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Chapter 1

Elements of Probability
Measure

What is Probability? In essence:

Mathematical modeling of random events and phenomena. It is
fundamentally different from modeling deterministic events and
functions, which constitutes the traditional study of Mathemat-
ics.

However, the study of probability uses concepts and notions straight from
Mathematics; in fact Measure Theory and Potential theory are expressions
of abstract mathematics generalizing the theory of Probability.

1.1 Probability. A Brief History

In the XVII-th century the first notions of Probability Theory appeared.
More precisely in 1654 Antoine Gombaud, Chevalier de Méré, a French no-
bleman with an interest in gaming and gambling questions, was puzzled by an
apparent contradiction concerning a popular dice game. The game consisted
in throwing a pair of dice 24 times; the problem was to decide whether or not
to bet even money on the occurrence of at least one ”double six” during the
24 throws. A seemingly well-established gambling rule led de Méré to believe
that betting on a double six in 24 throws would be profitable, but his own
calculations based on many repetitions of the 24 throws indicated just the
opposite. Using modern probability language de Méré was trying to establish
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4 CHAPTER 1. ELEMENTS OF PROBABILITY MEASURE

if such an event has probability greater than 0.5. Puzzled by this and other
similar gambling problems he called the attention of the famous mathemati-
cian Blaise Pascal. In turn this led to an exchange of letters between Pascal
and another famous French mathematician Pierre de Fermat, the first docu-
mented evidence of the fundamental principles of the theory of probability.
A few other particular problems on games of chance had been solved before
in the XV-th and XVI-th centuries by Italian mathematicians; however, no
general theory had been formulated before this famous correspondence.

In 1655 during his first visit to Paris the Dutch scientist Christian Huy-
gens, learnt of the work on probability carried out in this correspondence.
On his return to Holland in 1657, Huygens wrote a small work De Ratiociniis
in Ludo Aleae the first printed work on the calculus of probabilities. It was
a treatise on problems associated with gambling. Because of the inherent
appeal of games of chance, probability theory soon became popular, and the
subject developed rapidly during the XVIII-th century.

The major contributors during this period were Jacob Bernoulli (1654-
1705) and Abraham de Moivre (1667-1754). Jacob (Jacques) Bernoulli was
a Swiss mathematician who was the first to use the term integral. He was
the first mathematician in the Bernoulli family, a family of famous scien-
tists of the XVIII-th century. Jacob Bernoulli’s most original work was Ars
Conjectandi published in Basel in 1713, eight years after his death. The
work was incomplete at the time of his death but it is still a work of the
greatest significance in the theory of probability. De Moivre was a French
mathematician who lived most of his life in England. A protestant, he was
pushed to leave France after Louis XIV revoked the Edict of Nantes in 1685,
leading to the expulsion of the Huguenots. De Moivre pioneered the modern
approach to the theory of probability, when he published The Doctrine of
Chance: A method of calculating the probabilities of events in play in 1718,
although a Latin version had been presented to the Royal Society and pub-
lished in the Philosophical Transactions in 1711. The definition of statistical
independence appears in this book for the first time. The Doctrine of Chance
appeared in new expanded editions in 1718, 1738 and 1756. The birthday
problem (in a slightly different form) appeared in the 1738 edition, the gam-
bler’s ruin problem in the 1756 edition. The 1756 edition of The Doctrine of
Chance contained what is probably de Moivre’s most significant contribution
to probability, namely the approximation of the binomial distribution by the
normal distribution in the case of a large number of trials - which is honored
by most probability textbooks as ”The First Central Limit Theorem” (we
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will discuss this theorem in the course of this semester). He perceives as we
will see the notion of standard deviation and is the first to write the nor-
mal integral. In Miscellanea Analytica (1730) he derives Stirling’s formula
(wrongly attributed to Stirling) which he uses in his proof of the central limit
theorem. In the second edition of the book in 1738 de Moivre gives credit to
Stirling for an improvement to the formula. De Moivre wrote:

”I desisted in proceeding farther till my worthy and learned friend
Mr James Stirling, who had applied after me to that inquiry,
[discovered that c =

√
2].”

