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This work is devoted to the study of long correlations, memory effects and 

other statistical properties of high frequency (tick) data. We use a sample of 

25 stocks for this purpose. 

We verify that the behavior of the return is compatible with that of 

continuous time Levy processes. We also study the presence of memory 

effects and long-range correlations in the values of the return.  
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1. Introduction 

 
In recent years there has been a growing literature in financial economics that analyzes 

the major stock indices in developed countries, see [1-5] and the references therein. One 

of the main problems is the analysis of the existence of long term or short term 

correlations in the behavior of financial markets. The statistical properties of the 

temporal series analyzing the evolution of the different markets have been of a great 

importance in the study of financial markets. The empirical characterization of 

stochastic processes usually requires the study of temporal correlations and the 

determination of asymptotic probability density distributions. 
 

Studies that focus on a particular country index generally show that a long-term 

memory effect exists in those indices, see [6-7] and the references therein. The previous 

studies concentrated on daily data. We wish to verify if the same conclusion applies to 

high frequency data. Following this line, we analyze a sample of 26 stocks of trade-by-

trade (tick) data for a very typical day (10-04-2007) devoid of any major events. 

We find that all unit root tests performed rejected the existence of a unit root type 

nonstationarity. The p-values of the tests were all under 0.01. 

We use Rescaled Range Analysis (R/S) and Detrended Fluctuation Analysis (DFA) 
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methods to determine long-range correlations. Both methods characterize fractional 

behavior, but R/S analysis can yield more accurate results for small and stationary data 

sets and DFA analysis yields more accurate result for non stationary data sets. The 

exponents calculated are complementary and could serve as verification and comparison 

of the results; therefore, both methods are used. 

We found evidence that even in an ordinary day without any notable information for 

about 75% of the market, the use of short term memory models is inappropriate.  

Specifically, in only 23% of the studied cases one of the tests performed did not reject 

the Gaussian hypothesis (no memory or very short term memory). There were no stocks 

for which both tests performed agreed that the data is Gaussian. 

We conclude that stochastic volatility models, jump diffusion models and general Levy 

processes seem to be needed for the modeling of high frequency data in any situation. 

 

2. R / S Analysis 
 

Hurst developed the re-scaled range analysis (R/S analysis) [8, 9].  He observed many 

natural phenomena that followed a biased random walk, i.e., every phenomenon showed 

a pattern. He measured the trend using an exponent now labeled the Hurst exponent.  

 

The procedure used to calculate R/S is as follows: 

 

1.  Let N be the length of time series (y1, y2, y3…, yN). The logarithmic ratio of the time 

series is obtained. The length of the new time series M(t) will be N – 1. 
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2.  The time series is then divided into m sub-series of length n. n represents the number 

of elements in the series and m represents the number of sub-series. Thus m * n = N -1. 

Each sub-series can be labeled as Qa where a = 1, 2,…., m and each element in Qa can 

be labeled as Lk,a for k = 1,2,….,n. 

 

3.  For each Qa, the average value is calculated: 
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4.  The cumulative deviation in each Qa is calculated: 
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5.  Thus the range of each sub-series Qa is given as: 
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6.  The standard deviation of each sub-series Qa is calculated: 
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7.  Each sub-series is normalized by dividing the range, R(Qa) by the standard deviation, 

S(Qa). The average value of R/S for sub-series of length n is obtained by: 
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8.  Steps 2 through 7 are repeated for all possible values of n, thus obtaining the 

corresponding R/S values for each n. 

 

The relationship between length of the sub-series, n and the rescaled range R/S is: 

( )Hnc
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where R/S is the rescaled range, n is the length of the sub-series of the time series and H 

is the Hurst exponent. Taking logarithms yields: 

 
( ) )log(loglog cnHS
R +∗=  

      

9.   An ordinary least squares regression is performed using log(R/S) as a dependent 

variable and log(n) as an independent variable. The slope of the equation is the estimate 

of the Hurst exponent, H. 

 

If the value of H for the investigated time series is 0.5, then it implies that the time 

series follows a random walk, i.e. an independent process. For data series with long 

memory effects, H would lie between 0.5 and 1, or elements of the observation are 
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dependent. This means that what happens now would have an impact on the future. This 

property of the time series is called persistent time series and this character enables 

prediction of any time series as it shows a trend. If H lies between 0 and 0.5, it implies 

that the time-series possess anti-persistent behavior (negative autocorrelation). 
 

 

3. Detrended Fluctuation Analysis 
 

The Detrended Fluctuation Analysis method (DFA) is an important technique in 

revealing long range correlations in non-stationary time series. This method was 

developed by Peng [10], and has been successfully applied to the study of cloud 

breaking, Latin-American market indices, DNA, cardiac dynamics, climatic studies, 

solid state physics, and economic series. The advantages of DFA over conventional 

methods are that it permits the detection of intrinsic self-similarity embedded in a 

seemingly non-stationary time series, and also avoids the spurious detection of apparent 

self-similarity, which may be an artifact of extrinsic trends. 

