-
(or ABCshift) algorithm, tracks robustly in two situationssents the tracked object given its col®C|0) is the color
where CAMSHIFT fails; firstly with scenery change due tomodel learned for the tracked object aR{O) and P(C)
camera motion and secondly when the tracked object movgfe the prior probabilities that the pixel represents diped
across regions of background with which it shares significamas the coloiC' respectively.

colors, figures 1-4. Other recent work, [18], also attempts The denominator of equation (1) can be expanded as:
to track the target based on finding image regions that are

not only "target-like” but are also different from the local P(C) =P(C|O)P(0O) + P(C|B)P(B) 2
background. This approach appears to be significantly more . )
computationally expensive than our method. It is not cleg?hereP(B) denotes the probability that the pixel represents
if the approach has been made to work at real time fral ckgroupd.

rates or if this method would be appropriate for the very Bradski[11], [12] recommends values of 0.5 for b&tt0)

large camera motion, and associated extreme scene chan 'P(B). We find this choice difficult to justify since we
which we attempt to tackle in this paper. ake these terms to denote the expected fractions of the

Despite its continuous machine learning and relativel tal search window area containing object and background

sophisticated tracking, ABCshift is surprisingly comgiga- ' ixels respectively. I_—lence we as;ign values to object prior
ally cheap. We have managed to implement the ABCshitt! propo_rt|on Fo their exp(_ected Image areas. I th(_e search
algorithm on a cheap camera endowed with a very simp}@'ndow IS _re3|zed to be times blgger than the estimated
embedded Arm7 processor capable of only integer |evér|acke_d Obje_Ct ardear,]thel?tl(O) is assigned the valut/r and
computations and with very small memory. We demonstratB(B) is assigned the valug —1)/7.

the utility of the algorithm by using it on such a rudimentary Bradski[ll], [12] Sl_Jg_geStS learning the_ expression (2)
platform and we view this work as a small contribution®!Tin€ (presumably building a statlé(C|B) histogram from
towards creating viable vision guided robots an initial image). While it is often reasonable to maintain a

static distribution for the tracked object (since objectsraot
expected to change color), a static background model is un-
realistic when the camera moves. The CAMSHIFT algorithm
can rapidly fail when the background scenery changes since

For each frame of an image sequence, the meanshift tygglors may exist in the new scene which did not exist in
trackers look at pixels which lie within a subset of the imagéhe original distribution, such that the expressions in &ay
defined by a search window (represented by the green b will no longer hold true and calculated probabilities no
in figures 1-4. Each pixel in this window is assigned d0nger add up to unity.
probab|||ty that it be|ongs to the tracked object, Crea&r@ Particular prOblemS arise with CAMSHIFT if the tracked
distribution of object location over a local area of the iraag Object moves across a region of background with which it
The tracking problem is solved by mean shifting [20], [13]shares a significant color. Now a large region of background
towards the centroid of this distribution to find an improvednay easily become mistaken for the tracked object, figure 1.
estimate of the object location. The search window is now
repositioned at the new location and the process is iterated
until convergence. We address these problems by using a background model

The tracked object is modeled as a class conditional col@rhich can be continuously relearned. Rather than using an
distribution,P(C|O). Depending on the application, 1D Hue,explicit P(C|B) histogram, we build &(C') histogram (of
3D normalized RGB, 2D normalized RGB, Luv or Laball pixels within the search window) which is recomputed
histograms may all be appropriate choices of color model, trevery time the search window is mové®|(C') values, looked
important point being that these are all distributions whicup in this continuously relearned histogram, can now be
return a probability for any pixel color, given that the gixe substituted as the denominator for the Bayes’ law exprassio
represents the tracked object. These object distributtans equation (1), for any pixel. Since the object distribution,
be learned offline from training images, or during initiaiz P(C|O), remains static, this process becomes equivalent to
tion, e.g. from an area which has been user designated iamlicitly relearning the background distributio®,(C|B),
object in the first image of the sequence. Alternatively, thbecauseP(C) is composed of a weighted combination of
ABCShift algorithm can be initialized by using a stationaryboth these distributions, equation (2). Relearning thelavho
camera with a background subtraction approach (e.g. [1],[2f P(C), rather than explicitly relearnin®(C|B), helps

Il. BAYESIAN MEAN SHIFT TRACKING WITH COLOR
MODEL

IIl. ADAPTING THE BACKGROUND



Fig. 1. A simple blue and red checkered object, moving froregion of white background into a region of red backgroundMSAIFT fails as soon as
the object moves against a background with which it sharesman color. Frames 350, 360, 380, 400, and 450 shown. Greenead squares indicate
the search window and estimated object size respectivélis Movie, RedWhitelCAMSHIFT.avi, can be viewed at our vitef9].