De Moivre also investigated mortality statistics and the foundation of the
theory of annuities. In 1724 he publishes based on population data for the
city of Breslau Annuities on lives one of the first statistical applications
into finance. In fact in A history of the mathematical theory of probability
(London, 1865), Todhunter says that probability:

... owes more to [de Moivre] than any other mathematician, with
the single exception of Laplace.

Despite de Moivre’s extraordinary scientific eminence his main income
was as a private tutor of mathematics and he died in poverty. None of his
influential friends: Leibnitz, Newton, Halley could help him find a university
position.

De Moivre, like Cardan, is famed for predicting the day of his own death.
He found that he was sleeping 15 minutes longer each night and summing
the arithmetic progression, calculated that he would die on the day that he
slept for 24 hours. He was right!

The XIX-th century saw the development and generalization of the early
theory. Pierre-Simon de Laplace (1749-1827) publishes in 1812 Théorie An-
alytique des Probabilités. This is the first fundamental book in probabil-
ity ever published (the second being Kolmogorov’s monograph from 1933).
Before Laplace, probability theory was solely concerned with developing a
mathematical analysis of games of chance.The first edition was dedicated to
Napoleon-le-Grand but, for obvious reason, the dedication was removed in
later editions!

The work consisted of two books and a second edition two years later
saw an increase in the material by about an extra 30 per cent. The work
studies generating functions, Laplace’s definition of probability, Bayes rule
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(so named by Poincaré many years later), the notion of mathematical ex-
pectation, probability approximations, a discussion of the method of least
squares, Buffon’s needle problem, and inverse Laplace transform. Later edi-
tions of the ”Théorie Analytique des Probabilités” also contains supplements
which consider applications of probability to determine errors in observations
arising in astronomy, the other passion of Laplace.

Laplace had always changed his views with the changing political events of
the time, modifying his opinions to fit in with the frequent political changes
which were typical of this period. Laplace became Count of the Empire
in 1806 and he was named a marquis in 1817 after the restoration of the
Bourbons.

On the morning of Monday 5 March 1827 Laplace died. Few events would
cause the Academy to cancel a meeting but they did so on that day as a mark
of respect for one of the greatest scientists of all time.

Many workers have contributed to the theory since Laplace’s time; among
the most important are Chebyshev, Markov, von Mises, and Kolmogorov.

One of the difficulties in developing a mathematical theory of probability
has been to arrive at a definition of probability that is precise enough for
use in mathematics, yet comprehensive enough to be applicable to a wide
range of phenomena. The search for a widely acceptable definition took
nearly three centuries and was marked by much controversy. The matter
was finally resolved in the 20th century by treating probability theory on an
axiomatic basis. In 1933 a monograph by the Russian giant mathematician
Andrey Nikolaevich Kolmogorov (1903-1987) outlined an axiomatic approach
that forms the basis for the modern theory. In 1925 the year he started his
doctoral studies, Kolmogorov published his first paper with Khinchin on
the probability theory. The paper contains among other inequalities about
partial series of random variables the three series theorem which provides
important tools for stochastic calculus. In 1929 when he finished his doctor-
ate he already had published 18 papers among them versions of the strong
law of large numbers and the iterated logarithm.

In 1933, two years after his appointment as a professor at Moscow Univer-
sity, Kolmogorov publishes Grundbegriffe der Wahrscheinlichkeitsrechnung
his most fundamental book. In it he builds up probability theory in a rigor-
ous way from fundamental axioms in a way comparable with Euclid’s treat-
ment of geometry. He gives a rigorous definition of the conditional expecta-
tion which later becomes fundamental for the definition of Brownian motion,
stochastic integration, and Mathematics of Finance. (Kolmogorov’s mono-
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graph is available in English translation as Foundations of Probability Theory,
Chelsea, New York, 1950). And he was not finished. In 1938 he publishes
the paper Analytic methods in probability theory which lay the foundation
work for the Markov processes, and toward a more rigurous approach to the
Markov Chains.

