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Abstract. Long term memory effects in stock market indices that represent internationally 

diversified stocks are analyzed in this paper and the results are compared with the S&P 500 

index. The Hurst exponent and the Detrended fluctuation analysis (DFA) technique are the tools 

used for this analysis. The financial time-series data of these indices are tested with the 

Normalized Truncated Levy Flight to check whether the evolution of these indices is explained 

by the TLF.  

 Some features that seem to be specific for international indices are discovered and briefly 

discussed. In particular, a potential investor seems to be faced with new investment opportunities 

in emerging markets during and especially after a crisis. 
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1. Introduction 

In recent years there has been a growing literature in financial economics that analyzes 

the major stock indices in developed countries, see for example [1-11] and the references 

therein. The statistical properties of the temporal series analyzing the evolution of the 

different markets have been of great importance in the study of financial markets. The 

empirical characterization of stochastic processes usually requires the study of temporal 

correlations and the determination of asymptotic probability density functions (pdf). The 

first model that describes the evolution of option prices is the Brownian motion. This 

model assumes that the increment of the logarithm of prices follows a diffusive process 

with Gaussian distribution [12]. However, the empirical study of temporal series of some 

of the most important indices shows that in short time intervals the associated pdf’s  have 

greater kurtosis than a Gaussian distribution [5]. The first step to explain this behavior 

was done in 1963 by Mandelbrot [13]. He developed a model for the evolution of cotton 
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prices by a stable stochastic non-Gaussian Levy process; these types of non Gaussian 

processes were first introduced and studied by Levy [14]. However, these distributions 

are not appropriate for working in long-range correlation scales. These problems can be 

avoided considering that the temporal evolution of financial markets is described by a 

Truncated Levy Flight (TLF) [15] or by a Normalized Truncated Levy Flight [9]. 

 
The other major problem encountered in the analysis of the behavior of different time-

series data is the existence of long-term or short-term correlations in the behavior of 

financial markets (established versus emerging markets [16], developed countries’ market 

indices [1-5], Bombay stock exchange index [17], and Latin American indices [18] and 

the references therein). Studies that focus on particular country indices [17, 18, 19] 

generally show that a long term memory effect exists.  

 

The main interest in this work is to compare the international stock market indices and 

other well-renowned market indices such as the S&P 500. Specifically, this paper seeks 

to determine whether long memory effects are also present in well diversified 

international market indices; by testing the financial time-series data of these indices with 

the Normalized Truncated Levy Flight we wish to check whether the evolution of these 

indices is explained by the TLF.  

Previous literature has concluded that the time series of financial indices are explained by 

the TLF model [15, 18, 19]. The Re-Scaled Range Analysis (R/S) and Detrended 

Fluctuation Analysis (DFA) methods are used to investigate long-range correlations. 

Previous work has shown that both methods are very powerful for characterizing 

fractional behavior (see for example [17-21]). As the time-series data for the indices are 

very small, and the exponents calculated could serve as verification and comparison of 

the results, both methods are used. 

 

Based on our results we may conclude that using Truncated Levy Flight model is an 

important and useful tool in the analysis of long memory of time series. In many cases 

TLF model fits the data very well. However, for a further clarification of the image 
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depicted its analysis should be complemented with the R/S and DFA methods since in 

many cases these approaches bring new facts into the picture. 

 

2. The Truncated Levy Flight 

Levy [22] and Khintchine [23] solved the problem of the determination of the functional 

form that all the stable distributions must follow. They found that the most general 

representation is through the characteristic function )(q , by the following equation: 
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where 20  ,  is a positive scale factor,  is a real number and   is an asymmetry  

parameter that takes values in the interval    1,1 . 