Fig. 2. ABCshift tracks successfully. Frames 350, 360, 3®®@, and 450 shown. Green and red squares indicate the seadbw and estimated object
size respectively. This movie, RedWhitelABCshift.avin dze viewed at our website[19].

Fig. 3. Person tracking with CAMSHIFT from a moving cameraaicluttered, outdoors environment. Frames 1, 176, 735,181 1862 shown. Since
the tracked person wears a red shirt, CAMSHIFT fixates on egéns of background, including brick walls and doors, agpkeatedly loses the tracked
person. Green and red squares indicate the search windovestindated object size respectively. This movie, PeoptKing1CAMSHIFT.avi, can be

viewed at our website[19].

Fig. 4. ABCshift successfully tracks throughout the segeeand is not distracted by red regions of background, degging initialised in image 1
which contains no red background. Frames 1, 176, 735, 16811862 shown. Green and red squares indicate the searclowvienad estimated object
size respectively. This movie, PeopleTrackinglABCshift. can be viewed at our website[19].

ensure that probabilities add up to unity (e.g. if there argonal expense. Once the histogram has been learned for the
small errors in the static object model). firstimage it is only necessary to remove from the histogram

Adaptively relearning the background distribution helpshose pixels which have left the search window area, and add
prevent tracking failure when the background scene changés those pixels which have newly been encompassed by the
particularly useful when tracking from a moving camerasearch window as it shifts with each iteration. Provided the
figure 4 on page 3. Additionally, it enables objects to b@bject motion is reasonably slow relative to the cameraé&am
tracked, even when they move across regions of backgrourate, the search window motion will be small, so that at each
which are the same color as a significant portion of thdéeration only a few lines of pixels need be removed from
object, figure 2 on page 3. This is because, cR¢€') has and added to th®(C') histogram.
been relearned, the denominator of Bayes’ law, equatign (1) If the P(C) histogram is relearned only once every
ensures that the importance of this color will be diminishedrame, the speed should be similar to that of CAMSHIFT.
In other words, the tracker will adaptively learn to ignoreHowever, if the histogram is relearned at every iteration,
object colors which are similar to the background and insteasome additional computational expense is incurred, since
tend to focus on those colors of the object which are mosb properly exploit the new information it is necessary to
dissimilar to whatever background is currently in view. recompute theP(O|C) values for every pixel, including

It is interesting to note that the continual relearning &f ththose already analyzed in previous iterations. Theoigtica
P(C) histogram need not substantially increase computapdating at each iteration should produce more reliable



tracking, although we have observed good tracking resul
with both options.

In practice, ABCshift often runs significantly faster than
CAMSHIFT. Firstly, the poor background model can caus
CAMSHIFT to need more iterations to converge. Secondl
the less accurate tracking of CAMSHIFT causes it to atL
tomatically grow a larger search window area, so that fz
greater numbers of pixels must be handled in each calcul

tion.

IV. FINDING THE CENTROID POSITION

At the beginning of each iteration we calculate the probe
bilities for each pixel in the search window, of represemtin
the tracked object, according to the formula (1). Then we
calculate:

iterations the algorithm converges on a new object centoid the camera

My = ZP(OK] = Ci), (3) Fig. 5. Conventional pan tilt servoing using ABCshiffter several
g is redirected to point in this direction.

wherei runs through all the pixels in the search window and
¢; is the color of respective pixel Then we calculate the
position of the centroid at the current iteration accordimg might include robot vision tasks such as automatic servoing

where(z;, y;) is the position of pixet in the search window.
At the end of the iteration the center of the search window

L of a motorized pan-tilt camera platform or vision based
Te = 7, > ziP(O|C = ¢) (4) guidance of a robotic vehicle where due to the construction
Ye = 1\%0 > uiP(OIC = ¢), the camera is moving constantly. We describe next a con-

ventional approach and a different one where we make full
use of the previously described center positioning method.

is shifted to the new positiofz.., y.) and the procedure is A. Conventional servoing for panttilt tracking
repeated until two consecutive center positions are within Once a vision system is capable of tracking an object, it

e of

each other. This final position is the output centefs 3 relatively simple matter to servo a motorized panftilt

position of the object in the current frame. This is in fac th pjatform to keep the camera targeted on the object as it
mathematical expectation of the object location, cond#lo moyes. Conventional servoing with the ABCshift tracker

on the color information within the new image frame. would involve multiple iterations of shifting the object mvi
The ABCshift algorithm is summarised as: dow or template region across the image until convergence,
1) Identify an object region in the first image and trainand then repositioning the camera so that its optical axis

the object modelP(C|O). is pointed directly towards the final estimate of the object