Kolmogorov later extended his work to study the motion of the planets
and the turbulent flow of air from a jet engine. In 1941 he published two pa-
pers on turbulence which are of fundamental importance. In 1953 and 1954
two papers by Kolmogorov, each of four pages in length, appeared. These are
on the theory of dynamical systems with applications to Hamiltonian dynam-
ics. These papers mark the beginning of KAM-theory, which is named after
Kolmogorov, Arnold and Moser. Kolmogorov addressed the International
Congress of Mathematicians in Amsterdam in 1954 on this topic with his
important talk General theory of dynamical systems and classical mechanics.
He thus demonstrated the vital role of probability theory in physics. His
contribution in the topology theory is of outmost importance.

Kolmogorov had many interests outside mathematics, in particular he
was interested in the form and structure of the poetry of Pushkin.

Like so many other branches of mathematics, the development of proba-
bility theory has been stimulated by the variety of its applications. In its turn,
each advance in the theory has enlarged the scope of its influence. Mathe-
matical statistics is one important branch of applied probability; other appli-
cations occur in such widely different fields as genetics, biology, psychology,
economics, finance, engineering, mechanics, optics, thermodynamics, quan-
tum mechanics, computer vision, etc.etc.etc.. In fact I compel the reader
to find one area in today’s science where no applications of the probability
theory can be found.

For its immense success and wide variety of applications the Theory of
Probability can be arguably viewed as the most important area of Mathe-
matics.

1.2 Probability. A somewhat rigorous ap-

proach

The axiomatic approach of Kolmogorov is followed by most Probability The-
ory books. This is the approach of choice for most graduate level probability
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courses. However, the immediate applicability of the theory learned as such
is questionable and many years of study are required to understand and
unleash its full power.

On the other hand the Applied probability books completely disregard
this approach and they go more or less directly into treating applications,
thus leaving gaps into the reader’s knowledge. At a cursory glance this
approach appears to be very useful (the presented problems are all very real
and most are difficult), however I question the utility of this approach when
confronted with problems that are slightly different from the ones presented
in such books.

Unfortunately, there is no middle ground between these two, hence the
necessity of the present lecture notes. I will start with the axiomatic ap-
proach and present as much as I feel is going to be necessary for a complete
understanding of the Theory of Probabilities. I will skip proofs which I will
consider will not bring something new to the development of the student’s
understanding.

1.2.1 Probability Spaces

Let Ω be an abstract set. This is sometimes denoted with S and is called the
sample space. It is a set containing all the possible outcomes or results of a
random experiment or phenomenon. I called it abstract because it could con-
tain anything. For example if the experiment consists in tossing a coin once
the space Ω could be represented as {Head, Tail}. However, it could just as
well be represented as {Cap, Pajura}, these being the romanian equivalents
of Head and Tail. The space Ω could as well contain an infinite number of
elements. For example measuring the diameter of a doughnut could result in
possible numbers inside a whole range. Furthermore, measuring in inches or
in centimeters would produce different albeit equivalent spaces.

We will use ω ∈ Ω to denote a generic outcome or a sample point.
We will use capital letters from the beginning of the alphabet A, B, C to

denote events (any collection of outcomes).
So far so good. Now comes the first different notion. We have these

events which are nothing more than subsets of Ω. Now we need to talk
about collection of events. Think of the following possible situation: Poles
of various sizes are painted in all the possible colors and nuances of colors.
Suppose that in this model we have to calculate the probability of things like
the next pole would be shorter than 15 inches and painted a nuance of red
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or blue. In order to deal with such examples we have to give a definition
of probability that will be consistent and it will allow us to deal with such
cases.

