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In this paper, we present algorithms to solve a complex system of partial

integro-differential equations (PIDE’s) of parabolic type. The system is motivated by
applications in finance where the solution of the system gives the price of European
options in a regime-switching jump diffusion model. The new algorithms are based on
theoretical analysis in Florescu et al. (2012) where the proof of convergence of the algo-
rithms is carried out. The problems are also solved using a more traditional approach,
where the integral terms (but not the derivative terms) are treated explicitly. Another
contribution of this work details a novel type of jump distribution. Empirical evidence
suggests that this type of distribution may be more appropriate to model jumps as it
makes them more clearly distinguishable from the signal variability.

Keywords: Numerical algorithms; system of partial integro-differential equations; regime-
switching jump diffusion; option pricing; implicit and explicit finite element methods.

1. Introduction

In this work, we present numerical algorithms to solve a complex system of par-
tial integro-differential equations (PIDE’s) of parabolic type. Our study is mainly
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motivated by applications in mathematical finance. It is well-known that the prob-
lem of pricing financial derivatives often leads to solving partial differential and/or
integral equations. Due to the needed consideration of stochastic volatility, stochas-
tic interest rate, and discontinuous jumps in the mathematical models describing
the dynamics of the underlying asset prices, the complexity of these equations has
increased significantly in recent years. In general, analytical solutions are not avail-
able for these problems and thus in practical applications numerical methods are
employed.

The new algorithms presented in the present paper are based on the theoretical
work in [12] where we study a general system of PIDE’s modeling the option pric-
ing problem in a regime-switching jump diffusion model. We prove the existence
of solution to the PIDE system via a method of upper and lower solutions. We
construct monotonic sequences of solutions started from the lower solution whose
limit is a strong solution of the PIDE system. This constructive proof suggests a
numerical scheme allowing to compute approximating option prices. This scheme is
different from the existing literature, thus prompting the current study.

Pioneered by [24], jump diffusion models have been a main topic of study in
financial mathematics. The rational for including a jump component in a diffusion
model is due to the fact that the driving Brownian motion is a continuous process,
which means that the process has difficulties fitting the market data with large
fluctuations. Thus, the necessity of taking into account large market movements, as
well as a great amount of information arriving suddenly (i.e. a jump) has led to the
study of jump diffusion models. On the other hand, aiming to include the influence
of macroeconomic factors on the behavior of individual asset prices, considerable
attention has been drawn to regime-switching models in recent years. See [15, 23].
In this regime-switching setting, asset prices are modeled by several stochastic dif-
ferential equations coupled by a finite-state Markov chain, which represents various
randomly changing economical factors. Mathematically, the regime-switching mod-
els generalize traditional models in such a way that the coefficients in the models
depend on the respective state of the Markov chain. This type of asset models results
in a system of coupled PDE’s (or PIDE’s) for the problem of pricing options. To
model both jump and regime-switching in an appropriate way, a regime-switching
jump diffusion model is posed in [12]. This model is numerically solved in the present
work.

Option pricing using regime-switching jump diffusion models has been studied
by several authors in the literature. Elliott et al. in [11] employ a generalized regime-
switching Esscher transform to determine an equivalent martingale measure that is
used for pricing options. They also derive a system of coupled partial-differential-
integral equations satisfied by the European option prices. Yuen and Yang in [34]
develop a trinomial tree method to calculate approximate option prices. Siu et al.
in [30] study the problem of valuing participating life insurance products under
a generalized jump diffusion model with a Markov-switching compensator. They
develop a numerical algorithm based on the Monte-Carlo simulations. Recently, [26]
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proposes a pricing method based on Fourier Transform for the Merton jump diffu-
sion with regime-switching where the jump sizes are assumed to follow a lognormal
distribution. In [4], the authors develop algorithms for pricing double barrier options
in a regime-switching hyper-exponential jump-diffusion model. This last model uses
a mixture of any number of exponential distributions for jumps (generalizing Kou’s
log double exponential model which is a mixture of just two distributions). The
approach in this latter paper is based on a combination of Carr’s randomization
and the Wiener–Hopf factorization.

Along another line, there exists a rich literature on numerical schemes for solving
the PIDEs for pricing options in jump-diffusion models. See [1–3, 6–10, 14, 20, 21, 27,
28, 31, 32], among others. However, these papers treat a single PIDE arising from
using a jump-diffusion model without considering the possible change of regime.
On the other hand, numerical solutions have been developed for systems of PDEs
for options in regime-switching models without inclusion of jumps. See [5, 16–18],
among others.

The numerical schemes presented in the current paper, based on a constructive
proof of an existence theorem, are very different from the above-mentioned meth-
ods. To our best knowledge, the present paper is the first attempt on numerical
solutions of the system of PIDEs using a regime-switching jump diffusion model.
The algorithms developed herein may be particularized to work with models in any
one of the papers mentioned by simply choosing the appropriate jump density g(y).
Moreover, we numerically examine a new class of jump distributions, namely a log-
normal mixture. This class of distributions seems to be more useful for modeling
jumps since it is easy to understand the jump characteristics as well as making the
jumps more clearly distinguishable from the signal variability. We refer the reader
to Sec. 4.1 for a detailed discussion of this distribution and its characteristics.

The algorithms described in this paper may be implemented using any PDE
solver. In our work we used PDE2D, a general purpose partial differential
equation solver available from Rogue Wave, Inc. (www.roguewave.com/pde2d or
www.pde2d.com), which has been used to solve many mathematical finance applica-
tions [33]. PDE2D is able to solve linear or non-linear, steady-state, time-dependent
and eigenvalue problems, in 1D intervals, general 2D regions (with curved bound-
aries), and a wide range of simple 3D regions. It has a sophisticated GUI interface
which makes it extremely easy to use. PDE2D can solve 1D, 2D or 3D problems
similar to the problems presented, using a collocation finite element method with
cubic Hermite basis functions to discretize the spatial derivatives and implicit finite
difference methods to discretize the time derivatives. Without the integral term, a
problem such as the system resulting from a regime-switching model is a straight-
forward PDE2D application, and can be solved with little user effort. The integral
term in the current problem resulting from the jumps, required special efforts which
are detailed in the paper.

The paper is organized as follows. Section 2 presents the mathematical model of
regime-switching jump diffusion as well as the system of PIDE’s needed to be solved
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in order to calculate European type option prices. Section 3 presents two types of
algorithms for numerically solving the PIDE system. The type 1 algorithms (two of
them) are new to the PIDE system considered in this paper and are described in
detail. For the purpose of comparison, we also present what we call a type 2 algo-
rithm which is based on a more traditional approach, in which the integral terms
are treated explicitly in time, while the derivative terms are treated implicitly. In
Sec. 4, we exemplify these algorithms using numerical examples. We first give a dis-
cussion about the jump distributions used. We follow with three different examples.
The algorithms are implemented and tested for these examples. Numerical results
are reported and compared. Section 5 provides further remarks and concludes the
paper.

