Homework 4
 Ma 623 Stochastic Processes
 due Tuesday Feb 282006

From Ross "Stochastic Processes" 2nd ed. do the following:
page 153 exercises 3.1, 3.3, 3.7, 3.9.

Now let us try and use simulation to solve problem 3.9. Assume that $\lambda=2$ customers per minute, and that $G=$ Uniform $[0,1]$. Use software to generate the Poisson process of the arrivals and the times of the service (the blackout periods). Now calculate the new arrival process.
(a) Using the elementary renewal theorem you were able to calculate in part (a) of 3.9 the average rate of the new process when t is large. Now use simulation to do the same thing. Use $t=10,000$ minutes and as many repetitions as you think necessary.
(b) Again using the simulation answer parts (b) and (c) of the problem 3.9. Use the same value for t as above.
(c) Calculate using the results in problem 3.9 the theoretical values in (a), (b) above for your specific values of λ and G. Then record and give the order of difference between the theoretical values and the simulation.

