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CHAPTER 1

Probability Review.

1.1. Probability spaces. Sigma algebras.

We will use the notation from the measure theory (Ω, F ,P)1 for
a probability space. Let us look to the constituent elements one at a
time.

Let Ω is an abstract set. It is a set containing all the possible
outcomes or results of a random experiment or phenomenon. I called
it abstract because it could contain anything. For example if the ex-
periment consists in tossing a coin once the space Ω could be repre-
sented as {Head, Tail}. However, it could just as well be represented
as {Cap, Pajura}, these being the romanian equivalents of Head and
Tail. The space Ω could as well contain an infinite number of elements.
For example measuring the diameter of a doughnut could result in pos-
sible numbers inside a whole range. Furthermore, measuring in inches
or in centimeters would produce different albeit equivalent spaces.

We will use ω ∈ Ω to denote a generic outcome or a sample point.
We will use capital letters from the beginning of the alphabet A, B, C
to denote events (any collection of outcomes).

We need to measure these events so we come to the next notion.
The collection of events F represents the domain of definition for the
function P. We will need to provide internal consistencies when we
define F to make sure that we are able to measure the information
resulting from the experiment and any other event of possible interest
to us. The mathematical structure for this purpose is the notion of
σ-algebra (or σ-field). Before we define a σ-algebra, we will introduce
a special collection of events:

(1.1) P(Ω) = The collection of all possible subsets of Ω = 2Ω

Exercise 1. Roll a die. Then Ω = {1, 2, 3, 4, 5, 6}. An example of a
event is A = { Roll an even number} = {2, 4, 6}. Find the cardinality
(number of elements of P(Ω) in this case.

1Sometimes (specially in statistics) the whole setup is denoted with (S, Σ,P)

1
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Having defined sets we can now define operations with them: union,
intersection, complement and slightly less important difference and
symmetric difference.







A ∪ B = set of elements that are either in A or in B

A ∩ B = AB = set of elements that are both in A and in B

Ac = Ā = set of elements that are in Ω but not in A

(1.2)

{

A \ B = set of elements that are in A but not in B

A△B = (A \ B) ∪ (B \ A)

We can of course express every operation in terms of union and
intersection. There are important relations between these operations,
I will stop here with the mention of the De Morgan laws:

(1.3)

{

(A ∪ B)c = Ac ∩ Bc

(A ∩ B)c = Ac ∪ Bc

Definition 1.1 (Algebra on Ω). A collection F of events in Ω is
called an algebra (or field) on Ω iff:

a) Ω ∈ F

b) Closed under complementarity: If A ⊆ F then Ac ⊆ F

c) Closed under finite union: If A, B ⊆ F then A ∪ B ⊆ F

Remark 1.2. The first two properties imply that ∅ ∈ F . The
third is equivalent by de Morgan laws (1.3) with A ∩ B ⊆ F

Definition 1.3 (σ-Algebra on Ω). If F is an algebra on Ω and in
addition it is closed under countable unions then it is a σ-algebra (or
σ-field) on Ω

Note: Closed under countable unions means that the property c)
in Definition 1.1 is replaced with: If n ∈ N is a natural number and
An ⊆ F for all n then ⋃

n∈N

An ⊆ F .

From b) and c) it of course follows that the σ-algebra is also closed
under countable intersection. (via De Morgan’s laws)

The σ-algebra provides an appropriate domain of definition for the
probability function. However, it is such an abstract thing that it will
be hard to work with it. This is the reason for the next definition, it
will be much easier to work with the generators of a σ-algebra. This
will be a recurring theme in probability, in order to show a property for
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a big class we show the property for a small generating set of the class
and then use standard arguments to extend to the whole class.

Definition 1.4 (σ algebra generated by a class of Ω). Let C be a
collection (class) of subsets of Ω. Then σ(C ) is the smallest σ-algebra
on Ω that contains C . The class C is called the generator of the σ-
algebra.

Mathematically:

(a) C ⊆ σ(C )
(b) σ(C ) is a σ-field
(c) If C ⊆ G and G is a σ-field then σ(C ) ⊆ G

Remark 1.5 (Properties of σ-algebras:). • P(Ω) is a σ-algebra,
the largest possible σ-algebra on Ω

• If F is already a σ-algebra then σ(F ) = F

• If F = {∅} or F = {Ω} then σ(F ) = {∅, Ω}, the smallest
possible σ-algebra on Ω

• If F ⊆ F ′ then σ(F ) ⊆ σ(F ′)
• If F ⊆ F ′ ⊆ σ(F ) then σ(F ′) = σ(F )

Remark 1.6 (Finite space Ω). When the sample space is finite, we
can and typically will take the sigma algebra to be P(Ω). Indeed, any
event of a finite space can be trivially expressed in terms of individual
outcomes. In fact, if the finite space Ω contains M possible outcomes,
then the number of possible events is finite and is equal with 2M .