2. Problem Formulation

In this section, we present the regime-switching jump diffusion model used for asset
price evolution and the system of PIDE’s for pricing European options.

2.1. Model description

We assume as given a complete probability space (Ω,F ,P), endowed with a fil-
tration {Ft}t on which all the stochastic processes introduced in this paper are
defined, respectively adapted to. Here, P is the real-world probability measure. In
this space let Bt be an 1D standard Brownian motion and αt be a continuous-time
Markov chain taking values in the set M := {1, . . . , m}. Let the intensity matrix
(or the generator) Q = (qij)m×m of αt be given. In this context, the elements qij ,
i, j = 1, . . . , m of the generator satisfy:

(I) qij ≥ 0 if i �= j;
(II) qii = −∑

j �=i qij for each i = 1, . . . , m.

We assume that the Brownian motion Bt and the Markov chain αt are independent.
The process αt governs the times when the regime is switched as well as the values
of regime.

We use a Cox process (a specialized non-homogeneous Poisson process) Nt with
regime-dependent intensity λαt to model the random jump times. Thus, if the cur-
rent regime is αt = i, then the time until the next jump is given by an exponential
random variable with mean 1/λi. Here, Nt counts the total number of jumps in the
asset price up to time t. Let the jump sizes be given by a sequence of iid random vari-
ables Yk, k = 1, 2, . . . , with probability density g(y). Assume that Yk, k = 1, 2, . . . ,

are independent of Bt and αt.
We consider a risky asset whose price St under the real-world probability mea-

sure P is governed by the regime-switching jump diffusion:

dSt

St−
= µαtdt + σαtdBt + dJt, t ≥ 0, (2.1)
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where St− denotes the asset price right before the time t, µαt and σαt are the
expected rate of return and the volatility rate, respectively; Jt is the jump compo-
nent given by

Jt =
Nt∑

k=1

(Yk − 1). (2.2)

Yk − 1 represents the percentage by which the asset price changes at the kth-jump.
Note that, in between regime-switching times the asset process follows a regular
jump diffusion with constant coefficients. However, the coefficients are switching as
governed by the corresponding state of the Markov chain. Also note that, in the
model setting (2.1) the volatility is modeled as a finite-state Markov chain σαt . This
may be considered as a discrete approximation of a continuous-time diffusion model
for the stochastic volatility (e.g., the Heston’s model). We refer the reader to [22]
for further discussions.

2.2. The system of PIDE’s for European options

Given that the asset price process follows the regime-switching jump diffusion
model (2.1), we look into the problem of option pricing. To this end let rαt denote
the risk-free interest rate corresponding to the state αt of the Markov chain.

To simplify exposition, we consider European options written on a single asset
St with maturity T < ∞. The system of PIDE’s for options written on multiple
correlated assets can be derived in a similar manner. In Sec. 4.4, we give an example
where the option is written on two assets, each following a regime-switching jump
diffusion process. The derivation is entirely similar. Let Vi(S, t) denote the option
value at time t, when the asset price St = S and the regime αt = i (assuming
that the regime αt is observable). Under these assumptions we change the time
variable from t to T − t and rewrite the PIDE’s in forward form. This step is not
necessary but most PDE solvers are constructed for forward rather than backward
equations. We present the algorithms in forward form for convenience of implemen-
tation. Assuming that the value functions Vi(S, t), i = 1, . . . , m, satisfy appropriated
regularity conditions, for example Vi(S, t) ∈ C2(Π, R) ∩ C(Π, R) ∩ L1(Π, R) where
Π denotes the domain of S, they verify the following system of PIDE’s [12, 15, 25]:

1
2
σ2

i S2 ∂2Vi

∂S2
+ (ri − λiκ)S

∂Vi

∂S
− (ri + λi − qii)Vi − ∂Vi

∂t

= −λi

∫
Vi(Sy, t)g(y)dy −

∑
j �=i

qijVj , (2.3)

where κ = E[Y − 1] =
∫
(y − 1)g(y)dy. Here, Y denotes the jump size random

variable. The boundary conditions are expressed at t = 0 and when S → 0 and
S → ∞.

To determine the option prices corresponding to different regimes, the system
(2.3) needs to be solved for various boundary conditions which depend on the
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particular option being priced. To our best knowledge, there exists no known ana-
lytical solution to such complicated system of PIDE’s. In [12], we analyze a general
version of such a system of PIDE’s. In that work we proved that, under suitable
regularity conditions on the parameters as well as boundary conditions, the sys-
tem admits a solution. Our proof of the main theorem [12, Theorem 1] was using
the method of upper and lower solutions. We construct monotonic sequences of
approximating solutions whose limit is a strong solution of the PIDE system. This
constructive proof provides a natural numerical scheme to computing approximat-
ing solutions of the system. As we shall describe in the next section, this scheme is
different from the existing literature for the PIDE system we consider in this paper.

Remark 2.1. In this paper, the market regime αt is assumed to be observable and
hence the option price can be identified with the regime information. However, in
practice, information of αt is usually hidden in noisy market data and not directly
observable. When the modulating Markov chain is unobservable, the volatility term
in (2.1) is unobservable too. The volatility term may be identified by using the
predictable quadratic variation of the observed share price process. Furthermore,
if the modulating Markov chain is hidden, it is necessary to develop non-linear
filtering methods (for example, the Wonham filter) for estimating the conditional
probabilities of αt given the stock process. It can be used in connection with our
numerical algorithms to determine the option prices. We leave this as an interesting
project for future research.

3. Description of Algorithms

In this section, we present two different types of algorithms. The algorithms of
type 1 (we call them Algorithms 1a and 1b) are suggested by the constructive proof
presented in [12, Theorem 1]. These algorithms work if upper/lower solutions of
the problem exist (see the definitions and further discussions in [12]). They may
be considered as implicit type algorithms since the integral terms are evaluated at
the same time point as the derivative terms, not at a previous time point. These
implicit algorithms can start from either a lower solution or an upper solution at the
first step. In the numerical examples presented in Sec. 4, the algorithms are used to
calculate option prices which are always non-negative, therefore the zero solution
Vi(S, t) = 0∀ i, S, t can be chosen as an initial lower solution. In our implementation,
the first iteration always starts from this particular lower solution. The algorithms
would converge faster by choosing a better (closer to true value) lower (or upper)
solution. The similar ideas in literature of which we are aware are [10] and [3].
These algorithms are designed for the simple jump diffusion model (without regime
switching or stochastic volatility) and they may be viewed as a local fixed point
algorithm [10] and a global fixed point iteration algorithm [3], both different from
the algorithms proposed herein. In fact the closest idea is our previous work [13]
and [14] developed in the context of PIDE’s obtained for stochastic volatility and
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jumps. The algorithms presented next extend this work to regime-switching models
as well as jumps.

