Ma 612 Mathematical Statistics Midterm Examination

due in class April 16, 2006

(1) The random variables X_1, X_2, \ldots, X_n are i.i.d., they take values in a finite set

$$A_m = \{1, 2, \dots, m\}$$

and are uniformly distributed over A_m . The random variables X'_is could be numbers that you see, e.g., the number of questions in an exam.

- (a) Assume that m is not known and you want to estimate it. Write down the estimator obtained (i) by the method of moments and (ii) by maximizing the likelihood.
- (b) If \hat{m} is the MLE, show that \hat{m} is biased and consistent for m, i.e., $E_m(\hat{m}) \neq m$, but $\hat{m} \to m$ if m is kept fixed and $n \to \infty$.
- (c) Suppose m and n both tend to infinity at the same rate, i.e., $m = k \cdot n, n \to \infty$, with k a fixed constant. Show that $(\hat{m} m)$ converges in distribution.
- (2) Let the variables X_1, X_2, \ldots, X_n i.i.d. from the distribution:

$$f_1(x|\theta_1) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

where $\theta_1 = (\mu, \sigma^2)^T \in \mathbb{R} \times (0, \infty)$, and let Y_1, Y_2, \ldots, Y_n i.i.d. from the distribution:

$$f_2(y|\theta_2) = \frac{1}{2\sqrt{2\pi\sigma_1^2}} e^{-\frac{(y-\mu_1)^2}{2\sigma_1^2}} + \frac{1}{2\sqrt{2\pi\sigma_2^2}} e^{-\frac{(y-\mu_2)^2}{2\sigma_2^2}},$$

where $\theta_2 = (\mu_1, \mu_2, \sigma_1^2, \sigma_2^2)^T \in \mathbb{R}^2 \times (0, \infty)^2$.

- (a) Show that both functions above are legitimate pdf's
- (b) Calculate the likelihood functions in both cases $L_1(\theta_1|x_1,\ldots,x_n)$, and $L_2(\theta_2|y_1,\ldots,y_n)$
- (c) Show that the first likelihood function is always bounded on $\mathbb{R} \times (0, \infty)$, but the second is always unbounded on $\mathbb{R}^2 \times (0, \infty)^2$
- (d) What does part (c) imply about the MLE estimators?
- (3) Let X_1, X_2, \ldots, X_n be Bernoulli random variables with the following joint distribution, depending on $\theta = (\theta_1, \theta_{11}, \theta_{10});$

$$P(X_1 = 1) = \theta_1$$

$$P(X_i = 1 | X_1, \dots, X_{i-1}) = \begin{cases} \theta_{11} & \text{if } X_{i-1} = 1\\ \theta_{10} & \text{if } X_{i-1} = 0 \end{cases}$$

for i = 1, 2, ..., n. Find a four dimensional sufficient statistic.

(4) Given a loss function $L(\theta, d)$ and a prior distribution π , the optimal prior decision is the d^{π} which minimizes $E^{\pi}[L(\theta, d)]$. That is, d^{π} is the decision minimizing the Bayes Risk with no observations.

The value of the sample information X=x is defined as

$$\nu(x) = E^{\pi}[L(\theta, d^{\pi}) \mid x] - E^{\pi}[L(\theta, \delta^{\pi}(x) \mid x]]$$

where $\delta^{\pi}(x)$ is the Bayes rule corresponding to the prior π .

- (a) Indicate why $\nu(x)$ is non-negative.
- (b) If $X \mid \theta \sim N(\theta, \sigma^2)$, $\theta \sim N(\eta, \tau^2)$ and $L(\theta, d) = (\theta d)^2$ what is the value of $\nu(x)$?
- (5) Suppose X has density

$$f_{\theta}(x) = \begin{cases} (1+\theta x)/2 & |x| \le 1\\ 0 & |x| > 1 \end{cases}$$

where the parameter space is $\{\theta : -1 \leq \theta \leq 1\}$ and θ has a prior distribution which is uniform on [-1, 1].

- (a) Find the Bayes estimate $\delta_1(x)$ of θ under squared error $L(\delta, \theta) = (\delta \theta)^2$.
- (b) Find the Bayes estimate $\delta_2(x)$ of θ under absolute error $L(\delta, \theta) = |\delta \theta|$.
- (c) Find the maximum likelihood estimate $\delta_3(x)$ of θ .
- (d) For x > 0, the three estimates are ordered, $\delta_i(x) > \delta_j(x) > \delta_k(x)$. What is the order?
- (6) Let X_1, X_2, \ldots, X_n be i.i.d. random variables uniform on $[0, \theta]$ with $\theta \ge 1$. We wish to estimate $g(\theta) = \theta^{-p}$ for p > n.
 - (a) Show that

$$T(X_{(n)}) = \begin{cases} 1 & X_{(n)} \le 1\\ X_{(n)} & X_{(n)} > 1 \end{cases}$$

is a sufficient statistic $(X_{(n)} = \max\{x_i\}).$

(b) Find the Best Unbiased Estimator (or UMVUE) of $g(\theta)$. Comment on the values of the estimates when $T \ge 1$.