We will introduce the notion of σ-algebra (or σ-field) to deal with the
problem of the proper domain of definition for the probability. Before we do
that, we will introduce a special collection of events:

P(Ω) = The collection of all possible subsets of Ω (1.1)

Exercise 1. Roll a die. Then Ω = {1, 2, 3, 4, 5, 6}. An example of a event
is A = { Roll an even number} = {2, 4, 6}. Find the cardinality (number of
elements of P(Ω) in this case.

Having defined sets we can now define operations with them: union, in-
tersection, complement and slightly less important difference and symmetric
difference.


A ∪B = set of elements that are either inA or in B

A ∩B = AB = set of elements that are both in A and in B

Ac = Ā = set of elements that are in Ω but not in A

(1.2)

{
A \B = set of elements that are in A but not in B

A4B = (A \B) ∪ (B \ A)

We can of course express every operation in terms of union and inter-
section. There are important relations between these operations, I will stop
here with the mention of the De Morgan laws:{

(A ∪B)c = Ac ∩Bc

(A ∩B)c = Ac ∪Bc
(1.3)

For more details read any textbook where set operations are defined.

Definition 1.2.1 (Algebra on Ω). A collection F of events in Ω is called
an algebra (or field) on Ω iff:

a) Ω ∈ F

b) Closed under complementarity: If A ⊆ F then Ac ⊆ F
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c) Closed under finite union: If A, B ⊆ F then A ∪B ⊆ F

Remark 1.2.2. The first two properties imply that ∅ ∈ F . The third is
equivalent by de Morgan laws (1.3) with A ∩B ⊆ F

Definition 1.2.3 (σ-Algebra on Ω). If F is an algebra on Ω and in addition
it is closed under countable unions then it is a σ-algebra (or σ-field) on Ω

Note: Closed under countable unions means that the property c) in
Definition 1.2.1 is replaced with: If n ∈ N is a natural number and An ⊆ F
for all n then ⋃

n∈N

An ⊆ F

Exercise 2 (An algebra which is not a σ-algebra). Let B0 be the collection of
sets of the form: (a1, a

′
1]∪(a2, a

′
2]∪· · ·∪(am, a′m], for any m ∈ N∗ = {1, 2 . . . }

and all a1 < a′1 < a2 < a′2 < · · · < am < a′m in Ω = (0, 1]
Verify that B0 is an algebra. Show that B0 is not a σ-algebra.

Exercise 3. Let F = {A ⊆ Ω|A finite or Ac is finite}.

a) Show that F is an algebra

b) Show that if Ω is finite then F is a σ-algebra

c) Show that if Ω is infinite then F is not a σ-algebra

Exercise 4 (A σ-Algebra does not necessarily contain all the events in Ω). Let
F = {A ⊆ Ω|A countable or Ac is countable}. Show that F is a σ-algebra.

Note that if Ω is uncountable implies that it contains a set A such that
both A and Ac are uncountable thus A /∈ F .

The σ-algebra provides an appropriate domain of definition for the prob-
ability function. However, it is such an abstract thing that it will be hard
to work with it. This is the reason for the next definition, it will be much
easier to work on the generators of a sigma-algebra. This will be a recurring
theme in probability, in order to show a property for a big class we show
the property for a small generating set of the class and then use standard
arguments to extend to the whole class.

Definition 1.2.4 (σ algebra generated by a class of Ω). Let C be a collec-
tion (class) of subsets of Ω. Then σ(C ) is the smallest σ-algebra on Ω that
contains C .