The algorithm of type 2 (called Algorithm 2) is a more traditional algorithm, in
which the integral terms are treated explicitly in time, though the derivative terms
are treated implicitly. Specifically, this algorithm propagates in time from the initial
condition at time zero using a classical finite element scheme. Indeed variants of this
algorithm for simple jump-diffusion processes have been analyzed in [8] using a so-
called implicit-explicit method (the implicit part refers to dealing with the jump
component using a “compensated vanishing viscosity” approximating solution).

We present the algorithms for a general PIDE system with d ≥ 1 underlying
asset variables S = (S1, . . . , Sd). This general system is treated in [12] which includes
both the single asset (2.3) and two assets (4.5) as special cases. Let the differential
operator Li be defined by

LiVi =
d∑

j=1

d∑
k=1

ai
jk(S, t)

∂Vi

∂Sj∂Sk
+

d∑
j=1

bi
j(S, t)

∂Vi

∂Sj
+ ci(S, t)Vi, i = 1, . . . , m,

(3.1)

and the integral operator Gi by

Gi(t, Vi) = −λi

∫
Vi(S1y1, . . . , Sdyd, t)g(y1, . . . , yd)dy1 · · · dyd, (3.2)

where the coefficients ai
jk, bi

j and ci, i ∈ {1, . . . , m}; j, k ∈ {1, . . . , d} satisfy appro-
priate conditions [12], and g(y1, . . . , yd) denotes the joint probability density of the
d-dimensional jump size random variables.

Using these notations we rewrite the problem with general boundary conditions
on the general domain Ω ⊆ R

d as:


LiVi − ∂Vi

∂t
= Gi(t, Vi) −

∑
j �=i

qijVj in Ω × (0, T )

Vi(S, 0) = Vi,0(S) on Ω × {0}
Vi(S, t) = hi(S, t) on ∂Ω × (0, T )

for i = 1, . . . , m, (3.3)

where Vi,0 and hi specify the boundary conditions and must satisfy the compatibility
condition

hi(S, 0) = Vi,0(S), for any S ∈ ∂Ω, i = 1, . . . , m. (3.4)

The algorithms presented next provide numerical procedures for solving the
system (3.3). For notational concision, we may use V = {Vi, 1 ≤ i ≤ m} for the
collection of m solution functions to (3.3).

3.1. Algorithm 1a

Algorithm 1a follows the procedure used to construct the convergent sequences
in [12]. We have to make sure that there exist a lower solution α() and an upper
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solution β() of the problem and that the operators Li and Gi satisfy the hypotheses
of the theorem. As noted before, in financial applications when we price options,
α() = 0 is always a lower solution of the problem.

Algorithm 1a is outlined in the following.

(1) We start with V 0 = α, the lower solution.
(2) For every n ≥ 0, we find an approximated solution V n+1 of the problem


LiV

n+1
i − ∂V n+1

i

∂t
= Gi(t, V n

i ) −
∑
j �=i

qijV
n
j in Ω × (0, T )

V n+1
i (S, 0) = Vi,0(S) on Ω × {0}

V n+1
i (S, t) = hi(S, t) on ∂Ω × (0, T )

i = 1, . . . , m.

(3.5)

The m PDE’s in this system cannot be solved analytically. Therefore, we imple-
ment a finite element scheme to numerically solve them.

• We take a d + 1 dimensional grid1 in state variables t ∈ [0, T ], and Sk ∈
[0, Sk

max], k ∈ {1, . . . , d}. The upper bounds Sk
max are suitably chosen large

numbers. This grid is kept the same for all iterations.
• We approximate the integrals in Gi(t, V n

i ) using a midpoint rule, with the
required values of V n

i (S, t) interpolated from the values saved at all the points
on the grid, using quadratic interpolation in the components of S and linear
interpolation in t.

• Since the equations are iteratively solved forward in time, the boundary con-
ditions are set at t = 0 and we solve the resulting PDE’s starting from time
t = 0 by using a PDE solver — we use PDE2D [29] in our experiments.

• The result is V n+1 calculated at all grid points and to be used in the next
iteration.

(3) The sequence {V n, n ≥ 1} converges to the solution of the main system (3.3).
Thus, the algorithm stopping criteria is that the maximum difference between
two consecutive iterations at all points on the grid is less than a pre-specified
error tolerance.

We note that in this algorithm at every iteration we solve a separate PDE for
each i. This is due to the fact that the coupling term

∑
j �=i qijV

n
j uses the previously

found solution so in fact this term is known when solving for the variables V n+1.
This treatment for the coupling term is particularly suitable for parallel computa-
tion, using m processors, one for each PDE. If this is done, each processor must
access the solutions saved on the previous iteration by the other processors, but oth-
erwise there is no communication between processors, because (unlike Algorithms
1b and 2) the processor solving equation i does not need to know the solutions on

1In the numerical examples we present later d ≤ 2.

1350046-8

In
t. 

J.
 T

he
or

. A
pp

l. 
Fi

na
n.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
SP

C
 o

n 
12

/2
9/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.



2nd Reading

December 17, 2013 8:39 WSPC/S0219-0249 104-IJTAF SPI-J071
1350046

Numerical Schemes for Option Pricing in Regime-Switching Jump Diffusion Models

the current iteration being calculated by the other processors. So, there is almost
no communication between processors, which means excellent parallel performance
would be expected. In fact, we have now implemented Algorithm 1a in parallel
and applied it to Example 2 of Sec. 4.3 (call option, Case A) which involves m = 4
equations, and thus four processors are used, and the computer time decreased from
34:20 to 3:12, with identical results (the time for the original version does not agree
with Table 5 because this was run on a different, multi-processor, system). The
reason the observed speed-up is even greater than the number of processors used is
that our original implementation solved the four equations as a coupled system, for
convenience, even though for Algorithm 1a the m equations are uncoupled: solving
the four equations sequentially, on a single processor, as four separate uncoupled
equations, decreased the time from 34:20 to 11:49. Then when this new program
was parallelized, a further decrease in time resulted, to 3:12.

