Homework 1
 Ma623 Stochastic Processes

due Tuesday Jan 312006

Bernoulli (p) process. Let $Y_{1}, Y_{2}, \ldots, Y_{n}$ be iid, $\operatorname{Bernoulli}(p)$ random variables, thus each variable takes the values 1 and 0 with probabilities p and $1-p$ respectivelly, with p a number between 0 and 1 . Think of the Y_{i} 's as outcomes from tossing a coin with probability p of showing a "Head". Define:
$N_{k}=$ Number of Heads in the first k tosses.
$S_{n}=\inf \left\{k \mid N_{k}=n\right\}=$ Time at which n-th H occurs
$X_{n}=S_{n}-S_{n-1}=$ Number of tosses to get from $(n-1)$-st H to n-th H Remark: $N_{k}=\sup \left\{n \mid S_{n} \leq k\right\}$
(1) Find the joint probability:

$$
\mathbf{P}\left\{X_{1}=x_{1}, X_{2}=x_{2}, X_{3}=x_{3}, X_{4}=x_{4}\right\}
$$

for some $x_{1}, x_{2}, x_{3}, x_{4}$ positive integers.
(2) Find $\mathbf{P}\left\{S_{5}=10\right\}$
(3) Given that $N_{100}=5$ find:

$$
\begin{aligned}
& \mathbf{P}\left\{S_{1}=15, S_{2}=20, S_{3}=50, S_{4}=75, S_{5}=87\right\} \\
& \mathbf{P}\left\{S_{1}=15, S_{2}=50, S_{3}=20, S_{4}=75, S_{5}=87\right\}
\end{aligned}
$$

(4) Given $S_{4}=100$, describe the joint distribution of $\left\{S_{1}, S_{2}, S_{3}\right\}$
(5) Show that $\mathbf{P}\left\{S_{n}>k\right\}=\mathbf{P}\left\{N_{k}<n\right\}$ for any n, k in \mathbb{N}^{*}.
(6) Prove that as $k \rightarrow \infty ; \frac{N_{k}-k p}{\sqrt{k p(1-p)}} \xrightarrow{d} N(0,1)$
(7) Prove that as $k \rightarrow \infty ; \frac{S_{n}-n / p}{\sqrt{n(1-p)} / p} \xrightarrow{d} N(0,1)$
(8) Prove that as $p \rightarrow 0$:

$$
\mathbf{P}\left\{N_{\left[\frac{1}{p} t\right]}=j\right\} \rightarrow \frac{t^{j}}{j!} e^{-t}
$$

Hint Usual proof that $\operatorname{Binomial}\left(n, p_{n}=\frac{\mu}{n}\right) \xrightarrow{d}$ Poisson (μ).