Mathematically:
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(a) C ⊆ σ(C )

(b) σ(C ) is a σ-field

(c) If C ⊆ G and G is a σ-field then σ(C ) ⊆ G

Remark 1.2.5. Properties of σ-algebras:

• P(Ω) is a σ-algebra, the largest possible σ-algebra on Ω

• If F is already a σ-algebra then σ(F ) = F

• If F = {∅} or F = {Ω} then σ(F ) = {∅, Ω}, the smallest possible
σ-algebra on Ω

• If F ⊆ F ′ then σ(F ) ⊆ σ(F ′)

• If F ⊆ F ′ ⊆ σ(F ) then σ(F ′) = σ(F )

Example: Borel σ-algebra.
Let Ω be a topological space (think geometry exists in this space this

assures us that the open subsets exist in this space). Then we define:

B(Ω) = The Borel σ-algebra (1.4)

= σ-algebra generated by the class of open subsets of Ω

In the special case when Ω = R we denote B = B(R). B is the most
important σ-algebra. The reason is that most experiments can be brought
to equivalence with R. Thus, if we define a probability measure on B, we
have a way to calculate probabilities for most experiments.

Most subsets of R are in B. However, it is possible (though very difficult)
to construct a subset of R explicitly which is not in B. See Billingsley page
45 for such a construction in the case Ω = (0, 1].

Exercise 5. Show that B = σ ({(−∞, x]|x ∈ R})
We are finally in the position to define a space on which we can introduce

the probability measure.

Definition 1.2.6 (Measurable Space.). A pair (Ω, F ), where Ω is a set and
F is a σ-algebra on Ω is called a Measurable Space.
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Definition 1.2.7 (Probability measure. Probability space). Given a mea-
surable space (Ω, F ), a probability measure is any function P : F → [0, 1]
with the following properties:

i) P(Ω) = 1

ii) (countable additivity) For any sequence {An}n∈N of disjoint events
in F (i.e. Ai ∩ Aj = ∅, for all i 6= j):

P

(
∞⋃

n=1

An

)
=

∞∑
n=1

P(An)

The triple (Ω, F ,P) is called a Probability Space.

Exercise 6 ( Discrete Probability Space). Let Ω be a countable space. Let
F = P(Ω). Let p : Ω → [0, N) be a function on Ω such that

∑
ω∈Ω p(ω) =

N < ∞, where N is a finite constant. Define:

P(A) =
1

N

∑
ω∈A

p(ω)

Show that (Ω, F ,P) is a Probability Space.

Remark 1.2.8. The previous exercise gives a way to construct discrete prob-
ability measures (distributions). For example take Ω = N, take N = 1.
Then:

• p(ω) =


1− p , if ω = 0

p , if ω = 1

0 , otherwise

, gives the Bernoulli(p) distribution.

• p(ω) =

{(
n
ω

)
pω(1− p)n−ω , if ω ≤ n

0 , otherwise
, gives the Binomial(n,p) dis-

tribution.

• p(ω) =

{(
ω−1
r−1

)
pr(1− p)ω−r , if ω ≥ r

0 , otherwise
, gives the Negative Binomial(r,p)

distribution.

• p(ω) = λn

n!
e−λ, gives the Poisson (λ) distribution.
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Proposition 1.2.9 (Elementary properties of Probability Measure). Let
(Ω, F ,P) be a Probability Space. Then:

(1) ∀A, B ∈ F with A ⊆ B then P(A) ≤ P(B)

(2) P(A ∪B) = P(A) + P(B)− P(A ∩B), ∀A, B ∈ F

(3) (General Inclusion-Exclusion formula, also named Poincaré formula):

P(A1 ∪ A2 ∪ · · · ∪ An) =
n∑

i=1

P(Ai)−
∑

i<j≤n

P(Ai ∩ Aj) (1.5)

+
∑

i<j<k≤n

P(Ai ∩ Aj ∩ Ak)− · · ·+ (−1)nP(A1 ∩ A2 · · · ∩ An)

Successive partial sums are alternating between over-and-under esti-
mating.

(4) (Finite subadditivity, sometimes called Boole’s inequality):

P

(
n⋃

i=1

Ai

)
≤

n∑
i=1

P(Ai), ∀A1, A2, . . . , An ∈ F

Exercise 7. Prove properties 1-4 above.

1.2.2 Null element of F . Almost sure (a.s.) state-
ments. Indicator of a set.

An event N ∈ F is called a null event if P (N) = 0.