The analytic form for a stable Levy distribution is known only in these cases: 

  1,2/1   ,  ( Levy-Smirnov distribution) 

0,1    = 1, (Lorentz distribution) 

2 , (Gaussian distribution) 

 

In this work symmetric distributions ( 0 ) with zero mean value ( 0 ) are 

considered. In this case the characteristic function takes the form: 

 qeq )(                                                              (2) 

As the characteristic function of a distribution is its Fourier transform, the stable 

distribution of index   and scale factor   is 
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The asymptotic behavior of the distribution for large values of the absolute value of x  is 
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given by:  
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and the value in zero )0( xPL  by: 
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The fact that the asymptotic behavior for huge values of x  is a power law has as a 

consequence that the stable Levy processes have infinite variance. To avoid the problems 

arising in the infinite second moment Mantegna and Stanley [15] considered a stochastic 

process with finite variance that follows scale relations called Truncated Levy Flight 

(TLF). The TLF distribution is defined by: 
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where )(xPL is a symmetric Levy distribution and c  is a normalization constant. The 

only stable distributions are the Levy distributions. The TLF distribution is not stable, but 

it has finite variance, thus independent variables from this distribution satisfy a regular 

Central Limit Theorem. However, depending on the size of the parameter l (the cutoff 

length) the convergence may be very slow [24]. If the parameter l is small (so that the 

convergence is fast) the cut that it presents in its tails is very abrupt. In order to have 

continuous tails, Koponen [25] considered a TLF in which the cut function is a 

decreasing exponential characterized by a parameter l. The characteristic function of this 

distribution is defined as: 
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If one discretizes the time interval with steps t , it is found that tNT  . At the end of 

each interval one must calculate the sum of N  stochastic variables that are independent 

and identically distributed.  The new characteristic function will be: 
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For small values of N the return probability will be very similar to the stable Levy 

distribution: 
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We note that an alternative way to deal with the convergence of the distribution to a 

Gaussian in the sense of Central Limit Theorem is to use a Scale-invariant Truncated 

Lévy process (STL) as in [26]. This process uses correlated increments and exhibits Lévy 

type stability for the increments. We do not use this process in estimation.  

Instead, we use in this work a normalized Truncated Lévy Flight model. There are two 

major advantages to normalize the TLF model. First, since it is accepted that the volatility 

of the return of a financial index is largely proportional to the time scale, normalization 

over variance allows us to directly compare the statistical properties under different time 

frames. Second, different markets usually have different risks. This is particularly true 

when one compares a well-developed market with an emerging market. Normalization 

essentially implements risk-adjustment, which allows us to compare the behaviors across 

both developed and emergent markets.  

In the Koponen’s model the variance can be calculated from the characteristic function: 
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In order to normalize Koponen’s model to describe the normalized returns of the indices, 

given that 
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It follows that 
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Therefore, by performing a change of variable, a normalized model with characteristic 

function  qNL  and volatility 1 can be obtained as: 
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This is the normalized Levy model that will be used for the numerical analysis. This 

model has been previously used in [9, 19].  

 

To simulate the normalized Truncated Levy model, a Matlab module was developed. The 

parameter l is fixed at 1 and then parameter A and the characteristic exponent α are 

adjusted simultaneously in order to fit the cumulative function of the observed returns. 

On the same grid the cumulative distribution of the observed and simulated returns are 

plotted for different time lags T in order to visualize how good the fitting is. Time lag T 

=1 means the returns are calculated by using two consecutive observations; for a general 

T, the returns are calculated by using: rt= log(Xt/Xt-T).  

 

The reader unfamiliar with the α-stable Levy processes (also called Levy flight) may 

wonder how they can have independent increments and yet be designated as long 

memory processes. Indeed, this is the case for these processes due to the fact that the 

increments are heavy tailed. For a detailed discussion please consult Chapter III in [27]. 

In fact the parameter α of the Levy distribution is inversely proportional to the Hurst 

parameter. The Hurst parameter is an indicator of the memory effects coming from the 

fractional Brownian motion which has correlated increments. Furthermore, the Truncated 
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Levy Flight maintains statistical properties which are indistinguishable from the Levy 

Flights [24]. 

 

 

3. Rescaled Range Analysis 
 

Hurst [28] initially developed the Rescaled range analysis (R/S analysis). He observed 

many natural phenomena that followed a biased random walk, i.e., every phenomenon 

showed a pattern. He measured the trend using an exponent now called the Hurst 

exponent. Mandelbrot [29, 30] later introduced a generalized form of the Brownian 

motion model, the fractional Brownian motion to model the Hurst effect.  

