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Abstract

We consider a stochastic volatility model where the volatility process is a frac-
tional Brownian motion. We estimate the memory parameter of the volatility
from discrete observations of the price process. We use criteria based on Malliavin
calculus in order to characterize the asymptotic normality of the estimators.
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1 Introduction

We consider a stochastic volatility model where the volatility is driven by a fractional
Brownian motion (fBM). Such a model is motivated by recent work that shows the long
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1



range dependence of the volatility process (Cont, 2005; Casas and Gao, 2008; Mariani
et al., 2009; Chronopoulou and Viens, 2010).

We assume as given a complete probability space (Ω,F ,P), endowed with a
complete filtration F = {Ft}t≥0 (see Protter, 2005, page 3). On this space we observe
the process:

Xt =

∫ t

0

BH
s dWs, (1)

where the processes {Wt}t∈(0,∞) a standard Brownian motion and {BH
t }t∈(0,∞) a frac-

tional Brownian motion are independent and are both adapted with respect to the
filtration F . Recall that the fractional Brownian motion is a centered Gaussian process
with covariance, for every s, t ≥ 0,

RH(t, s) =
1

2
(t2H + s2H − |t− s|2H).

It may also be characterized as the only Gaussian self-similar process with stationary
increments. We will denote by FWt and by FBH

t the σ-algebras generated by W and BH

respectively.
We consider the problem of estimating the Hurst parameter H given discrete

observations of the process X: (X0, Xt1 , Xt2 , . . . , XtN ) for a discrete partition π = (t0 =
0 < t1 < · · · < tN = 1). The end point is taken to be tN = 1 for convenience.

This model is a particular case of a stochastic volatility model. We chose to work
with the fractional Brownian motion due to its well documented long memory behavior.
We mention related work Gloter and Hoffmann (2004) where a more general problem is
presented: given discrete time observations of the process Xt =

∫ t
0
φ(θ, BH

s )dWs estimate
the parameter θ. In the cited work both the functional form of φ(·, ·) and the Hurst
parameter H are assumed to be known. Under these assumptions the estimator θn
(Gloter and Hoffmann, 2004, formulas (13)-(15)) is proven consistent and asymptotically
normal (θ in fact depends explicitly on H). In more recent work (Chronopoulou and
Viens, 2010) the authors show that knowing H is crucial for determining the optimal
value of the parameter θ. This motivated us to consider a simple model first where the
properties of the estimator may be be properly analyzed.

Our estimator for the Hurst parameter will be constructed using the quadratic
variations of the process X. The use of the quadratic variations for estimating the self-
similarity index of a self-similar process is standard and it has been widely used in the
literature. We refer, among others, to Bardet and Tudor (2010), Coeurjolly (2001), Istas
and Lang (1997) or Tudor and Viens (2009). Indeed, it is well-known that, if we observe
a self-similar process (for example the fractional Brownian motion) at discrete times
i
N

, with i = 1, 2, ..., N then ĤN := − logSN

2 logN
is a consistent and asymptotically normal
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estimator for H. In the formula above SN = 1
N

∑N−1
i=0

(
BH

i+1
N

−BH
i+1
N

)2
, and note that

the process needs to be observed directly in order to construct the estimator.
Our context is different. First, the process appears in the volatility part and the

volatility in general is not directly observable. Second, although the volatility process BH

is self-similar, the observed processX is not self-similar anymore. However, the quadratic
variation process of X will play an important role in our estimation. Specifically, if we
denote by

VN(t) =
N∑
i=1

(
Xti −Xti−1

)2
(2)

the quadratic variation, with

t0 = 0 < t1 < . . . tN = t (3)

a partition of the interval [0, t] then, by a classical result in martingale theory,

VN(1) =
N∑
i=1

(
Xti −Xti−1

)2 N→∞−→
∫ 1

0

(BH
s )2ds,

when ‖π‖ = maxi∈{1,2,...,N}(ti− ti−1)→ 0 and the convergence holds (at least) in proba-
bility.

We consider,

θ = IE

[∫ 1

0

(BH
s )2ds

]
=

∫ 1

0

s2Hds =
1

2H + 1
.

The natural estimator for θ clearly is VN(1). The idea of the present work is to analyze
the properties of this estimator and then to obtain an estimator for H.