3.2. Algorithm 1b

Algorithm 1b is a slight modification of Algorithm 1a. Based on the previous obser-
vation we hope to speed up the solver by treating the coupling terms as unknown
variables. However, this will lead to solving a system of PDE’s as opposed to solving
separate PDE’s as in Algorithm 1a. Specifically, the equations in (3.5) are replaced
with the following system of PDE’s:



LiV
n+1
i − ∂V n+1

i

∂t
+

∑
j �=i

qijV
n+1
j = Gi(t, V n

i ) in Ω × (0, T )

V n+1
i (S, 0) = Vi,0(S) on Ω × {0}

V n+1
i (S, t) = hi(S, t) on ∂Ω × (0, T )

i = 1, . . . , m.

(3.6)

This system of PDE’s can be numerically solved using a finite element scheme
as in Algorithm 1a in a very similar manner. The numerical experiments we per-
form seem to indicate that the approximating sequences {V n, n ≥ 1} generated by
Algorithm 1b converge in a fewer number of iterations than that generated by Algo-
rithm 1a. This is expected since the coupling term of the system uses the current
iteration instead of the previous iteration solution. In terms of computational time,
in our implementations Algorithm 1b is also faster than Algorithm 1a, but as men-
tioned in the previous section, it is possible to speed up Algorithm 1a substantially
by solving the uncoupled PDEs of the system separately.

3.3. Algorithm 2

Algorithm 2 treats the integral terms explicitly, though it treats the derivative
terms implicitly. This algorithm does not use a discretization of the system (3.5) or
(3.6), instead it works directly with the original system (3.3). The algorithm works
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forward in time from t = 0 and provides an approximation solution at t = T . Recall
that we changed the time from backward to forward so at t = T we in fact obtain
the time-zero option values. Specifically:

• We start with the initial condition at time t0 = 0. That is, set Vi(S, 0) = Vi,0(S).
• A PDE solver (in the numerical implementation we used PDE2D [29], which uses

a finite element method, but implicit finite difference discretizations for the time
derivatives) is used to solve (3.3) forward from tn to tn+1. The integral terms
Gi(t, Vi(t)) are evaluated at time tn, i.e. Gi(tn, Vi(tn)) for which the integrals are
approximated using a midpoint rule. The needed values of Vi at tn are approxi-
mated using quadratic interpolation of all the values saved at the S grid points
at time tn.

• When t = T we stop. The approximation solution is obtained for all grid points
for S.

3.4. Comments about the algorithms proposed

The current work attempts to answer the following questions via numerical
experiments.

• Is Algorithm 2 (for which we do not have a proof of convergence) giving the same
solution as the two algorithms of type 1 (which we know converge to a solution)?

• Is Algorithm 2 significantly faster than the two algorithms of type 1?

About the first point, we note that only Algorithm 1a is proven to converge to
the solution of the main problem (3.3). Algorithm 1b contains an easy modification
to speed things up and we have no doubt that it could be proven to converge to
the true solution. Algorithm 2 is a natural way to find solutions. It may be possible
to extend the analysis of [8] to the system of PIDEs and establish the convergence
of the implicit-explicit algorithm. The difficulties may come from the integral term
and the coupling term due to regime-switching. This will be studied in the future.
Our experience with a similar algorithm from a previous paper [14] (and experience
with explicit methods in general) suggests that it may go unstable if ∆t is larger
than some threshold which may decrease with increasing λi values, though with the
values of λi used in these examples we never saw any evidence of instability even
with large ∆t values. However, studying the behavior of the resulting solution and
comparing with the results provided by the other two algorithms would provide
ample indication whether or not the algorithm is producing an accurate solution.

We further note that in the theoretical work [12] we only prove an existence
result concerning the solution of the Eq. (3.3). If the three algorithms provide
similar solutions to the numerical examples we believe this would indicate that a
uniqueness study of the solution may be fruitful.

Concerning the speed of the algorithms we note that in our previous applied
work [14] where we worked with a single PIDE resulting from a stochastic volatility
model with jumps, an algorithm of type 1 was much slower than an algorithm of
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type 2. In the current paper, we are solving a system of PIDE’s. As we shall see,
the numerical examples seem to indicate that algorithms of type 1 may be practical
as well, for some problems.

For the 1D Examples 1 and 2, a non-uniform finite element mesh of 100 cubic
elements was used to discretize S, with smaller elements close to S = K, where
the solutions vary more rapidly. Experiments showed that making this mesh finer
did not significantly improve the accuracy, with 100 elements the time discretiza-
tion was the primary source of error. For the 2D Example 3, a non-uniform 30 by
30 mesh was used to discretize S1 and S2. In every test, the same finite element
mesh was used for all three algorithms, and the same backward Euler implicit finite
difference scheme was used to discretize the time derivatives. Thus, the only signif-
icant difference between Algorithms 1 and 2 was the way the integral terms were
handled: in Algorithm 2 the solution values used to calculate the integrals came
from the previous time step, in Algorithm 1 they came from the current time, but
the previous iteration.

4. Numerical Examples

We discuss the various types of distributions used for jumps and then present three
examples solved in this work. This is an important discussion; the jumps produce
the integral term in the PIDE equations and that term is the part which makes
solving the system (3.3) difficult.

4.1. A discussion about the jump distributions used

Recall that Y is a random variable with density g(y) representing the percentage
change in the stock price after a jump. More precisely, Y − 1 is the percentage by
which the price drops or rises after such a jump. For example, if Y − 1 = 0.5 or
Y = 1.5 and the price before the jump was S1 = $30, then the price after the jump
becomes S2 = 1.5S1 = $45. It is easy to see that jump values of Y close to one
do not in fact change the price process significantly and are undistinguishable from
the regular observed price fluctuations caused by sampling the process at discrete
times.

The first density g(y) for Y attempted in literature was the lognormal distri-
bution proposed by Merton in his classical jump diffusion paper [24]. A random
variable is lognormal if and only if its logarithm has a normal distribution. There
are two reasons why this particular distribution was chosen.

(1) Since Y is lognormal it may be thought of as Y = eZ where Z is a normal
random variable. Thus, Y can never be negative. This is necessary — recall
that the stock price becomes SY after a jump with size Y . Furthermore, zero is
an absorbing state for the stock process (i.e. once the equity price reaches zero
the company defaults) and no positive shock can take the process out of this
state.
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(2) Perhaps more interesting from the computational perspective, the underlying
stock process distribution remains lognormal with this jump distribution and
the author was able to obtain analytical formulae for European type options in
this case.