Definition 1.2.10. A statement S about points ω ∈ Ω is said to be true
almost surely (a.s.) or with probability 1 (w.p.1) if the set N defined as:

N := {ω ∈ Ω| S(ω) is true} ,

is in F and P(N) = 1, (or N c is a null set).

Definition 1.2.11. We define the indicator function of an event A as the
(simple) function 1A : Ω → {0, 1},

1A(ω) =

{
1 , if ω ∈ A

0 , if ω /∈ A

Remember this definition, it is one of the most important ones in proba-
bility.
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1.3 Monotone Convergence properties of prob-

ability

Let (Ω, F ,P) be a Probability Space.

Lemma 1.3.1. The following are true:

(i) If An, A ∈ F and An ↑ A (i.e., A1 ⊆ A2 ⊆ . . . An ⊆ . . . and
A =

⋃
n≥1 An), then: P(An) ↑ P(A) as a sequence of numbers.

(ii) If An, A ∈ F and An ↓ A (i.e., A1 ⊇ A2 ⊇ . . . An ⊇ . . . and
A =

⋂
n≥1 An), then: P(An) ↓ P(A) as a sequence of numbers.

(iii) (Countable subadditivity) If A1, A2, . . . , and
⋃∞

i=1 An ∈ F , with
Ai’s not necessarily disjoint then:

P

(
∞⋃

n=1

An

)
≤

∞∑
n=1

P(An)

Proof. (i) Let B1 = A1, B2 = A2 \ A1, . . . , Bn = An \ An−1. Because the
sequence is increasing we have that the Bi’s are disjoint thus from Proposition
1.2.9 we obtain:

P(An) = P(B1 ∪B2 ∪ · · · ∪Bn) =
n∑

i=1

P(Bi).

Thus using countable additivity:

P

(⋃
n≥1

An

)
= P

(⋃
n≥1

Bn

)
=

∞∑
i=1

P(Bi) = lim
n→∞

n∑
i=1

P(Bi) = lim
n→∞

P(An)

(ii) Note that An ↓ A ⇔ An
c ↑ Ac which from part (i) implies that

1− P(An) ↑ 1− P(A).
(iii) Let B1 = A1, B2 = A1 ∪ A2, . . . , Bn = A1 ∪ · · · ∪ An, . . . . From the

finite subadditivity we have that P(Bn) = P(A1 ∪ · · · ∪An) ≤ P(A1) + · · ·+
P(An).

{Bn}n≥1 is an increasing sequence of events, thus from (i) we get that
P(
⋃∞

n=1 Bn) = limn→∞P(Bn). Combining the two relations above we obtain:

P(
∞⋃

n=1

An) = P(
∞⋃

n=1

Bn) ≤ lim
n→∞

(P(A1) + · · ·+ P(An)) =
∞∑

n=1

P(An)
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Lemma 1.3.2. The union of a countable number of P-null sets is a P-null
set

Exercise 8. Prove the above Lemma 1.3.2

1.4 Conditional Probability

Let (Ω, F ,P) be a Probability Space. Then for A, B ∈ F we define the
conditional probability of A given B as usual by:

P(A|B) =
P(A ∩B)

P(B)
.

We of course also have the chain rule formulas :

P(A ∩B) = P(A|B)P(B),

P(A ∩B ∩ C) = P(A|B ∩ C)P(B|C)P(C), etc.

Total probability formula: Given A1, A2, . . . , An a partition of Ω (i.e. the
sets Ai are disjoint and Ω =

⋃n
i=1 Ai), then:

P(B) =
n∑

i=1

P(B|Ai)P(Ai), ∀B ∈ F (1.6)

Bayes Formula: If A1, A2, . . . , An form a partition of Ω:

P(Aj|B) =
P(B|Aj)P(Aj)∑n
i=1P(B|Ai)P(Ai)

, ∀B ∈ F . (1.7)

Exercise 9. Prove the total probability formula and the Bayes Formula
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