0.0 ]

## Errata for Statistical Inference, Second Edition (First Printing) Last Update: August 9, 2002

page 7) line 15 ↑: "Axiom 1" should be "Axiom 2"

page 19) Figure caption: " $\{2, 4, 4, 9\}$ " should be " $\{2, 4, 9, 12\}$ "

page 39) Exercise 1.16: "(b)" should be "(c)"

page 40) Exercise 1.29: (a) and (b) are the same. Replace part (e) with: Establish that the number of multinomial coefficients, and hence the number of distinct bootstrap samples, is  $\binom{k+m-1}{k}$ . In other words,

$$\sum_{k_1, k_2, \dots, k_m} I_{\{k_1 + k_2 + \dots + k_m = k\}} = \binom{k + m - 1}{k}$$

page 41) Exercise 1.31: " $\frac{29}{4}$ " should be " $\frac{27}{4}$ "

page 43) Exercise 1.43: " $i \ge j$ " should be " $i \le j$ "

page 55) line 13  $\downarrow$ : "random number V " should be "random number U "

page 76) Exercise 2.7(b): " $A_1 = (-2,0)$  and  $A_2 = (0,2)$ " should be " $A_1 = (-1,1)$  and  $A_2 = (1,2)$ "

page 80) Exercise 2.29: The pmf should be

$$P(y=y) = a \left(\frac{1}{y+a}\right) \frac{\binom{n}{y} \binom{a+b-1}{a}}{\binom{n+a+b-1}{y+a}}$$

(replace (y+a) with 1/(y+a))

page 83) last line: "t = 1" should be "t = 0"

page 84) line 14  $\downarrow$ : "for all X" should be "for all x"; line 12  $\uparrow$ : "mgfs" should be "pdfs"; line 4  $\uparrow$ : "constrast" should be "contrast"

page 132) Exercise 3.30b: "beta(a, b)" should be "Poisson $(\lambda)$ "

page 132) Exercise 3.31a: delete " $f(x|\theta) =$ "

page 132) Exercise 3.31b: " $\frac{d^2}{dx^2}$ " should be " $\frac{d^2}{dx^2}$ "

page 168) line 6 \(\epsilon\): "\(\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}\)" should be "\(n\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}\)"

page 188) first line: The title of the example should be "(Covariance Inequality - I)"

page 192) first line: The title of the theorem should be "(Covariance Inequality - II)"

page 193) last line: "(2.2.4)" should be "(2.2.3)"

page 194) Exercise 4.16c: "pdf" should be "pmf"

page 198) Exercise 4.37(a): "is beta-binomial" should be "is a mixture of beta-binomials"

page 203) Exercise 4.65: "Covariance Inequality" should be "Covariance Inequality - II"

page 231) line  $10 \uparrow$ : "r" should be "R"

0.2

- page 265) Exercise 5.58a: add "if  $0 \le t \le 1$ "
- page 279) line 7 \(\epsilon\): " $c(\theta)$ " should be " $c(\theta)$ "
- page 283) line  $5 \downarrow$ : "(5.5.7)" should be "(5.4.7)"
- page 288) display 6.2.7: " $w(\theta_i)$ " should be " $w_i(\theta)$ "
- page 288) line 14  $\downarrow$ : " as long as the parameter space  $\Theta$ " should be "if  $\{(w_1(\boldsymbol{\theta}), \dots, w_k(\boldsymbol{\theta})) : \boldsymbol{\theta} \in \Theta\}$ "
- page 304) Exercise 6.31b(ii): " $\sum_i X_i$ " should be " $\sum_i X_i$ "
- page 304) Exercise 6.33a: Second display should be

$$g(T(j, \mathbf{x}_i | \theta)h(j, \mathbf{x}_i) = f^*((j, \mathbf{x}_i) | \theta)$$