The drawback is that using the lognormal distribution for the jumps means that
most of the jumps are small (the jump distribution is centered at one). Thus, few
jumps have a reasonable probability of actually being observed. Furthermore, the
interesting mathematical property of the stock distribution remaining lognormal
means that the return process (Rt = log(St/St−∆t)) lacks the observed leptokurtic
(fat tails) property of the observed data. This was noticed by [19] who proposed to
model the jump distribution g(y) using a log double exponential distribution. The
resulting returns are leptokurtic and Kou preserves the economical aspects of the
stock process. However, despite the increased probability of large jumps, much of
the distributional mass of the jump is still concentrated around one, thus there is
still a significant chance of producing small jumps, undetectable in practice. This
is due to the shape of the log double exponential distribution as may be observed
in Fig. 1(b).

To keep the nice leptokurtic and economic features while avoiding this issue
of small jumps we are also exemplifying an alternative density, one which we call
the lognormal mixture density. This density uses the same idea of transforming a
probability density on R through eZ into a density on (0,∞). This density has a
smaller amount of mass around one. The name is quite natural as it extends the
notion of lognormal to include mixture of normals. This distribution is a natural
extension of the single lognormal used by Merton. A lognormal mixture of two
normals is displayed in Fig. 1(d). This distribution can be quite naturally generalized
to the possibility of modeling moderate and high jumps by having a log mixture of
more than two normals.

In what follows the two cases labeled Case A and Case B present the two jump
distributions and the specific parameters used in the numerical experiments.

Case A. Using a log double exponential density. The logarithm of the jump size Y

is a non-symmetric double exponential distribution (a generalization of the Laplace
distribution). Specifically, we shall use the following density for Y :

g(y) =

{
pα1y

−α1−1 if y > 1

(1 − p)α2y
α2−1 if 0 < y ≤ 1

, α1, α2 > 0.

This particular jump distribution was proposed initially by [19] (in its Laplace form
with p = 1/2 and α1 = α2). In the current study, we use a more general form. As
parameter values, we use α1 = 3.0465, α2 = 3.0775, and p = 0.3445. These are
the values used in [10] and later in [31]. Figures 1(a) and 1(b) present the double
exponential and the log double exponential densities respectively.

With this choice of parameters the expected value of the jumps is E[Y ] =
1.007576 and the variance is Var(Y ) = 0.3849779. The corresponding value for
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Fig. 1. A depiction of jump distributions. (a) Case A: Double exponential density. (b) Case A:
The corresponding log double exponential density. (c) Case B: A normal mixture density and (d)
Case B: The corresponding lognormal mixture density.

κ = E[Y ] − 1 in (2.3) is 0.007576. Furthermore, by having separate distributions
for the up and down jumps we may easily calculate that a jump is positive with
probability p = 0.3445 and that the expected values of the up and down jumps are
1.488639 and 0.7547517 respectively.

We want to remark that despite the clear interpretation of positive and negative
jumps it is pretty clear from Fig. 1(b) and also from calculations that many realized
jumps will be small. For example, the probability that the value of Y is between 0.9
and 1.1 is 0.268. Of course, these values may be changed using suitable parameters
but due to the shape of the density making probability of values close to one small

1350046-13

In
t. 

J.
 T

he
or

. A
pp

l. 
Fi

na
n.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
SP

C
 o

n 
12

/2
9/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.



2nd Reading

December 17, 2013 8:39 WSPC/S0219-0249 104-IJTAF SPI-J071
1350046

I. Florescu et al.

automatically increases the probability of huge unrealistic jumps. For example, with
the particular parameters above, the chance of a jump Y more than size 2 (a jump
that doubles the value of the stock price) is 4.17%, that is, one in about 24 shocks
will double the price. Further, the chance of a crippling jump of Y < 0.4 (stock
price drops more than 60%) is 3.91%, again we believe unreasonably high.

The next distribution proposed aims to control these types of unexpected prob-
abilities.

Case B. Using a log mixture of normals. In this case, the logarithm of the variable
Y (controlling the jump size) is a mixture of two normal variables. Specifically, the
density used is:

g(y) = p
1

y
√

2πσ2
1

e
− (log y−µ1)2

2σ2
1 + (1 − p)

1
y
√

2πσ2
2

e
− (log y−µ2)2

2σ2
2 .

To model up and down jumps we chose µ1 > 0 and µ2 < 0. We may think about a
jump modeled by such distributions as being with probability p a jump up drawn
from the lognormal distribution with parameters µ1 and σ1 or, with probability
1 − p, a jump down drawn from the lognormal distribution with parameters µ2

and σ2.
In all the examples presented next we are using the parameter values: µ1 =

0.3753, σ1 = 0.18, µ2 = −0.5503, σ2 = 0.6944, and p = 0.3445. We plot the normal
mixture density and the corresponding lognormal mixture density in Figs. 1(c) and
1(d). These parameter values are chosen so that the expected values and variances of
the jumps up and down, and overall are approximatively matching the values of the
log double exponential density in Case A. Specifically, the expectation and variance
of jump sizes are 0.9907409 and 0.3849779 while the means and variances of the up
and down jump sizes are matched closely. The parameter κ is κ = −0.0092591. It is
the matching of these parameters that makes the shape of the density look crooked
in Fig. 1(d). Despite this we observe that most jumps will be away from Y = 1,
much more so than in the previous case.

4.2. Example 1. A model with two regimes

We first consider the case of two regimes (m = 2). The generator of the Markov
chain αt is Q = (−q12 q12

q21 −q21), where q12 > 0 is the switching rate from regime 1 to
regime 2 and q21 > 0 is the switching rate from regime 2 to regime 1. To be specific,
the pair of coupled PIDE’s resulted from the general system (2.3) is:

1
2
σ2

1S2 ∂2V1

∂S2
+ (r1 − λ1κ)S

∂V1

∂S
− (r1 + λ1 + q12)V1 − ∂V1

∂t

= −λ1

∫ ∞

0

V1(Sy, t)g(y)dy − q12V2,
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1
2
σ2

2S2 ∂2V2

∂S2
+ (r2 − λ2κ)S

∂V2

∂S
− (r2 + λ2 + q21)V2 − ∂V2

∂t

= −λ2

∫ ∞

0

V2(Sy, t)g(y)dy − q21V1. (4.1)

In the numerical computations, we use the following parameter values. The Markov
chain transition rates are: q12 = q21 = 0.5, the volatilities and risk free interest rates
corresponding to the two regimes are: σ1 = 0.15, σ2 = 0.25, r1 = r2 = 0.05. For
the frequency of the jump component in the two regimes we use λ1 = 5, λ2 = 2
which correspond to expected five and two jumps/year respectively. For the jump
distribution g(y) we use Cases A and B presented in the previous section. The
constant κ calculated earlier is used.