 

First, the absolute value of M(t), i.e. the logarithmic returns of the indices calculated in 

the R/S analysis,  is integrated: 
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Then the integrated time series of length N is divided into m boxes of equal length n 

with no intersection between them. As the data is divided into equal-length intervals, 

there may be some left over at the end. In order to take account of these leftover values, 

the same procedure is repeated but beginning from the end, obtaining 2N / n boxes. 

Then, a least squares line is fitted to each box, representing the trend in each box, thus 

obtaining (yn (t)). Finally the root mean square fluctuation is calculated using the 

formula: 
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This computation is repeated over all box sizes to characterize a relationship between 

the box size n and F (n). A linear relationship between the F(n) and n (i.e. box size) in a 

log-log plot reveals that the fluctuations can be characterized by a scaling exponent (α), 
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the slope of the line relating log F(n) to log n. 

 

For data series with no correlations or short-range correlation, alpha is expected to be 

0.5. For data series with long-range power law correlations, alpha would lie between 0.5 

and 1 and for power law anti-correlations; alpha would lie between 0 and 0.5. This 

method was used for the measure of correlations in highly traded financial series, and in 

the daily evolution of some of the most relevant indices.  

 

4.  Stationarity and Unit Root Test 
 

To study the fractional behavior of a times series using the R/S or the DFA analysis, it is 

important to investigate whether the underlying time series is stationary or not. The first 

method is more appropriate when analyzing stationary data sets, whereas the second 

method is more appropriate for non-stationary data sets. In the economic literature we 

can find tests for a particular type of nonstationarity behavior: the unit-root 

nonstationarity. Assume that the process {yt} possesses a univariate autoregressive 

stochastic component of order p; that is {yt} obeys the equation  

tptpttt yayayaay ε+++++= −−− ...22110 , 

Where the εt corresponding to different values of t may be correlated but they are all 

stationary (i.e., have the same distribution for all t). 

We define the roots of the AR (p) component as the solutions to the characteristic 

polynomial 
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The process {yt} is stationary if all the roots of the characteristic polynomial Φ(z) lie 

outside the unit circle. In this case shocks into the system will dissipate over time. If 

Φ(z) has at least one unit root, it is said to exhibit a unit-root type non-stationary 

behavior; the effect of shocks never dies out. We note that this is the only type of 

nonstationarity that can be formally tested. 
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5. Methods and data analysis 
 

We study high frequency data for 26 stocks traded on NYSE during April 10 2007. We 

chose this particular day since we want to study the typical behavior of the equity data, 

during a day when there are no major events influencing the returns. We pick a sample 

of 26 highly traded stocks and for obvious reasons we call them Stock 1, Stock 2, …, 

Stock 26. Since we use every trade it is very common to find many consecutive trades at 

the same price. We cumulate all such consecutive trades into one data point since they 

do not indicate price movement. In this work, the stochastic variable analyzed is the 

continuously compounded return (rt), defined as the difference of the logarithm of two 

consecutive equity prices: 

rt = log(St) – log(St-1) 

Due to the nature of the stock movement (only moves in $0.01 increments) the resulting 

values for the return are in fact discretized. There are many more data points where the 

stock changes just by one cent from transaction to transaction than points where the 

change in the stock price is higher. We can see this aspect of the data exemplified in 

Figure 1. 

 
 

 

The next images show the result obtained when comparing this empirical distribution 

function with the normal log-normal and logistic family of distributions. Additionally, 

we have compared with many other properly scaled families of distribution including 

Exponential, Gamma, and Weibull types. Of course all these are constructed assuming 

Figure 1: Plot of the empirical CDF of the returns for Stock 1. Left image contains the original CDF. 
The right image is the same empirical CDF but rescaled so that the discontinuities are clearly seen 
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little or no memory in the dataset. 
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The Table 1 below shows the results of the unit root test as well as the Hurst and DFA 

exponents: 

 

Table 1 
Data ADF 

(Pvalue) 
PP (p 
value) 

KPSS  
(p value) 