 

The complete numerical procedure to calculate the Hurst exponent H  by using the R/S 

analysis is described in detail in [31]. 

The final relation used to compute the Hurst exponent H is: 

 

  cHnHS
R logloglog                

        
In this equation n is the length of the subseries used, R/S is the value of Range/Sample 
standard deviation statistic within the subseries and c is a constant.  An ordinary least 

squares regression is performed using )log(
S

R
 as a dependent variable and nlog  as an 

independent variable. The slope of the equation provides the estimate of the Hurst 
exponent H . Note that H log c is just the intercept in the regression relation. 
 

If the Hurst exponent H  for the investigated time series is 0.5, then it implies that the 

time series follows a random walk which is an independent process. For data series with 

long memory effects, H  would lie between 0.5 and 1. It suggests all the elements of the 

observation are dependent. This means that what happens now would have an impact on 

the future. Time series that exhibit this property are called persistent time series and this 

character enables prediction of any time series as it shows a trend. If H  lies between 0 

and 0.5, it implies that the time-series possess anti-persistent behavior (negative 

autocorrelation). 
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4. Detrended Fluctuation Analysis 
 

The DFA method is an important technique in revealing long range correlations in non-

stationary time series. This method was developed by Peng [20, 21], and has been 

successfully applied to the study of cloud breaking [32], Latin-American market Indices 

[18], DNA [21, 33, 34], cardiac dynamics [20, 35], climatic studies [36, 37], solid state 

physics [38, 39], and economic time series [40-42]. 

The numerical procedure that is used to calculate the DFA exponent , by using the R/S 

analysis, is described in detail in [31]. 

 

For data series with no correlations or short-range correlation,   is expected to be 0.5. 

For data series with long-range power law correlations, would lie between 0.5 and 1 

and for power law anti-correlations; would lie between 0 and 0.5. This method was 

used to measure correlations in financial series of high frequencies and in the daily 

evolution of some of the most relevant indices.  

 

 
 
4. Data 

 

We studied the behavior of well renowned international market indices: iShares MSCI 

EAFE Index and the iShares MSCI Emerging Markets Index. We mention a previous 

study of long memory behavior in some Eastern European economies transitioning to EU 

[43].  

  

4.1 MSCI EAFE 

The MSCI EAFE is a stock index of foreign stocks maintained by Morgan Stanley 

Capital International. The index includes stocks from 21 developed countries excluding 

the US and Canada; it is considered as one of the most prominent foreign stock funds 

benchmark.  
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4.2 MSCI Emerging Markets Index 

The MSCI Emerging Markets Index is a market capitalization index that measures the 

equity market performance in global emerging markets. It is also maintained by Morgan 

Stanley Capital International. 

Daily closing values of these indices are considered for this study: iShares MSCI EAFE 

Index (EFA), from August 27, 2001 to May 1, 2009 (1,930 data points) and the iShares 

MSCI Emerging Markets Index (EEM), from April 15, 2003 to May 1, 2009 (1523 data 

points). We also used the data of the S&P 500, the New York Stock Exchange index from 

August 27, 2001 to May 1, 2007 (1,930 data points). 

 
 

5. Results and Discussions 

 

Hurst as well as DFA analysis is performed to find the persistence of long correlations. 

Table 1 presents the results of unit root stationarity tests, we refer to [31] for a discussion 

of this method. Table 2 presents the estimated Hurst and the DFA parameters for the 

entire respective period. The Hurst exponent and the alpha values obtained are 

significantly greater than 0.5, thus implying the existence of long term correlations in the 

financial time-series of all the indices analyzed. The values obtained for the Hurst 

parameters for the three indices are not significantly different. The values obtained for the 

DFA alphas are not significantly different between the EEM and S&P500 or between 

EFA and S&P500. The difference is significant between the EFA and EEM indices. 