2) Center the search window on the estimated objeaentroid (see figure 5).
centroid and resize it to have an areatimes greater If sophisticated hardware is available, with accurate-rota
than the estimated object size. tion sensors and either spare processing power or dedicated
3) Learn the color distribution,P(C), by building a control circuits, then a conventional approach such as PID
histogram of the colors of all pixels within the searchcontrol should work well for controlling the motors. Instka
window. we attempt to use extremely cheap and simple hardware,
4) Use Bayes’ law, equatiofl), to assign object proba- such as $10 hobbyist servo motors, partly due to our lack of
bilities, P(O|C), to every pixel in the search window, budget and partly to demonstrate the robustness of thenvisio
creating a 2D distribution of object location. algorithm. We have thus made use of a simple speed control
5) Estimate the new object position as the centroid of thirule:
distribution and estimate the new object size (in pixels)
as the sum of all pixel probabilities within the search . Ty — To
window. 0, x arctan ( 7 )
6) Repeat steps 2-6 until the object position estimate N
converges. 0, o arctan (yt yo) :
7) Return to step 2 for the next image frame. f
where (z;,y;) are the converged centroid position of the
V. APPLICATION OF THEABCSHIFT ALGORITHM TO

moving target in image coordinate§so,yo) is the center

ROBOTICS of the image and), and 6, are angles of rotation about

The algorithm we created adapts itself to the backgroundotor axes which are aligned with the optical center of the
changes, therefore it would be particularly suitable tac#fge camera. If the focal length of the camera is unknown, then
applications where the camera is moving. Such applicatiotisese equations can be reasonably approximated with:



Fig. 6. Meanshift servoingNow only one ABCshift iteration is performed
for each frame. The camera itself is meanshifted with a searadow
which remains centered in the middle of each image.

Fig. 7. CMUcam mounted on servo motor for automatic pannisigg.
ABCshift tracking algorithm and meanshift servoing praeed With ABC-
shift, robust tracking with a moving camera can be performih very little

0, x (x; — X
L o) computational expense.

éy (8 (yt _yO);

since angles are typically small, and this avoids the need fo

o 3) Find the centroid of this distribution according to
any camera calibration.

equation(4).
B. Meanshift servoing 4) Move the camera to be centered at this centroid

. . . osition.
Unfortunately, when attempting real time tracking on 5) E:apture new image and repeat

a very small embedded system, especially with the kind _ . .
of continuous machine learning inherent in the ABCshift 'Noté that in this case also, a simple speed control rule,
tracker, the cpu may not be fast enough to process mo%nﬂar to t_hat descr_|bed above can be used. Note also t_hat
than one meanshift iteration per frame and still achievéuise this servoing technique should work for other meanshift

frame rates. Instead we need to find a way of minimizing thB@sed tracking techniques such as [12] or [13].

image analysis for each frame. We solve this problem with
a simple technique which we call "mean shift servoing”.

Now, the ABCshift search window remains permanently \ve have implemented the meanshift servoing technique
fixed in the center of the image. Instead of iteratively siift \yith the ABCshift tracking algorithm, on the tirgMUcam3
the search window to be centered on the expected targghpedded vision system [21], incorporating a snAaiin7
centroid, we simply use motors to move the entire cameigocessor which has very limited memory and can only run
(see figure 6). In effect, we have saved cpu time by devolvingteger arithmetic C programs (figure 7). At present, this
effort from the vision system to the motors. We need 0n|%ystem is able to track objects of arouf@ pixels by 50
use the center part of each image and the remaining portigfkels at176 x 144 resolution, at around frames per second,
can be discarded. Effectively, this reduced image has becorgypije continuously relearning the background model, and
the ABCshift search window, and, in essence, we are NoWan control a servo motor to automatically pan the camera
meanshifting the entire camera over a motion space rathgy follow a moving target. We hope to improve this frame
than meanshifting a window inside an image. For addegte substantially in the near future by finding more effitien
robustness, while conserving efficiency, the size of thigays to access the frame buffer. Using the conventional
centered search window area can be updated at each fragé@\,oing approach, with multiple mean-shift iterations pe
to be proportional to the speed of the moving target. frame (section A), we have also tracked/servoed comfortabl
Summary of mean shift servoing procedure: at 30fps using a laptop computer and USB webcam (figure
1) Define a search region to be centered at the middl8). For simplicity of coding, we currently relearn every @lix
of the image (i.e. the point of intersection of the optiof the P(C) histogram at every iteration, instead of only
axis with the image plane). relearning the small number of pixels that change with each
2) Assign target probabilities to all pixels in the searchsmall shift of the search window. Since there are typically
region according to the Bayes law of equation 1 orfour such shifts per frame, we hope to achieve better than
page 2. 100fps once this is re-coded more efficiently.

VI. PROOF OF CONCEPT



In terms of future robotics applications of ABCshift, we
plan to mount a pan tilt unit on a mobile robot platform and
explore combinations of ABCshift with steering algorithms
to enable a robotic vehicle to follow a tracked object.
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