Homework 6 Math 611 Probability

due Friday Dec. 8 2006 at 3:00pm

From your textbook do the following exercises:

Chapter 5 page 330 Problems 42, 52. Chapter 9 page 633 Problems 2, 11.

SRW problems:

(1) Consider a symmetric random walk S with $S_0 = 0$. Let $T = \min\{n \ge 1 : S_n = 0\}$ be the time of the first return of the walk to its starting point. Show that:

$$\mathbf{P}(T=2n) = \frac{1}{2n-1} \binom{2n}{n} 2^{-2n},$$

and deduce that $\mathbf{E}T^{\alpha} < \infty$ if and only if $\alpha < \frac{1}{2}$. (Stirling's formula: $n! \simeq \sqrt{2\pi n} n^n e^{-n}$).

(2) Consider a symmetric random walk with an absorbing barrier at N and a reflecting barrier at 0 (when the random walk reaches 0 it moves to 1 at the next step with probability one). Let $\alpha_k(j)$ be the probability that the particle having start at k, visits 0 exactly j times before being absorbed at N. By convention, if k = 0 then the starting point counts as one visit already. Show that:

$$\alpha_k(j) = \frac{N-k}{N^2} \left(1 - \frac{1}{N}\right)^{j-1} , \quad \forall j \ge 1, \ 0 \le k \le N$$

In addition do the following problems (featured in last year's take-home Final):

(3) Let S_n be the number of successes in a series of independent trials whose probability of success at the k^{th} trial is p_k . Suppose p_1, p_2, \ldots, p_n depend on n in such a way that:

$$p_1 + p_2 + \dots + p_n = \lambda$$
, for all n ,

while $\max\{p_1, p_2, \ldots, p_n\} \to 0$ when $n \to \infty$. Prove that S_n has a Poisson distribution with parameter λ in the limit as $n \to \infty$.

- (4) Let ν be the total number of spots which are obtained in 1000 independent rolls of an unbiased die.
 - (a) Find $\mathbf{E}[\nu]$
 - (b) Estimate the probability $\mathbf{P}(3450 < \nu < 3550)$