
Homework 7
Ma 623 Stochastic Processes

due Monday May 7 2006 by 4:00pm

THIS ASSIGNMENT IS WORTH TWICE AS THE PREVIOUS ASSIGN-
MENTS

(I) A pure birth process starting from X(0) = 0 has birth parameters λ0 = 1,
λ1 = 3, λ2 = 2, and λ3 = 5. Find Pn(t) for n ∈ {0, 1, 2, 3}.

(II) A factory has 5 machines and one repairman. The operating time un-
til failure of a machine is exponentially distributed with rate 0.2/hour.
The repair time of a failed machine is exponentially distributed with rate
0.5/hour. Up to 5 machines may be operating at any given time, the
failures being independent of one another. At most one machine may be
in repairs at any given time. In the long run what fraction of time is the
repairman idle?

(III) Taxis arrive at the pick-up area of a hotel at a Poisson rate µ. Indepen-
dently passengers arrive at a Poisson rate λ. If there are no passengers
waiting, the taxis will wait in a queue, and similarly for the passengers, if
there are no taxis at the facility they will form a queue.

For n, m ≥ 0, let X(t) = (n, 0) if there are n passengers waiting in the
queue. Let X(t) = (0,m) if there are m taxis waiting.

Show that {X(t)}t≥0 is a continuous time Markov chain, and write down
the balance equations for the states of this Markov chain. You do not
need to find limiting probabilities.

(IV) Birth and death with immigration. Consider a population of a colonizing
species. Suppose that each individual produces offspring at a Poisson rate
λ as long as it lives. Moreover suppose new individuals immigrate into
the population at a Poisson rate γ.

If the lifetime of the individuals in the population is exponential with
mean 1

µ , starting with no individuals, find the expected length of time
until population size is 3.

(BOOK Problems):

From Ross “Stochastic Processes” 2nd ed. do the following:

page 323 exercises 6.10, 6.21, 6.25, 6.27 and page 399 exercises 8.1, 8.4

1



(V) Suppose that liquid in a container is placed in a coordinate system, and
at time 0, a pollen particle suspended in the liquid is at (0, 0, 0). Let Z(t)
be the z-coordinate of the position of the pollen particle after t minutes.
Suppose that {Z(t)}t≥0 is a Brownian motion with variance parameter 4.
Suppose that after 5 minutes the z-coordinate of the pollen’s position is
again 0.

(a) What is the probability that after 10 minutes is between −1 and 1?

(b) If after seven minutes the z-coordinate of the pollen position is −2,
find the expected value and variance of the z-coordinate of the posi-
tion after six minutes.

(VI) Let {X(t)}t≥0 be a Brownian motion with variance parameter σ2. Show
that for all t ≥ 0, |X(t)| and max0≤s≤t X(s) have the same distribution.

(VII) Reflected Brownian Motion: Suppose that liquid in a container is placed
in a coordinate system such that the bottom of the container is placed
on the xy-plane. Therefore, whenever a particle reaches the xy-plane it
cannot cross the bottom of the container and it is reflected back to the
nonnegative side of the z-axis. Suppose that at time zero, a particle is at
(0, 0, 0). Let V (t) be the z-coordinate of the particle after t units of time.

Find E [V (t)], Var [V (t)], P (V (t) ≤ z|V (0) = z0)

Hint: If Z(t) is a BM with variance parameter σ2 then:

V (t) =

{
Z(t) if Z(t) ≥ 0
−Z(t) if Z(t) < 0

.

V (t) is called Reflected Brownian motion.
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