1.2. An Example: Borel σ-algebra.

Let Ω be a topological space (think geometry exists in this space
this assures us that the open subsets exist in this space).

Definition 1.7. We define:

B(Ω) = The Borel σ-algebra(1.4)

= σ-algebra generated by the class of open subsets of Ω

In the special case when Ω = R we denote B = B(R). B is the most
important σ-algebra. The reason for that is: most experiments can be
brought to equivalence with R. Thus, if we define a probability measure
on B, we have a way to calculate probabilities for most experiments.

Most subsets of R are in B. However, it is possible (though very
difficult) to construct a subset of R explicitly which is not in B. See
[Bil95] page 45 for such a construction in the case Ω = (0, 1].

There is nothing special about the open sets, except for the fact
that they can be defined in any topological space. In R we have the
alternate definition which you will have to prove:
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Exercise 2. Show that the following classes all generate the Borel
σ-algebra, or put differently show the equality of the following collec-
tions of sets:

σ ((a, b) : a < b ∈ R) = σ ([a, b] : a < b ∈ R) = σ ((−∞, b) : b ∈ R)

= σ ((−∞, b) : b ∈ Q) ,

where Q is the set of rational numbers.

1.3. Probability Measure

We are finally in the position to define a space on which we can
introduce the probability measure.

Definition 1.8 (Measurable Space.). A pair (Ω, F ), where Ω is a
set and F is a σ-algebra on Ω is called a Measurable Space.

Definition 1.9 (Probability measure. Probability space). Given
a measurable space (Ω, F ), a probability measure is any function P :
F → [0, 1] with the following properties:

i) P(Ω) = 1
ii) (countable additivity) For any sequence {An}n∈N of disjoint
events in F (i.e. Ai ∩ Aj = ∅, for all i 6= j):

P
(

∞⋃

n=1

An

)

=
∞∑

n=1

P(An)

The triple (Ω, F ,P) is called a Probability Space.

The next two definitions are given for completeness, however we
will use them later in this class. They are both defining more general
notions than a probability measure and they will be used later in hy-
potheses of some theorems to show that the results apply to even more
general measures than probability measures.

Definition 1.10 (Finite Measure). Given a measurable space (Ω, F ),
a finite measure is a set function µ : F → [0, 1] with the same countable
additivity property as defined above and the measure of the space finite
instead of one. More specifically the first property above is replaced
with:

µ(Ω) < ∞
Definition 1.11 (σ-finite Measure). A measure µ defined on a

measurable space (Ω, F ) is called σ-finite if it is countably additive
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and there exist a partition2 of the space Ω, {Ωi}i∈I , and µ(Ωi) < ∞ for
all i ∈ I. Note that the index set I is allowed to be countable.

Example 1.12 (Uniform Distribution on (0,1)). As an example let
Ω = (0, 1) and F = B((0, 1)). Define a probability measure U as
follows: for any open interval (a, b) ⊆ (0, 1) let U((a, b)) = b − a the
length of the interval. For any other open interval O define U(O) =
U(O ∩ (0, 1)).

Note that we did not specify U(A) for all Borel sets A, rather only
for the generators of the Borel σ-field. This illustrates the probabilistic
concept presented above. In our specific situation, under very mild
conditions on the generators of the σ-algebra any probability measure
defined only on the generators can be uniquely extended to a probabil-
ity measure on the whole σ-algebra (Carathèodory extension theorem).
In particular when the generators are open sets these conditions are
true and we can restrict the definition to the open sets only.

Proposition 1.13 (Elementary properties of Probability Measure).
Let (Ω, F ,P) be a Probability Space. Then:

(1) ∀A, B ∈ F with A ⊆ B then P(A) ≤ P(B)
(2) P(A ∪ B) = P(A) + P(B) −P(A ∩ B), ∀A, B ∈ F

(3) (General Inclusion-Exclusion formula, also named Poincaré
formula):

P(A1 ∪ A2 ∪ · · · ∪ An) =
n∑

i=1

P(Ai) −
∑

i<j≤n

P(Ai ∩ Aj)(1.5)

+
∑

i<j<k≤n

P(Ai ∩ Aj ∩ Ak) − · · ·+ (−1)nP(A1 ∩ A2 · · · ∩ An)

Successive partial sums are alternating between over-and-under
estimating.