4.2.1. Comment

The parameter values for the regime-switching component (without the jumps)
are used in [5] to exemplify a finite difference method, and in [22] to exemplify a
binomial tree method to calculate the European call option prices for a number of
different initial S0 values. We refer to [22, Tables 1 and 2] for published results.
These published numbers provide a natural way to check the regime-switching part
of the algorithms by setting the λi parameters equal to zero. For the jump com-
ponent in Case A, we use the parameter values in [9, 31], thus we may verify the
implementation for the jump diffusion part as well by comparing with [31, Table 3].
These results are obtained by setting the qij values equal to zero and the volatilities
to be the same for both regimes (so only one PIDE needs to be solved). In all cases
we get very good agreement with the previously published values for these reduced
models.

We use the algorithms presented in Sec. 3 to approximate the prices of European
type options that have maturity T = 1 (year) and exercise price K = 100. The
corresponding boundary conditions are:

• For call option:

V1(S, 0) = V2(S, 0) = max(S − K, 0); ∀S ∈ [0,∞),

V1(0, t) = V2(0, t) = 0; ∀ t ∈ [0, T ],

∂V1

∂S
(Smax, t) =

∂V2

∂S
(Smax, t) = 1; ∀ t ∈ [0, T ].

• For put option:

V1(S, 0) = V2(S, 0) = max(K − S, 0); ∀S ∈ [0,∞),

∂V1

∂S
(0, t) =

∂V2

∂S
(0, t) = −1; ∀ t ∈ [0, T ],

∂V1

∂S
(Smax, t) =

∂V2

∂S
(Smax, t) = 0; ∀ t ∈ [0, T ].

1350046-15

In
t. 

J.
 T

he
or

. A
pp

l. 
Fi

na
n.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
SP

C
 o

n 
12

/2
9/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.



2nd Reading

December 17, 2013 8:39 WSPC/S0219-0249 104-IJTAF SPI-J071
1350046

I. Florescu et al.

Table 1. Call option values for Example 1 obtained using the three algorithms with different jump
distributions.

Jump Algorithm V1 V2

92.00 96.00 100.00 104.00 108.00 92.00 96.00 100.00 104.00 108.00

Case A 1a 32.38 34.97 37.64 40.39 43.21 24.57 26.99 29.51 32.15 34.89
1b 32.38 34.97 37.65 40.39 43.21 24.57 26.99 29.52 32.15 34.89
2 32.37 34.97 37.64 40.39 43.21 24.57 26.98 29.51 32.15 34.88

Case B 1a 43.24 46.32 49.44 52.60 55.80 32.84 35.72 38.67 41.70 44.78
1b 43.24 46.31 49.43 52.60 55.80 32.84 35.72 38.67 41.70 44.78
2 43.24 46.31 49.43 52.60 55.80 32.84 35.72 38.67 41.69 44.78

Table 2. Put option values for Example 1 obtained using the three algorithms with different jump
distributions.

Jump Algorithm V1 V2

92.00 96.00 100.00 104.00 108.00 92.00 96.00 100.00 104.00 108.00

Case A 1a 35.51 34.13 32.82 31.58 30.42 27.71 26.13 24.67 23.32 22.07
1b 35.52 34.13 32.82 31.59 30.42 27.71 26.13 24.67 23.32 22.07
2 35.51 34.13 32.82 31.58 30.42 27.70 26.13 24.67 23.32 22.06

Case B 1a 46.54 45.63 44.76 43.93 43.15 36.07 34.96 33.92 32.95 32.04
1b 46.55 45.63 44.76 43.94 43.15 36.07 34.96 33.92 32.95 32.04
2 46.55 45.63 44.76 43.93 43.15 36.07 34.96 33.92 32.95 32.04

4.2.2. Results

Tables 1 and 2 present the numerical results obtained with the three algorithms.
The numbers represent the final option values at the initial time (t = 0) in a region
in S around the exercise price K.

We can clearly see that once rounded to the nearest decimal the solutions agree
for the S values presented. Algorithm 2 needs a smaller time step (20 times smaller,
∆t = 0.00005) to produce values which are close to the accuracy produced by the
Algorithms 1a and 1b, and this approximately compensates for the fact that 1a,1b
need to solve the problem from t = 0 to t = 1 several times, so the run times for
the three algorithms are comparable, as seen in Table 3.

4.2.3. Interpretation of the solution

It is clear that all algorithms agree on the solution, in each case. However, since
we analyze two jump distributions and the regime-switching model produces two

Table 3. Run-times (min:sec) to compare the algorithms
convergence, with jump distribution as in Case A.

Alg. 1a Alg. 1b Alg. 2

Call options 11:12 10:18 9:22
Put options 11:59 11:25 9:38
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solutions automatically (one for each of the regimes), we may attempt to interpret
the numbers obtained to perhaps indicate future research in the theoretical analysis.
We note that more volatile stocks increase the price of options (both calls and puts).
Jumps also produce variability in the stocks and they also increase the price of
options.

We first note the clear difference between the solutions obtained for the two jump
distributions (Fig. 2(a)). It is fairly clear that when a jump is modeled using the
lognormal mixture (Case B) the resulting option price is considerably higher than
the solution obtained in the log double exponential (Case A). This is also evidenced
by looking at the difference in numbers between Cases A and B for V1 (about $11)
and V2 (about $9). The only thing different is the jump distribution, but recall that
V1 has a higher jump frequency (average 5/year) versus V2 (average 2/year). Thus,
with the higher frequency, the jumps produced in Case B seem to be consistently
larger than in the Case A. This is despite the fact that the log double exponential
distribution in Case A can produce much larger jumps than in the Case B.

We would like to make a second observation, by comparing the jumps and the
variability. The effect is not so evident but is worth noting. By design, regime 1
has a lower volatility (0.15) than regime 2 (0.25). Higher volatility typically leads
to higher option values. However, as noted above, regime 1 has a higher incidence
of jumps (both negative and positive). The values obtained are always higher for
V1 versus V2 (Fig. 2(b)) and this would seem to indicate that having more frequent
jumps has a more dramatic effect on the option prices than having an increased
variability.
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Fig. 2. Differences between the regime solutions of the Example 1. (a) Difference between V1 values
for the two jump distributions and (b) difference between V1 and V2.
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4.3. Example 2. A model with four regimes

In the second example, we consider a four-state (m = 4) Markov chain αt with
states

M = {1, 2, 3, 4} and generator Q =



−1 1

3
1
3

1
3

1
3 −1 1

3
1
3

1
3

1
3 −1 1

3

1
3

1
3

1
3 −1


 .