- page 333) line  $5 \downarrow$ : "For an estimator  $W(\mathbf{X})$  of  $\theta$ , using the principles of Measurement Equivariance and Formal Invariance, we have" should be "For a fixed g in the group  $\mathcal{G}$  denote the function that takes  $\theta \to \theta'$  by  $\bar{g}(\theta) = \theta'$ . Then if  $W(\mathbf{X})$  estimates  $\theta$  we have"
- page 358 Exercise 7.18a: In  $\tilde{\rho}$  " $\hat{\sigma}_X \hat{\sigma}_Y$ " should be " $\tilde{\sigma}_X \tilde{\sigma}_Y$ "
- page 363) Exercise 7.45b: " $E[X \mu]^4$ " should be " $E[X \mu]^4/\sigma^4$ "h
- page 363) Exercise 7.45d: " $(\kappa 1)$ " should be " $(\kappa 3)$ "
- page 410) Exercise 8.43: The t statistic should be

$$\frac{\left(\bar{X} - \bar{Y}\right) - \left(\mu_1 - \mu_2\right)}{\sqrt{\frac{1}{n_1} + \frac{\rho^2}{n_2}} \sqrt{\frac{(n_1 - 1)s_X^2 + (n_2 - 1)s_Y^2/\rho^2}{n_1 + n_2 - 2}}},$$

and the F statistic should be  $s_Y^2/(\rho^2 s_X^2)$ . Here  $s_Y^2$  and  $s_Y^2$  are the sample variances from the two samples. Also, in the F statistic the numerator degrees of freedon should be  $n_2 - 1$  and the denominator degrees of freedon should be  $n_1 - 1$ .

- page 458) Exercise 9.43: "the interval will be " should be "the interval on  $\theta$  will be "
- page 462) Exercise 9.57(b): " $\bar{x} \pm z_{\alpha/2} \sigma \left(1 + \frac{1}{\sqrt{n}}\right)$ " should be " $\bar{x} \pm \sigma \left(z_{p/2} + \frac{z_{\alpha/2}}{\sqrt{n}}\right)$ "
- page 477) last display should be

$$ARE(\hat{\mu}, \bar{X}) = [\beta \mu] \left[ E\left(-\frac{d^2}{d\mu^2}l(\mu, \beta|X)\right) \right]$$

- page 488) first line: " $E_{\theta}\psi(x-\theta)$ " should be " $E_{\theta}\psi(X-\theta)$ "
- page 505) Exercise 10.5(c): "approaches 0" should be "approaches 0 as  $n \to \infty$ "; Exercise 10.7: "In the proof of Theorem 10.1.6" should be "In the proof of Theorem 10.1.12"; Exercise 10.7: " $\tau(\theta)$  is a continuous function" should be " $\tau(\theta)$  is a continuous and differentiable function"
- page 507 Replace Exercise 10.15:

0.0 ]

- (a) Show that  $\operatorname{Var}_{B}^{*}(\hat{\theta})$  of (10.1.11) converges to  $\operatorname{Var}^{*}(\hat{\theta})$  of (10.1.10) as  $B \to \infty$ .
- (b) For fixed B and  $i=1,2,\ldots$ , calculate the bootstrap variance  $\operatorname{Var}_{B_i}^*(\hat{\theta})$ . Use the Law of Large Numbers to show  $(1/m)\sum_{i=1}^m \operatorname{Var}_{B_i}^*(\hat{\theta}) \to \operatorname{Var}^*(\hat{\theta})$  as  $m\to\infty$ .
- page 508) line 2  $\downarrow$ : "(q)d" should be "(d)"; line 4  $\downarrow$ : "(q)e" should be "(e)"; line 5  $\downarrow$ : "(q)d " should be "(d)"
- page 508) Exercise 10.19(b): In the display, the expression in parentheses should be  $n \frac{1-\rho^n}{1-\rho}$
- page 509) Exercise 10.25: "where  $\psi = \rho'$ ." should be "where  $\psi = \rho'$  is an odd function."
- page 514) Exercise 10.41(a): "(10.4.3)" should be "(10.4.1)"
- page 553) Equation (11.3.30): " $\!Y_i$  " should be " $\!Y_j$  "
- page 594) last line: " $x_i$ " should be " $x_j$ " (2 times)
- page 605) Exercise 12.15(g): " = 1" should be "=  $\beta$ "