The article is structure in the following way. Section 2 presents the tools we use
in our technical analysis. Section 3 analyzes the properties of the straight quadratic
variation process. We demonstrate that this estimator, although unbiased, it is not
L2 consistent and in fact we find the limiting value for its variance. Therefore, an
estimator based on the straight quadratic variance will not get better as the number of
observations increase. In section 3.2 we present another estimator (conditional Quadratic
Variance). We show that this estimator is strong consistent. Finally, section 4 presents
the asymptotic normality properties of this estimator.
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2 Preliminaries on Malliavin calculus and multiple

stochastic integrals

Let (Wt)t∈[0,1] be a classical Wiener process on a standard probability space (Ω,F ,P).
If f ∈ L2([0, 1]n) with n ≥ 1 integer, we introduce the multiple Wiener-Itô integral of f
with respect to W . We mention the basic reference Nualart (2006) for background on
the notions we use. Let Sn be the space of elementary functions with n variables:

Sn =

{
f ∈ L2([0, 1]n) : f =

∑
i1,...,in

ci1,...,in1Ai1
×...×Ain

, Ai ∈ B([0, 1])

}
where the coefficients satisfy ci1,...,im = 0 if any two indices ik and il are equal or any of
the sets are empty. For such a step function f ∈ Sn we define

In(f) =
∑
i1,...,in

ci1,...inW (Ai1) . . .W (Ain)

where we use the notation W (A) =
∫ 1

0
1A(s)dWs. If we denote f̃ the symmetrization of

f :

f̃(x1, . . . , xx) =
1

n!

∑
σ∈Sn

f(xσ(1), . . . , xσ(n)),

we also have that In(f) = In
(
f̃
)
. Furthermore, the functional In constructed above from

Sn to L2(Ω) is an isometry on Sn , i.e.

IE [Im(f)In(g)] =

{
n!〈f̃ , g̃〉L2([0,1]n), if m = n

0, if m 6= n
(4)

The set Sn is dense in L2([0, 1]n) for every n ≥ 1 and thus the mapping In may
be extended to an isometry from L2([0, 1]n) to L2(Ω) and the above properties hold true
for this extension as well.

We will need the general formula for calculating products of Wiener chaos in-
tegrals of any orders m, n for any symmetric integrands f ∈ L2([0, 1]⊗m) and g ∈
L2([0, 1]⊗n); this formula is

Im(f)In(g) =
m∧n∑
r=0

r!

(
m

r

)(
n

r

)
Im+n−2r(f ⊗r g) (5)

where the contraction f ⊗r g is defined by

(f ⊗` g)(s1, . . . , sm−`, t1, . . . , tn−`)

=

∫
[0,T ]m+n−2`

f(s1, . . . , sm−`, u1, . . . , u`)g(t1, . . . , tn−`, u1, . . . , u`)du1 . . . du`. (6)
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Note that the contraction (f⊗`g) is an element of L2([0, 1]m+n−2`) but it is not necessary
symmetric. We will denote by (f⊗̃`g) its symmetrization.

We recall that any square integrable random variable measurable with respect
to the σ-algebra generated by W may be expanded into an orthogonal sum of multiple
stochastic integrals

F =
∑
n≥0

In(fn) (7)

where fn ∈ L2([0, 1]n) are (uniquely determined) symmetric functions and I0(f0) =
IE [F ].

We denote by D the Malliavin derivative operator that acts on smooth functionals
of the form F = g(W (ϕ1), . . . ,W (ϕn))

DF =
n∑
i=1

∂g

∂xi
(B(ϕ1), . . . , B(ϕn))ϕi,

here g is a smooth function with compact support and ϕi ∈ L2([0, 1]) for i = 1, .., n.
The operator D can be extended to the closure Dp,2 of smooth functionals with

respect to the norm

‖F‖2p,2 = IEF 2 +

p∑
i=1

IE‖DiF‖2L2[0,1]i

where the i-th Malliavin derivative D(i) is defined iteratively.
If f ∈ L2([0, 1]n) we will use the following rule to differentiate multiple integrals

in the Malliavin sense

DtIn(f) = nIn−1(f(·, t)), t ∈ [0, 1],

and the rule may be extended easily to any square integrable random variable F using
the representation (7).