In this case, the market can be in any of the four regimes with equal probability.
The volatilities and interest rates are:

σ1 = 0.9, σ2 = 0.5, σ3 = 0.7, σ4 = 0.2,

r1 = 0.02, r2 = 0.1, r3 = 0.06, r4 = 0.15.

All options have maturity T = 1 (year) and exercise price K = 100.
The values for the jump rate are set to λ1 = 8, λ2 = 2, λ3 = 5, λ4 = 1. For the

jump distribution, we use Cases A and B. The system of PIDE’s is:

1
2
σ2

i S2 ∂2Vi

∂S2
+ (ri − λiκ)S

∂Vi

∂S
− (ri + λi − qii)Vi − ∂Vi

∂t

= −λi

∫ ∞

0

Vi(Sy, t)g(y)dy −
∑
j �=i

qijVj , (4.2)

for i = 1, 2, 3, 4. The boundary conditions for the four value functions Vi, i = 1, 2, 3, 4
are the same as in Example 1.

4.3.1. Results

As in the case of the two-regime example the solutions obtained from the three
algorithms are virtually indistinguishable. To save space Table 4 shows selected
values obtained running the Algorithm 1b. To obtain similar precision, once again
the Algorithm 2 needed a smaller time step (20 times smaller again), but only has

Table 4. Option values for Example 2 for each of the four regimes using either jump distribution.

Jump Regime Call values Put values

92.00 96.00 100.00 104.00 108.00 92.00 96.00 100.00 104.00 108.00

Case A V1 45.56 48.54 51.57 54.64 57.75 48.89 47.89 46.94 46.03 45.16
V2 32.50 35.22 38.02 40.88 43.81 31.74 30.47 29.27 28.15 27.09
V3 39.78 42.64 45.54 48.50 51.51 41.04 39.91 38.84 37.81 36.84
V4 27.41 30.13 32.97 35.91 38.95 24.19 22.92 21.76 20.71 19.76

Case B V1 55.11 58.42 61.76 65.13 68.52 58.68 58.00 57.35 56.73 56.14
V2 39.60 42.61 45.68 48.81 51.98 38.94 37.96 37.04 36.17 35.34
V3 48.56 51.74 54.95 58.21 61.49 49.99 49.18 48.40 47.66 46.96
V4 34.05 37.08 40.18 43.37 46.62 30.91 29.94 29.05 28.24 27.50
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Table 5. Run-times (min:sec) for Example 2, with
jump distribution as in Case A.

Alg. 1a Alg. 1b Alg. 2

Call options 49:48 43:11 25:57
Put options 56:56 46:05 25:48

to integrate the problem from t = 0 to t = 1 once, and it is somewhat faster, see
Table 5.

4.3.2. Interpretation of the solution

We first note that as in the previous example the solutions for all regimes are uni-
versally higher when the jumps are modeled by the lognormal mixture distribution
of Case B. This is clear from the values in Table 4 and from Fig. 3(a) (results are
similar for all regimes). Second, in Figs. 3(b)–3(d) we see that the solutions for the
four regimes are in the order V1 > V3 > V2 > V4 and in fact this makes perfect
sense because this is the decreasing order of both volatility and jump intensity. Once
again we may observe by comparing the numerical values as well as Figs. 3(c) and
3(d) that the differences between the regime solutions are higher when the jumps
are modeled as in Case B.

4.4. Example 3. A basket option written on two assets which

follow regime-switching jump diffusions

In this example, we illustrate how the algorithms may be used to price options
written on multiple assets. We consider European type options written on two
correlated assets in the regime-switching jump diffusion models. The asset prices
follow the model:

dSn(t)
Sn(t−)

= µn(αt)dt + σn(αt)dBn(t) + dJn(t), t ≥ 0, n = 1, 2, (4.3)

where

Jn =
Nt∑

k=1

(Y n
k − 1), n = 1, 2, (4.4)

and Y n
k , k = 1, 2, . . . , for each n is a sequence of iid random variables with density

gn(y). The driving Brownian motions B1(t) and B2(t) are correlated with correlation
coefficient ρ. Note that for this particular example we consider a special case for
which the jumps occur simultaneously for both assets, but with independent jump
size distributions. A more general model for which jumps for different assets are
governed by different (correlated) stochastic processes) is interesting and deserves
further care for future study.
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Fig. 3. Differences between the solutions for different regimes of Example 2. (a) Difference between
V1 for the two jump distributions, (b) values of call options for different regimes (Case A), (c)
values of put options for different regimes (Case A), and (d) values of put options for different
regimes (Case B).

Let Vi(S1, S2, t) denote the value functions at t, where t is the time-to-maturity,2

when the stock values are S1 and S2, and the regime αt = i. The Vi’s, i = 1, . . . , m

solve the PIDE system:

1
2
σ2

1(i)S
2
1

∂2Vi

∂S2
1

+
1
2
σ2

2(i)S2
2

∂2Vi

∂S2
2

+ ρσ1(i)σ2(i)S1S2
∂2Vi

∂S1∂S2
+ (ri − λiκ1)S1

∂Vi

∂S1

+ (ri − λiκ2)S2
∂Vi

∂S2
− riVi − ∂Vi

∂t
+ λiE[Vi(S1Y1, S2Y2, t) − Vi(S1, S2, t)]

+
∑
j �=i

qij [Vj − Vi] = 0, (4.5)

where κn = E[Yn − 1] =
∫
(y − 1)gn(y)dy, n = 1, 2.

2So that we once again work with forward equations.
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In this particular numerical example, we consider the call options on the sum
S1+S2 (an example of the so-called basket options). The payoff is max(S1+S2−K, 0)
where K is the exercise price. We consider the two-regime case (m = 2). The
boundary conditions are,

V1(S1, S2, 0) = V2(S1, S2, 0) = max(S1 + S2 − K, 0); ∀S1, S2 ∈ [0,∞),

V1(S1, 0, t) = V1(S1, t), V2(S1, 0, t) = V2(S1, t), ∀ t ∈ [0, T ], S1 ∈ [0,∞),

V1(0, S2, t) = V1(S2, t), V2(0, S2, t) = V2(S2, t), ∀ t ∈ [0, T ], S2 ∈ [0,∞),

where Vi(S1, t), i = 1, 2 are the solutions of the call option problem for asset S1

only, and Vi(S2, t), i = 1, 2 are the solutions of the call option problem for asset S2

only,

∂V1(S1,max, S2, t)
∂S1

=
∂V2(S1,max, S2, t)

∂S1
= 1; ∀ t ∈ [0, T ], S2 ∈ [0,∞),

∂V1(S1, S2,max, t)
∂S2

=
∂V2(S1, S2,max, t)

∂S2
= 1; ∀ t ∈ [0, T ], S1 ∈ [0,∞).