 

We note from Table 2 that the value range of the exponents of the EFA and the EEM 

index are similar with the values obtained for S&P 500. This does not necessarily mean 

that the extent of the memory effects is the same for all these indices. Indeed, the EFA 

and EEM indices include stocks from different countries and cannot be expected to move 

in the same direction as the US Stocks that influence the S&P 500. Furthermore, as we 

can see in figures 1-3, the pattern of the correlations in EFA and EEM is less stable 

compared to the pattern characterizing the S&P500. This may be attributed to the fact 
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that the international indices encompass a widely diversified set of stocks from various 

countries over the world. This raises a question relevant to an investor who looks for the 

best portfolio profitability: is it better to invest in the US market only, or should an 

investor look for opportunities in external markets? 

  

When considering long term investments, investors can focus in analyzing the long 

memory effects to construct a well-diversified, low volatility portfolio. In general it is 

thought that by diversifying a portfolio in general its variance is reduced. That is only 

true for investments that behave relatively independently from the current assets already 

existing in the portfolio. This is why it is crucial to establish the asset’s behavior before 

adding it to a portfolio. From figures 1 through 3, it seems that the memory effects are 

entirely different between the S&P 500 and the international indices. Specifically, we see 

that the DFA analysis for the two international indices is much weaker than the analysis 

for the S&P500. Thus, by diversification into these markets a portfolio manager could 

potentially lower the variability of the portfolio. 

 

To shed light onto this issue we divide the available data by years and perform the 

analysis separately within each year. Tables 3 to 5 present the results obtained for each 

index and for each year available to study. We also present the results of estimating the 

Levy Flight parameter. We recall that a value close to 2.0 indicates Gaussian behavior of 

the daily return. We do not present in detail the plots similar to figures 1-3 due to the lack 

of space in this article, they are available on the article’s accompanying webpage: 

http://www.math.stevens.edu/~ifloresc/indicesAnalysis.html 

 

There are several things that jump into mind once we study these tables. First and the 

most important, Hurst parameter analysis gives different results from either DFA analysis 

or Levy Flight analysis. Specifically, during the years where both DFA and TLF methods 

detect strong departures from normality (2002 and 2008) R/S estimation does not seem to 

behave any differently than the previous years (Tables 3-5). This may be explained by the 

fact that the Hurst parameter estimation works best when the data is stationary. While we 

have tested for unit root non-stationarity in Table 1 and that hypothesis was rejected we 
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cannot guarantee that the data does not possess other types of non-stationarity. There is 

currently no other type of non-stationarity that may be tested.   

Second, looking at several years for which we have an idea of what the results should 

look like we notice that our hypotheses were confirmed. Specifically, in 2001 and 

partially in 2002 we expect to see high parameter values due to the end of the dot-com 

bubble. Again in 2008 we expect to see high values due to the housing crisis and the 

subsequent market crash in September 2008. Surprisingly, the most reliable confirmation 

is in the Levy Flight parameter values, they are all much smaller than 2.0 “the normal 

behavior” parameter value.   

Third, recall that one of the purposes of the study was to see if we could indicate to the 

potential investors the markets which possess the greatest opportunities for 

diversification. Analyzing the values obtained for the three indices we can see that the 

behavior of EFA and S&P 500 indices are somewhat similar. We are concentrating the 

analysis toward the crisis years which are the times when potential investors are faced 

with the critical investment issue. On the other hand it seems that EEM is representative 

of markets where investments opportunities are presenting themselves during those times 

of crisis. We point the reader to the crisis years (2008) and especially to the years after 

the crisis (2003 and 2009) in table 4. All the indicators show a more pronounced 

closeness to the normal distribution than the indicators for the other two indices. Table 6 

displaying results for normality tests confirm this observation as well. This is surprising 

since EEM is an emerging market index and those markets are traditionally regarded as 

hit the most during crisis periods. Additionally, recall that the analysis is done only using 

only partial data for the year 2009 so even though these conclusions may be evident at the 

time of publication they were not so when the analysis was performed. In any case the 

conclusion we draw is that the investment opportunities in these emerging markets are 

different, not necessarily better during crisis periods.  