The adjoint of D is denoted by δ and is called the divergence operator (Skorohod
integral in the white noise case). Its domain (Dom(δ) ) coincides with the class of
stochastic processes u ∈ L2(Ω× [0, 1]) such that∣∣IE〈DF, u〉L2([0,1])

∣∣ ≤ c‖F‖2

for all F ∈ D1,2 and δ(u) is the element of L2(Ω) characterized by the duality relationship

IE(Fδ(u)) = IE〈DF, u〉L2([0,1]). (8)

For adapted integrands, the divergence integral coincides to the classical Itô integral.
Also we will need in the paper the integration by parts formula

Fδ(u) = δ(Fu) + 〈DF, u〉 (9)
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whenever F ∈ D1,2, u ∈ Dom(δ) and IEF 2
1∫
0

u2sds <∞.

3 On the consistency of the quadratic variation

Let us consider the process X given by (1) with BH independent of W . The quadratic
variation of X is defined by the formula (2). As we mentioned in the introduction,
IE[VN(1)] = θ = 1

2H
+ 1, for all N .

IE

[
N∑
i=1

(
Xti −Xti−1

)2]
=

N∑
i=1

IE

[∫ ti

ti−1

BH
s dWs

]2
=

N∑
i=1

∫ ti

ti−1

IE
[
BH
s

]2
ds

=
N∑
i=1

∫ ti

ti−1

s2Hds =
N∑
i=1

t2H+1
i

2H + 1
−

t2H+1
i−1

2H + 1
=

1

2H + 1
.

Therefore, the estimator VN(1) is unbiased for the parameter θ = 1
2H+1

. In the
next section we discuss the consistency of this estimator. We look at the convergence of
VN(1) to the parameter θ in L2(Ω) and almost surely. The almost sure convergence is
very useful in order to estimate the Hurst parameter H itself.

3.1 Consistency

There are several notions of consistency that we may consider.

Definition 1 Suppose have an estimator TN estimating a certain parameter θ. The
estimator is called weakly consistent if TN → θ in probability. The estimator is called
strongly consistent if TN → θ almost surely. The estimator is called L2 consistent
if IE(TN − θ)2 converges to zero. All the limits are with respect to N →∞.

We will first discuss the L2(Ω) consistency of the estimator VN(1) given by (2).
Please note that due to the unbiasedness of the estimator for a fixed N the expression
IE(TN − θ)2 is also the variance of the estimator.

IE
[
(VN(1)− θ)2

]
= IE[VN(1)2]− θ2
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and,

IE[VN(1)2] = IE

[
N∑

i,j=1

(
Xti −Xti−1

)2 (
Xtj −Xtj−1

)2]

=
N∑
i=1

IE
[(
Xti −Xti−1

)4]
+2

N∑
i<j

IE
[(
Xti −Xti−1

)2 (
Xtj −Xtj−1

)2]
(10)

To proceed with the calculation we need several results.

Lemma 1 Let a < b and s < t. Then

IE (Xt −Xs)
2 (Xb −Xa)

2 = IE

∫ t

s

(BH
u )2du

∫ b

a

(BH
u )2du+ 2IE

(∫
[s,t]∩[a,b]

(BH
u )2du

)2

(11)

Proof: Suppose first that [a, b] = [s, t]. Since the conditional law of Xt − Xs given
FBH

is (∫ t

s

(BH
s )2ds

) 1
2

Z

with Z a standard normal random variable independent by BH we get

IE (Xt −Xs)
4 = IE

[
IE(Xt −Xs)

4
∣∣∣FBH

]
= 3IE

∫ t

s

(BH
u )2du.