DFA HURST 

Stock 1 
 

<0.01 <0.01 >0.1 0.525178   
0.007037 

0.561643   
0.005423 

Stock 2 <0.01 <0.01 >0.1 0.64812    
0.01512 

0.490789   
0.006462 

Stock 3 <0.01 <0.01 >0.1 0.66368    
0.01465 

0.628440   
0.006138 

Stock 4 <0.01 <0.01 >0.1 0.66969    
0.01506 

0.644534   
0.005527 

Stock 5 <0.01 <0.01 >0.1 0.65525    
0.02916 

0.65044    
0.02908 

Stock 6 <0.01 <0.01 >0.1 0.74206    
0.01032 

0.722893   
0.008662 

Stock 7 <0.01 <0.01 >0.1 0.50432    
0.01212 

0.644820   
0.008521 

Stock 8 <0.01 <0.01 >0.1 0.66184    
0.01681 

0.38046    
0.01673 

Stock 9 <0.01 <0.01 >0.1 0.72729    
0.01383 

0.635075   
0.006374 

Stock 10 <0.01 <0.01 0.07686 0.79322    
0.01158 

0.654970   
0.006413 

Stock 11 <0.01 <0.01 >0.1  0.322432   
0.007075 

0.52485    
0.01265 

Stock 12 <0.01 <0.01 >0.1  0.70352    
0.01429 

0.596178   
0.007172 

Stock 13 <0.01 <0.01 >0.1 0.74889    
0.02081 

0.58279    
0.00825 

Stock 14 <0.01 <0.01 >0.1 0.70976    
0.01062 

0.578053   
0.007177 

Stock 15 <0.01 <0.01 >0.1 0.76746    
0.01029 

0.588555   
0.004527 

Stock 16 <0.01 <0.01 >0.1 0.62549    0.61023    

Figure 2: Quantile-Quantile plots of the empirical CDF of the returns for Stock 1 versus several 
candidate distributions. The plots and the numerical results reject all these traditional distributions. 
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0.01554 0.01083 
Stock 17 <0.01 <0.01 >0.1 0.80534    

0.02432 
0.591336   
0.006912 

Stock 18 <0.01 <0.01 0.076 0.69134    
0.01336   

0.596003   
0.001927 

Stock 19 <0.01 <0.01 >0.1 0.678050   
0.009018 

0.596190   
0.005278 

Stock 20 <0.01 <0.01 >0.1 0.48603    
0.01462 

0.59426    
0.01829 

Stock 21 <0.01 <0.01 >0.1 0.65553    
0.02517 

0.50115    
0.01086 

Stock 22 <0.01 <0.01 >0.1  0.70807    
0.01081 

0.552367   
0.009506 

Stock 23 <0.01 <0.01 >0.1 0.717223   
0.009553 

0.594051   
0.006709 

Stock 24 <0.01 <0.01 >0.1 0.45403    
0.01370 

0.37129    
0.02267 

Stock 25 <0.01 <0.01 0.02718 0.63043    
0.01200 

0.646725   
0.005784 

Stock 26 <0.01 <0.01 >0.1 0.59568    
0.01464 

0.51591    
0.01586 

 
 
ADF= Augmented Dickey-Fuller Test for unit root stationarity 
PP= Phillips-Perron Unit Root Test  
KPSS= Kwiatkowski-Phillips-Schmidt-Shin Test for unit root Stationarity 
DFA= Detrended Fluctuation Analysis 
Hurst= Rescale  Range Analysis 
For the ADF and the PP the null hypothesis is the non-stationarity, and for the KPSS the null hypothesis 
is stationarity . 
With two small exceptions the tests reject the unit-root type nonstationarity. 
 
 

It is worth mentioning that while the stationarity tests reject the presence of the unit-root 

in the characteristic polynomial that does not necessarily mean that the data is 

stationary, only that the particular type of nonstationarity indicated by the unit root is 

absent. For this reason we proceed with both tests even though conventional wisdom 

would recommend the use of the Hurst analysis at this point.  

The Figure 3 below show the plot of  

( ) )log(loglog cnHS
R +∗=     for Hurst 

and the plot of   

log F(n) =α* log n +log c     for DFA. 

for four stocks. The plots for the entire sample of 26 stocks can be obtained at: 

www.math.stevens.edu/~ifloresc/fractional.html  

Points close to a straight line indicate good parameter estimators.  

 

 

http://www.math.stevens.edu/~ifloresc/fractional.html�
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6.  Results and Discussion 

 

The estimated values for the slopes are presented in the last two columns of Table 1. 

With one exception the results obtained using the two methods agree. 19 out of the 26 

equity data analyzed (or about 73% of the data) exhibited long memory effects which 

were recognized by both DFA and R/S methods. For 6 out of the 26 (about 23%) one of 

the two tests did not indicate correlations in the data. In one case (Stock 7) the results 

were contradictory; both tests indicated the presence of the long memory effects, 

however, while R/S indicated a persistent behavior, the DFA shows an anti-persistent 

activity (negative correlation). Of the 19 stocks that show definite evidence of long 

memory effects 18 show a persistent and only 1 an anti-persistent activity. 

We found evidence that even in an ordinary day without any notable information for 

about 75% of the market, the use of short term memory models is inappropriate. We 

conclude that stochastic volatility models, jump diffusion models and general Levy 

processes seem to be needed for the modeling of high frequency data in any situation. 
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Figure 3: Hurst and DFA regression plots for a sample of three stocks. Plots on the left depict the 
Hurst method while the plots on the right show the results obtained using the DFA method. 
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