Please note that if either S1 or S2 become zero then it stays there and the basket
option becomes a regular option on a single asset. In the algorithmic implementa-
tion, at S1 = 0 and S2 = 0, we used the PDE2D boundary condition “none”, which
simply enforces the PDE rather than any boundary condition. Since at S2 = 0, the
PIDE (4.5) reduces to the call option for one variable S1, we are indirectly enforc-
ing the specified boundary condition; and similarly at S1 = 0. However, using the
boundary condition ∂V1

∂S2
= ∂V2

∂S1
= 0 at S2 = 0 and similarly at S1 = 0, gave similar

result to “none”.
We use the following parameter values in the numerical computation: the Markov

chain transition rates q12 = q21 = 0.5, the interest rates r1 = r2 = 0.05, the
volatilities for asset S1: σ1(1) = 0.15, σ1(2) = 0.25, and for asset S2: σ2(1) = 0.20,
σ2(2) = 0.35, the correlation coefficient is ρ = 0.5. For the jump component, λ1 = 5,
λ2 = 2. The resulting constants κn, n = 1, 2 can be computed by κn = E[Yn]− 1 =∫ ∞
0

ygn(y)dy − 1, where the jump distribution gn(y) can be either Case A or Case
B as discussed above. The option has maturity T = 1 (year) and exercise price
K = 100.

4.4.1. Results

Since this example has not been attempted in literature (to our best knowledge) we
present for future reference selected values in Table 6. We also display the option
values for the two regimes in the jump distribution Case B in Fig. 4.

4.4.2. Interpretation of results

Once again the distribution choice makes a difference. It is remarkable that the
boundary condition has so little effect on the solution of this example. Since the
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Table 6. Example 3 option values for jump distributions
in Cases A and B (Algorithm 1b).

S1 S2 Case A Case B

V1 V2 V1 V2

44 44 23.54 17.91 31.50 22.99
44 48 25.87 20.11 34.28 25.58
44 52 28.32 22.47 37.16 28.30
44 56 30.87 24.96 40.12 31.13
48 44 25.85 20.04 34.27 25.52
48 48 28.25 22.36 37.10 28.20
48 52 30.78 24.83 40.02 30.99
48 56 33.40 27.42 43.02 33.89
52 44 28.26 22.32 37.13 28.20
52 48 30.75 24.75 40.01 30.94
52 52 33.34 27.32 42.97 33.81
52 56 36.04 30.02 46.00 36.77
56 44 30.79 24.74 40.08 30.99
56 48 33.35 27.28 42.99 33.81
56 52 36.01 29.95 45.99 36.73
56 56 38.78 32.74 49.06 39.76
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(a) V1 values (b) V2 values

Fig. 4. Solution for Case B (at t = 0) of Example 3.

Algorithms 1a and 1b agreed better with the Example 1 results along the S2 = 0
boundary, this indicates that they may be a bit more accurate than the Algorithm 2
results. Algorithm 2 is somewhat faster, see Table 7, even though we again used a
time step 20 times smaller (∆t = 0.0005) than that used by Algorithms 1a and 1b.
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Table 7. Run-times (min:sec) for Example 3,
with jump distribution as in Case A.

Alg. 1a Alg. 1b Alg. 2

339:31 288:15 219:53

5. Conclusions

In this paper, we present two Algorithms (1a and 1b in the paper) designed to
numerically solve a system of PIDES. These algorithms are compared with a more
traditional finite difference scheme (Algorithm 2 in the paper) which handles the
integral term explicitly.

We generally find that Algorithm 2 seems to need a smaller time step than the
other two algorithms to provide comparable accuracy.

With regard to the relative speeds of Algorithms 1a and 1b, both were imple-
mented as coupled systems of PDE’s, thus in all cases 1b converges in fewer iter-
ations and since they both take the same time per iteration, 1b is always faster.
However, as we have noted earlier, when Algorithm 1a is implemented to solve the
decoupled PDE’s separately, it takes considerably less time, and can be further
speeded up by solving the equations simultaneously on different processors.

Another striking observation was that using as jump distribution the lognormal
mixture distribution with parameters chosen to match moments of a more popular
log-double exponential distribution, seemed to produce much more easily distin-
guishable jumps from random fluctuation, and this was reflected in the price of the
options. Though we only introduced the lognormal mixture to provide comparison
with the more popular density, it may be easily seen that this distribution has its
own merits and we believe deserve a special study on its own. Today, there are
two lines of research into models capable of producing the type of equity behav-
ior observed in reality. Stochastic volatility models and Lévy models (the later are
essentially continuous processes with a jump component). Although we did not
treat the stochastic volatility using a continuous diffusion in the current paper, the
numerical evidence we provide seems to indicate that jumps have a more significant
effect than an increase in volatility on the behavior of the equity and the resulting
option prices. Thus, we believe that the introduction of this new distribution is an
important contribution to the literature besides the algorithms which are the main
focus of this work.

References

[1] A. Almendral and C. W. Oosterlee, Numerical valuation of options with jumps in the
underlying, Appl. Numer. Math. 53 (2005) 1–18.

[2] L. Andersen and J. Andreasen, Jump-diffusion processes: Volatility smile fitting
and numerical methods for option pricing, Review of Derivatives Research 4 (2000)
231–262.

1350046-23

In
t. 

J.
 T

he
or

. A
pp

l. 
Fi

na
n.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
SP

C
 o

n 
12

/2
9/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.



2nd Reading

December 17, 2013 8:39 WSPC/S0219-0249 104-IJTAF SPI-J071
1350046

I. Florescu et al.

[3] E. Bayraktar and H. Xing, Pricing American options for jump diffusions by iterating
optimal stopping problems for diffusions, Math. Method. Oper. Res. 70 (2009) 505–
525.

[4] M. Boyarchenko and S. Boyarchenko, Double barrier options in regime-switching
hyper-exponential jump-diffusion models, Int. J. Theor. Appl. Finance 14 (2011)
1005–1043.

[5] P. Boyle and T. Draviam, Pricing exotic options under regime switching, Insur. Math.
Econ. 40 (2007) 267–282.

[6] M. Briani, R. Natalini and G. Russo, Implicit-explicit numerical schemes for jump-
diffusion processes, Calcolo 44 (2007) 33–57.

[7] P. Carr and A. Mayo, On the numerical evaluation of options prices in jump diffusion
processes, Eur. J. Financ. 13(4) (2007) 353–372.

[8] R. Cont and E. Voltchkova, A finite difference scheme for option pricing in jump
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