In the general case, we use the techniques of the Malliavin calculus. The Malliavin
derivatives, throughout the paper, are defined with respect toW . From the independence
of BH and W , it follows that Df(BH

t ) = 0 for every t and every function f . We can
write, using (8)

7



IE (Xt −Xs)
2 (Xb −Xa)

2

= IE

∫ t

s

BH
u dWu

∫ t

s

BH
u dWu

(∫ b

a

BH
x dWx

)2

= IE

∫ t

s

duBH
u Du

[∫ t

s

BH
u dWu

(∫ b

a

BH
x dWx

)2
]

= IE

∫ t

s

duBH
u

[
1[s,t](u)BH

u

(∫ b

a

BH
x dWx

)2

+ 2

∫ t

s

BH
v dWv

∫ b

a

BH
x dWx1[a,b](u)BH

u

]

= IE

∫ t

s

du(BH
u )2

(∫ b

a

BH
x dWx

)2

+ 2

∫
[s,t]∩[a,b]

du(BH
u )2

∫ t

s

BH
v dWv

∫ b

a

BH
x dWx

= IE

∫ t

s

du

∫ b

a

dxBH
x Dx

[
(BH

u )2
∫ b

a

BH
x dWx

]
+2IE

∫
[s,t]∩[a,b]

du

∫ t

s

dvBH
v (BH

u )21[a,b](v)BH
v

= IE

∫ t

s

(BH
u )2du

∫ b

a

(BH
u )2du+ 2IE

(∫
[s,t]∩[a,b]

(BH
u )2du

)2

.

Lemma 2 Let u, v ≥ 0. Then

E
[
(BH

u )2(BH
v )2
]

= 2RH(u, v) + u2Hv2H . (12)

Proof: We use Gaussian regression. We recall that, if (G1, G2) is a Gaussian vector
then

G2 =
Cov(G1, G2)

V ar(G1)
G1 +

√
V ar(G2)−

Cov(G1, G2)2

V ar(G1)
Z (13)

where Z is a standard normal random variable independent by G1. In our case applying
(13) to the Gaussian couple (BH

u , B
H
v ) we get

BH
u =

RH(u, v)

v2H
BH
v +

√
u2H − RH(u, v)2

v2H
Z

with Z a standard normal random variable independent by BH
v . Then

BH
u B

H
v =

RH(u, v)

v2H
(BH

v )2 +

√
u2H − RH(u, v)2

v2H
ZBH

v
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and

IE
(
BH
u B

H
v

)2
=

RH(u, v)2

v4H
IE(BH

v )4 +

(
u2H − RH(u, v)2

v2H

)
IEZ2(BH

v )2

= 3
RH(u, v)2

v2H
+

(
u2H − RH(u, v)2

v2H

)
v2H

= 2RH(u, v)2 + u2Hv2H .

We are now able to compute IEVN(1)2. Using formula (11),

IEVN(1)2 =
N−1∑
i=0

IE
(
Xti+1

−Xti

)4
+ 2

∑
i>j

IE
(
Xti+1

−Xti

)2 (
Xtj+1

−Xtj

)2
= 3

N−1∑
i=0

IE

(∫ ti+1

ti

(BH
u )2du

)2

+2
∑
i>j

IE

∫ ti+1

ti

(BH
u )2du

∫ tj+1

tj

(BH
u )2du. (14)

Next, we need the following lemma which shows that the diagonal term above
converges to zero.

Lemma 3 Define

AN :=
N−1∑
i=0

IE

(∫ ti+1

ti

(BH
u )2du

)2

.

Then AN → 0 as N →∞.

Proof: Using Lemma 2 we can write

AN = IE
N−1∑
i=0

∫ ti+1

ti

∫ ti+1

ti

(BH
u )2(BH

v )2dvdu

=
N−1∑
i=0

∫ ti+1

ti

∫ ti+1

ti

(
2RH(u, v)2 + u2Hv2H

)
dvdu

Consider ti = i
N

for i = 0, .., N . Note first that

N−1∑
i=0

∫ ti+1

ti

∫ ti+1

ti

u2Hv2Hdvdu =
1

(2H + 1)2
1

N4H+2

N−1∑
i=0

(
(i+ 1)2H+1 − i2H+1

)2
=

1

(2H + 1)2
1

N4H+2

N−1∑
i=0

i4H+2f(
1

i
)2
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with f(x) = (1 + x)2H+1− 1. The function f behaves as (2H + 1)x when x goes to zero.
Therefore

1

(2H + 1)2
1

N4H+2

N−1∑
i=0

i4H+2f(
1

i
)2

behaves, as N →∞ as

1

N4H+2

N−1∑
i=0

i4H ∼ 1

4H + 1

1

N

and this goes to zero as N →∞. Now, let us estimate the quantity

N−1∑
i=0

∫ ti+1

ti

∫ ti+1

ti

RH(u, v)2.