Fourth, the Hurst and DFA estimation for the years 2003 and 2009 and in 2006 for the 

S&P500 alone give contradictory results. Case in point, the DFA analysis for these years 

reports anti-persistent behavior while the R/S analysis reports persistent behavior. For 

further clarification we fit Gaussian distributions for these years to see if the hypothesis 

of normality can be rejected. The results are presented in Table 6 and the relevant 
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numbers are in bold. The p-values should be read while keeping in mind that they are 

obtained under the hypothesis that the observations are iid (which is not the case with the 

rest of the tests) and they are presented only for information purposes. We see that for 

2003 the return behavior was that of a Gaussian process. However, for S&P500 in 2006 

the normality hypothesis is rejected. In fact it seems that the results parallel the 

conclusions drawn following the Levy Flight parameter estimation. For a wealth of 

analysis and complete results we again direct the interested reader to the above 

mentioned webpage.  

Finally, we want to point out the analysis for the year 2009, the current year of this 

article, and the year after the great crisis of 2008. The analysis only contains the first 7 

months of this year (we are in August at the date of writing this article). Normality 

hypothesis is rejected for S&P500 and the EFA index but cannot be rejected for the EEM 

index. We see the same dichotomy pointed out earlier in the behavior of the three indices. 

The analysis seems to indicate that while the S&P500 and the EFA indices may still 

possess long memory behavior, the EEM index already returned to the normal pre-crisis 

behavior.  

 

In conclusion by fitting the three different methods to the data under study we found the 

behavior we expected to see reflected best in the Truncated Levy Flight analysis. 

However, we also discovered that DFA and R/S methods provided complementary 

answers and ideas to the ones already provided by the TLF analysis.  

Additionally, we find that the behavior of the three indices under study is different during 

the crisis period, but mostly after a crisis period. An investor would be served well by 

searching for investment opportunities and switching his/her investments when the crisis 

is coming. Diversifying into emerging markets during and especially after a crisis periods 

seems to be the right way to proceed. 
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Table 1:  P-values for the unit root stationarity test.  

Index    PP ADF KPSS 
EAFE Index (EFA) <0.01 <0.01 >0.1 

Emerging Markets Index (EEM) <0.01 <0.01 >0.1 
S&P 500 (SP500) <0.01 <0.01 >0.1 

DFA= Detrended Fluctuation Analysis Hurst= Rescale Range Analysis, 
ADF= Augmented Dickey-Fuller Test for unit root stationarity, PP= Phillips-Perron Unit Root Test, 
KPSS= Kwiatkowski-Phillips-Schmidt-Shin Test for unit root Stationarity. 
 For the ADF and the PP the null hypothesis is the unit root non-stationarity, and for the KPSS the null 
hypothesis is stationarity. The tests reject the unit-root type nonstationarity. So it is reasonable to assume 
that the data does not possess evidence of unit root nonstationarity.  
 
 

 

Table 2: Values of exponent α and H for all indices calculated using DFA Method 
and R/S analysis respectively. The entire period available was used for each index 

Index    DFA Exponent  Hurst Exponent  
Α error H error 

EAFE Index (EFA) 0.6067 0.0220 0.5761 0.0053 
Emerging Markets Index (EEM) 0.743 0.0390 0.5779 0.0047 

S&P 500 0.6707 0.0202 0.5665 0.0041 
 

 
 
 
Table 3: Values of DFA exponent α, Hurst exponent H, and Levy Flight parameter 
α for the EAFE Index (EFA) year by year. 

