EXAM 1 (SAMPLE)
 Ma 623 Stochastic Processes

April 3, 2006
(1) Mary has $\$ 20$ when she walks into a casino in Las Vegas. She will make $\$ 1$ bets at the Blackjack table until she goes broke. Bets are independent, and on each bet the probability is 0.49 that she wins $\$ 1$ and 0.51 that she loses $\$ 1$.
What is the expected number of bets she will make before going broke. (You can assume this expected number is finite)
(2) Trucks arrive at a UPS station according to a renewal process with $U(0,1)$ (in hours) interarrival times. All packages waiting at that station are instantly loaded as soon as a truck arrives. Packages arrive at the UPS station according to a Poisson process with rate $4 /$ hour. Calculate:

$$
\lim _{t \rightarrow \infty} \mathbf{P}\{\mathbf{N O} \text { packages at the station at time } t\}
$$

(3) Consider the Markov Chain on $\mathcal{S}=\{1,2,3\}$ described by:

$$
\mathbf{P}=\left(\begin{array}{ccc}
0 & 1 / 2 & 1 / 2 \\
1 / 3 & 1 / 3 & 1 / 3 \\
1 / 4 & 1 / 4 & 1 / 2
\end{array}\right)
$$

a) Is this Markov Chain recurrent? Prove your answer.
b) Find the stationary distribution
c) Find $\lim _{n \rightarrow \infty} \mathbf{P}\left\{X_{n}=X_{n+1} \mid X_{0}=1\right\}$
(4) For the Markov Chain on state space $\mathcal{S}=\{0,1,2,3,4,5\}$ and transition matrix:

$$
\mathbf{P}=\left(\begin{array}{cccccc}
1 / 2 & 1 / 2 & 0 & 0 & 0 & 0 \\
1 / 3 & 2 / 3 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 7 / 8 & 0 & 1 / 8 \\
0 & 0 & 3 / 4 & 0 & 1 / 4 & 0 \\
0 & 1 / 10 & 0 & 3 / 10 & 0 & 6 / 10 \\
0 & 0 & 1 / 5 & 0 & 4 / 5 & 0
\end{array}\right)
$$

a) Determine which states are positive recurrent, null recurrent, transient
b) The period of all states
c)

$$
\lim _{n \rightarrow \infty} \mathbf{P}\left\{X_{n}=0 \mid X_{0}=i\right\}, \quad i=0,1,2,3,4,5 .
$$