We can write

N−1∑
i=0

∫ ti+1

ti

∫ ti+1

ti

RH(u, v)2dvdu =
1

4

N−1∑
i=0

∫ ti+1

ti

∫ ti+1

ti

(
u2H + v2H − |u− v|2H

)2
dudv

≤ 2

∫ ti+1

ti

∫ ti+1

ti

(
u4H + v4H + |u− v|4H

)
dvdu.

The three above summands converge to zero s N →∞. Indeed∫ ti+1

ti

∫ ti+1

ti

u4Hdvdu =
1

4H + 1

N−1∑
i=0

(ti+1 − ti)(t4H+1
i+1 − t4H+1

i )

=
1

4H + 1

1

N4H+2

N−1∑
i=0

(
(i+ 1)4H+1 − i4H+1

)
and this behaves as 1

N
→ 0 as N →∞. It remains to check that

N−1∑
i=0

∫ ti+1

ti

∫ ti+1

ti

|u− v|4Hdvdu
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converges to zero as N →∞. This is obvious since

N−1∑
i=0

∫ ti+1

ti

∫ ti+1

ti

|u− v|4Hdvdu = 2
N−1∑
i=0

∫ ti+1

ti

∫ u

ti

(u− v)4Hdvdu

=
1

4H + 1

N−1∑
i=0

∫ ti+1

ti

(u− ti)4H+1du

=
1

(4H + 1)(4H + 2)

N−1∑
i=0

(ti+1 − ti)4H+2

=
1

(4H + 1)(4H + 2)

1

N4H+1
→N→∞ 0.

We restate the last result obtained.

Proposition 1 As N →∞,

IEVN(1)2 →
∫ 1

0

∫ 1

0

IE(BH
u )2(BH

v )2dvdu =

∫ 1

0

∫ 1

0

(2RH(u, v)2 + u2Hv2H)dudv.

Proof: This is a consequence of relation (14), Lemma 2 and Lemma 3.

We will prove now that the estimator VN(1) has non-trivial quadratic error, i.e.
it is not L2 consistent.

Theorem 1 The estimator VN(1) has non-trivial limiting quadratic error given by

lim
N→∞

IE

(
VN(1)2 − 1

2H + 1

)2

= 2

∫ 1

0

∫ 1

0

RH(u, v)2dudv.

Proof: The result follows from relation (10) and Proposition 1. .

Remark 1 The fact that the estimator VN(1) does not convergence in L2(Ω) to θ = 1
2H+1

is not really surprising. In fact, we may write

VN(1)− 1

2H + 1
= VN(1)−

∫ 1

0

(BH
s )2ds+

∫ 1

0

(BH
s )2ds− 1

2H + 1
(15)

The first part VN(1)−
∫ 1

0
(BH

s )2ds converges to zero as N →∞ (at least in probability)
while the second part does not depends on N and does not vanish. Moreover the difference
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∫ 1

0
(BH

s )2ds− 1
2H+1

can be written as, by Itô’s formula for the fBm (see Nualart (2006),
Chapter 5)∫ 1

0

(BH
s )2ds− 1

2H + 1
=

∫ 1

0

ds

(∫ s

0

BH
v dB

H
v + s2H

)
− 1

2H + 1
=

∫ 1

0

ds

∫ s

0

BH
v dB

H
v .

Here dBH denotes the divergence integral with respect to BH (see Nualart (2006) for
details). Therefore, the limiting variation of VN(1) is in fact the second moment of the

random variable
∫ 1

0
ds
∫ s
0
BH
v dB

H
v . It may also be noticed that the almost sure conver-

gence of VN(1) to θ cannot hold.

3.2 Conditional consistency

Let us go back to Remark 1, more precisely to relation (15). Consider FWt be the
filtration generated by the Wiener process W and let us replace the estimator with the
conditional expectation given FWt in (15). From the independence of W and BH , the

quantity
∫ 1

0
(BH

s )2ds− 1
2H+1

vanishes conditional on FW1 or with respect to any other σ
algebra depending only on W .

In fact it is possible to explicitly compute the conditional expectation IE
[
VN(1) | FW1

]
.