 
EAFE 
Index 
(EFA) 

 
DFA 

 
Hurst 

Levy Flight parameter (α) 
 

Α error H error α@T=1 α@T=4 α@T=8 α@T=16

2001 0.8173 0.0282 0.8098 0.0218 1.70 1.40 1.40 1.60 
2002 0.6844 0.0156 0.5929 0.0088 1.80 1.70 1.60 2.00 
2003 0.5066 0.0111 0.5526 0.0134 1.80 1.90 1.70 1.60 
2004 0.6186 0.0130 0.5534 0.0095 1.85 1.70 1.70 2.00 
2005 0.6098 0.0204 0.5593 0.0114 2.00 1.80 1.99 2.00 
2006 0.6016 0.0111 0.5750 0.0128 1.60 1.40 1.40 1.40 
2007 0.6300 0.0119 0.5504 0.0092 1.80 1.80 1.90 1.90 
2008 0.7870 0.0290 0.5484 0.0084 1.30 1.30 130 1.30 
2009 0.4877 0.0157 0.5742 0.0134 1.70 1.90 1.90 1.90 
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Table 4: Values of DFA exponent α, Hurst exponent H, and Levy Flight parameter 
α for the Emerging Markets Index (EEM) year by year. 

Emerging 
Markets 

Index 
(EEM) 

DFA Hurst 
 

Levy Flight parameter (α) 

α Error H Error α@T=1 α@T=4 α@T=8 α@T=16 

2003 0.4474 0.0123 0.5835 0.0113 2.00 2.00 2.00 2.00 
2004 0.6970 0.0229 0.6264 0.0074 1.70 1.60 1.60 1.60 
2005 0.6064 0.0202 0.6203 0.0079 1.80 1.75 1.70 1.70 
2006 0.6373 0.0196 0.5300 0.0126 1.50 1.60 1.50 1.40 
2007 0.6657 0.0138 0.5318 0.0109 1.70 1.80 1.70 1.80 
2008 0.5546 0.0448 0.5236 0.0102 1.40 1.40 1.40 1.40 
2009 0.3866 0.0120 0.5605 0.0190 1.85 1.99 2.00 2.00 

  

 
Table 5: Values of the DFA exponent α, Hurst exponent H, and Levy Flight 
parameter α for the S&P500 Index year by year. 

 
S&P 500 

Index 

 
DFA 

 
Hurst 

Levy Flight parameter (α) 
 

α Error H Error α @T=1 α @T=4 α @T=8 α @T=16 

2001 0.6888 0.0188 0.7836 0.0152 1.40 1.30 1.30 1.30 
2002 0.7434 0.0189 0.5865 0.0098 1.50 1.40 1.50 1.60 
2003 0.4979 0.0114 0.5702 0.0082 1.50 1.60 1.50 1.50 
2004 0.5199 0.0124 0.6080 0.0070 1.90 1.80 1.90 2.00 
2005 0.6674 0.0132 0.5589 0.0086 1.90 1.80 1.90 2.00 
2006 0.4745 0.0131 0.5170 0.0135 1.60 1.99 1.60 1.70 
2007 0.6574 0.0185 0.5220 0.0104 1.60 1.80 1.70 2.00 
2008 0.7677 0.0287 0.5168 0.0097 1.40 1.40 1.40 1.40 
2009 0.4449 0.0159 0.5639 0.0150 1.50 1.80 1.90 1.50 

 
Table 6: Goodness of fit p-values for fitting the Gaussian distribution to the return 
data of the three indices 

 
 

EFA 
Index 
 

EEM 
Index 

S&P 500 
Index 

2001 0.023  0.303 
2002 0.074  0.086 
2003 0.283 0.668 0.327 
2004 0.138 0.060 0.026 
2005 <0.005 0.031 0.133 
2006 <0.005 0.013 <0.005 
2007 <0.005 <0.005 <0.005 
2008 <0.005 <0.005 <0.005 
2009 0.035 0.100 0.033 
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Figure 1: Analysis results for EFA index using the entire period available. Top 4 images: Fitting using TLF. 
Blue points represent the empirical distribution; red curve the best fitted TLF distribution; green curve best 
Gaussian curve fit. There are four fitted distribution one for each return lag T considered. Middle image: results 
for the DFA analysis. Points should be close to a line, the slope of the line is the DFA parameter (α). Bottom 
image: results for the R/S analysis. Points should be close to a line, the slope is the Hurst parameter (H).
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Figure 2: Analysis results for EEM index using the entire period available. 
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Figure 3: Analysis results for S&P 500 index using the entire period available. 
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Figure 4: Several normality tests for 2003 using the three indices 
 