Proposition 2 We have, for every N ≥ 1 and for any partition ∆N of the interval
[0, 1] of the form

IE
[
VN(1) | FW1

]
=

1

2H + 1
+

N−1∑
i=0

∫ ti+1

ti

∫ ti+1

ti

RH(u, v)dWudWv. (16)

Proof: Note that IE
[
VN(1) | FW1

]
=
∑N−1

i=1 IE
[(
Xti+1

−Xti

)2 | FW1 ]. Thus we only

need to compute the quantity

IE
[
(Xt −Xs)

2 | FW1
]

for any s, t ≥ 0, s ≤ t. Note that we may write Xt−Xs as an L2(Ω)–limit of the process
Ss,t(M), where

Ss,t(M) :=
M−1∑
j=0

BH
sj

(
Wsj+1

−Wsj

)
.

and s = s0 < s1 < . . . < sM = t denotes a partition of the interval [s, t]. We first
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calculate

IE
[
Ss,t(M)2 | FW1

]
= IE

[
M−1∑
i,j=0

BH
si
BH
sj

(
Wsi+1

−Wsi

) (
Wsj+1

−Wsj

)∣∣∣∣∣FW1
]

=
M−1∑
i,j=0

RH(si, sj)
(
Wsi+1

−Wsi

) (
Wsj+1

−Wsj

)
=

M−1∑
i=0

RH(si, si)
(
Wsi+1

−Wsi

)2
+

M−1∑
i,j=0;i 6=j

RH(si, sj)
(
Wsi+1

−Wsi

) (
Wsj+1

−Wsj

)
.

The first summand above equals

M−1∑
i=0

s2Hi
(
Wsi+1

−Wsi

)2
and by classical techniques of the martingales theory, it converges in L1(Ω) to∫ t

s

u2Hds =
1

2H + 1

(
t2H+1 − s2H+1

)
.

The non-diagonal term converges in L2(Ω) to∫ t

s

∫ t

s

RH(u, v)dWudWv

by the construction of the multiple integral with respect to the Wiener process W as
introduced in Section 2 (double integral in this case).

We next investigate the convergence in L2 of the random variable IE
(
VN(1)/FW1

)
.

Since we shall use the result afterwards we would like to calculate not only the limit but
also the order of convergence.

Let us denote the L2 norm

a2N := IE

[(
IE
[
VN(1) | FW1

]
− 1

2H + 1

)2
]

(17)
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Using the previous result (Proposition 2) and the isometry formula for multiple stochastic
integrals, it holds that,

a2N :=
N−1∑
i=0

∫ i+1
N

i
N

∫ i+1
N

i
N

RH(u, v)2dudv

=
1

4

N−1∑
i=0

∫ i+1
N

i
N

∫ i+1
N

i
N

(
u2H + v2H − |u− v|2H

)2
dudv

=
1

4

N−1∑
i=0

∫ i+1
N

i
N

∫ i+1
N

i
N

(
2u4H + 2u2Hv2H − 4u2H |u− v|2H + |u− v|4H

)
dudv.(18)

where we used the symmetry of the integrals in u and v.
It is an easy exercise to estimate the behavior as N → ∞ of the four resulting

sums (we also recall the similar calculations in Lemma 3). The first one may be handled
as follows.

N−1∑
i=0

∫ i+1
N

i
N

∫ i+1
N

i
N

u4Hdudv =
1

4H + 1

1

N4H+2

N−1∑
i=0

(
(i+ 1)4H+1 − i4H+1

)
=

1

4H + 1

1

N
= O(N−1)

Concerning the second summand in (3)

N−1∑
i=0

∫ i+1
N

i
N

∫ i+1
N

i
N

u2Hv2Hdudv =
1

(2H + 1)2
1

N4H+2

N−1∑
i=0

((i+ 1)2H+1 − i2H+1)2 = O(N−1)

and for the third summand in (3) we can write

N−1∑
i=0

∫ i+1
N

i
N

∫ i+1
N

i
N

u2H |u− v|2Hdudv

=
N−1∑
i=0

∫ i+1
N

i
N

∫ u

i
N

u2H(u− v)2Hdvdu+
N−1∑
i=0

∫ i+1
N

i
N

∫ i+1
N

u

u2H(v − u)2Hdvdu

=
1

2H + 1

N−1∑
i=0

[∫ i+1
N

i
N

u2H
(
u− i

N

)2H+1

du+

∫ i+1
N

i
N

u2H
(
i+ 1

N
− u
)2H+1

du

]
.

Changing to the variables z = N
(
u− i

N

)
in the first integral and z = N

(
i+1
N
− u
)

in
the second integral we get that the above sum is equal to

1

2H + 1

1

N4H+2

N−1∑
i=0

[∫ 1

0

z2H+1(z + i)2Hdz +

∫ 1

0

z2H+1(i+ 1− z)2Hdz

]

14



and this is of order of O(N−2H−1).
A similar calculation shows,

N−1∑
i=0

∫ i+1
N

i
N

∫ i+1
N

i
N

|u− v|4Hdudv = 2
N−1∑
i=0

∫ i+1
N

i
N

∫ u

i
N

(u− v)4Hdudv = O(N−4H−1).

Note that regardless of H, a2n → 0 at the order O(N−1). We restate the result as a
proposition to be used later.

Proposition 3 Let aN be given by

a2N := IE

[(
IE
[
VN(1) | FW1

]
− 1

2H + 1

)2
]
.

Then, as N →∞,

aN = O
(

1√
N

)
.

We obtain the L2 consistency and the strong consistency as immediate conse-
quences.

Corollary 1 Let FW be the sigma-algebra generated by (Wt)t∈[0,1]. Then

IE
[
VN(1) | FW1

] N→∞−→ θ =
1

2H + 1
.

in L2(Ω). If VN is constructed via a refining partition (that if, ∆N ⊂ ∆M if N > M)
then the above convergence holds almost surely.

Proof: We have already shown the L2 convergence above.
Concerning the almost sure convergence, we may proceed as in (Protter, 2005, Theorem

28, Chapter I), and show that VN(1) converges almost surely to
∫ 1

0
(BH

s )2ds if we work
with refining partitions. This may be proved using the dominated convergence theorem
for conditional expectations, that IE

[
VN(1) | FW1

]
converges as N → ∞ almost surely,

to IE
(∫ 1

0
(BH

s )2ds | FW
)

= 1
2H+1

.

From the above result we immediately obtain

Proposition 4 Define for every N ≥ 1,

ĤN :=
1

2IE [VN(1) | FW1 ]
− 1

2
.

Assume that VN is constructed via a refining partition. Then ĤN converge almost surely
to H as N →∞.

15



Remark 2 The estimator IE
[
VN(1) | FW1

]
has good properties. Its inconvenient is that

in principle it cannot be directly from the observations of the process X. Nevertheless,
Proposition (16) shows that it has a rather simple form which could allows its numerical
simulation at least in particular cases. This will be the object of a further study.

4 Conditional central limit theorem

Let us discuss the asymptotic behavior of the quadratic variation VN(1) and of its con-
ditional expectation given the σ-algebra generated by W . It is well-known that (see e.g.
Protter (2005))

√
N

(
VN(1)−

∫ 1

0

(BH
s )2ds

)
converges in distribution to

√
2
∫ 1

0
(BH

s )2dW ′
s where W ′ is a Wiener process independent

by BH
s (and W ). By the same argument used in Remark 1, it is clear that such a result

cannot be obtained if we replace
∫ 1

0
(BH

s )2ds by its expectation which is 1
2H+1

. We will

analyze the asymptotic normality of the conditional expectation of VN(1) given FW . By
Proposition 2, it follows that for every N the random variable IE

[
V1 | FW1

]
is a multiple

integral in the second Wiener chaos. It is possible to characterize the convergence in
distribution of a sequence of multiple integrals to the standard normal law. We will
use the following result (see Theorem 4 in Nualart and Ortiz-Latorre (2008), see also
Nualart and Peccati (2005)).

Theorem 2 Fix n ≥ 2 and let (Fk, k ≥ 1), Fk = In(fk) (with fk ∈ L2([0, 1]n) for every
k ≥ 1) be a sequence of square integrable random variables in the n-th Wiener chaos
such that IE[F 2

k ]→ 1 as k →∞. Then the following are equivalent:

i) The sequence (Fk)k≥0 converges in distribution to the normal law N (0, 1).

ii) One has IE[F 4
k ]→ 3 as k →∞.

iii) For all 1 ≤ l ≤ n− 1 it holds that limk→∞ ‖fk ⊗l fk‖L2([0,1])⊗2(n−l) = 0.

iv) ‖DFk‖2L2([0,1]n → n in L2(Ω) as k → ∞, where D is the Malliavin derivative with
respect to B.

Criterion (iv) is due to Nualart and Ortiz-Latorre (2008); we will refer to it as
the Nualart–Ortiz-Latorre criterion (which in fact is a refinement of the main result in
Nualart and Peccati (2005).
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We introduce the sequence of random variables given by, for every N ≥ 1,

FN :=
IE
[
VN(1) | FW1

]
− θ

aN
(19)

where aN , the L2 norm was introduced in (17) and θ = 1
2H+1

. The main result of this
section is the following.

Theorem 3 The random variable FN defined in equation (19) converges in distribution,
as N →∞, to a standard normal random variable.

Proof: We apply the general Theorem 2. To this end we need to compute the Malliavin
derivative of FN and its norm. Using the multiple integral form (expression (16)), we
can write

DαFN =
2

aN

N−1∑
i=0

1[ i
N
, i+1

N
](α)

∫ i+1
N

i
N

RH(u, α)dWu

and thus,

‖DFN‖2L2([0,1]) =
4

a2N

∫ 1

0

(
N−1∑
i=0

1[ i
N
, i+1

N
](α)

∫ i+1
N

i
N

RH(u, α)dWu

)2

dα

=
4

a2N

N−1∑
i=0

∫ i+1
N

i
N

dα

(∫ i+1
N

i
N

RH(u, α)dWu

)

=
4

a2N

N−1∑
i=0

∫ i+1
N

i
N

dα

∫ i+1
N

i
N

∫ i+1
N

i
N

RH(u, α)RH(v, α)dWudWv

+
4

a2N

N−1∑
i=0

∫ i+1
N

i
N

dα

∫ i+1
N

i
N

R2
H(u, α)du

where for the last equality we used the product formula for multiple stochastic integrals.
Consequently,

‖DFN‖2L2([0,1]) =
4

a2N

N−1∑
i=0

∫ i+1
N

i
N

dα

∫ i+1
N

i
N

∫ i+1
N

i
N

RH(u, α)RH(v, α)dWudWv + 2. (20)

Let us compute the L2(Ω) norm of the random variable

‖DFN‖2L2([0,1]) − 2.
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From (20) and the isometry property of multiple stochastic integrals (4),

IE
(
‖DFN‖2L2([0,1]) − 2

)2
=

32

a4N

N−1∑
i=0

∫
[ i
N
, i+1

N
]4
RH(u, α)RH(v, α)RH(u, β)RH(v, β)dudvdαdβ.

The above sum can be decomposed into 81 terms. It is not difficult to estimate each of
this term, using calculations similar with the computation of aN in Proposition 3. For
example, the first summand is

2

a4N

N−1∑
i=0

∫
[ i
N
, i+1

N
]4
u2Hv2Hα2Hβ2Hdudvdαdβ

=
2

a4N

1

N4(2H+1)

N−1∑
i=0

(
(i+ 1)2H+1 − i2H+1

)
= O(N−4).

In this way, all the summands appearing in the decomposition of IE
(
‖DFN‖2L2([0,1]) − 2

)2
converge to zero as N →∞ and the conclusion follows from Theorem 2 point iv). .

We cite the Delta theorem (DasGupta, 2008):

Theorem 4 (Delta theorem) Let Tn be a sequence of statistics such that:

√
n(Tn − θ)

L−→ N(0, σ2(θ)), σ(θ) > 0.

Let g : R→ R be a function differentiable at θ with g′(θ) 6= 0. Then,

√
n(g(Tn)− g(θ))

L−→ N(0, [g′(θ)]2σ2(θ))

Thus, applying the Delta theorem we obtain a consistent estimator for H and its
rate of convergence.

Theorem 5 As N →∞, we have the convergence in distribution

√
N

(
1

2IE [VN(1) | FW1 ]
− 1

2
−H

)
→ N

(
0,

(2H + 1)4

4

)
.

Proof: This follows from Proposition 3, Theorem 3 and the above Delta Theorem.
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