(4) (Finite subadditivity, sometimes called Boole’s inequality):

P

(
n⋃

i=1

Ai

)

≤
n∑

i=1

P(Ai), ∀A1, A2, . . . , An ∈ F

1.3.1. Conditional Probability. Independence. Borel-Cantelli
lemmas. Let (Ω, F ,P) be a Probability Space. Then for A, B ∈ F ,
with P(B) 6= 0 we define the conditional probability of A given B as

2a partition of the set A is a collection of sets Ai, disjoint (Ai∩Aj = ∅, if i 6= j)
such that ∪iAi = A
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usual by:

P(A|B) =
P(A ∩ B)

P(B)
.

We of course also have the chain rule formulas:

P(A ∩ B) = P(A|B)P(B),

P(A ∩ B ∩ C) = P(A|B ∩ C)P(B|C)P(C), etc.

Total probability formula: Given A1, A2, . . . , An a partition of Ω
(i.e. the sets Ai are disjoint and Ω =

⋃n
i=1 Ai), then:

(1.6) P(B) =

n∑

i=1

P(B|Ai)P(Ai), ∀B ∈ F

Bayes Formula: If A1, A2, . . . , An form a partition of Ω:

(1.7) P(Aj |B) =
P(B|Aj)P(Aj)

∑n
i=1 P(B|Ai)P(Ai)

, ∀B ∈ F .

Definition 1.14 (Independence). The events A1, A2, A3, . . . are
called mutually independent (or sometimes simply independent) if for
every subset J of {1, 2, 3, . . .} we have:

P

(
⋃

j∈J

Aj

)

=
∏

j∈J

P(Aj)

The events A1, A2, A3, . . . are called pairwise independent (some-
times jointly independent) if:

P (Ai ∪ Aj) = P(Ai)P(Aj), ∀i, j.

Note that jointly independent does not imply independence.
Two sigma fields G , H ∈ F are P–independent if:

P(G ∩ H) = P(G)P(H), ∀G ∈ G , ∀H ∈ H .

See [Bil95] for the definition of independence of k ≥ 2 sigma-algebras.

1.3.2. Monotone Convergence properties of probability. Let
(Ω, F ,P) be a Probability Space.

Lemma 1.15. The following are true:

(i) If An, A ∈ F and An ↑ A (i.e., A1 ⊆ A2 ⊆ . . . An ⊆ . . . and
A =

⋃

n≥1 An), then: P(An) ↑ P(A) as a sequence of numbers.
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(ii) If An, A ∈ F and An ↓ A (i.e., A1 ⊇ A2 ⊇ . . . An ⊇ . . .
and A =

⋂

n≥1 An), then: P(An) ↓ P(A) as a sequence of
numbers.

(iii) (Countable subadditivity) If A1, A2, . . . , and
⋃∞

i=1 An ∈ F ,
with Ai’s not necessarily disjoint then:

P

(
∞⋃

n=1

An

)

≤
∞∑

n=1

P(An)

Proof. (i) Let B1 = A1, B2 = A2 \ A1, . . . , Bn = An \ An−1. Be-
cause the sequence is increasing we have that the Bi’s are disjoint thus
from Proposition 1.13 we obtain:

P(An) = P(B1 ∪ B2 ∪ · · · ∪ Bn) =

n∑

i=1

P(Bi).

Thus using countable additivity:

P

(
⋃

n≥1

An

)

= P

(
⋃

n≥1

Bn

)

=

∞∑

i=1

P(Bi) = lim
n→∞

n∑

i=1

P(Bi) = lim
n→∞

P(An)

(ii) Note that An ↓ A ⇔ An
c ↑ Ac which from part (i) implies that

1 −P(An) ↑ 1 −P(A).
(iii) Let B1 = A1, B2 = A1 ∪A2, . . . , Bn = A1 ∪ · · · ∪An, . . . . From

the finite subadditivity we have that P(Bn) = P(A1 ∪ · · · ∪ An) ≤
P(A1) + · · ·+ P(An).

{Bn}n≥1 is an increasing sequence of events, thus from (i) we get
that P(

⋃∞
n=1 Bn) = limn→∞ P(Bn). Combining the two relations above

we obtain:

P(

∞⋃

n=1

An) = P(

∞⋃

n=1

Bn) ≤ lim
n→∞

(P(A1) + · · ·+ P(An)) =

∞∑

n=1

P(An)

�

Lemma 1.16. The union of a countable number of P-null sets is a
P-null set

Exercise 3. Prove the above Lemma 1.16

Next we state one of the most fundamental (and useful) results in
probability theory the Borel-Cantelli lemmas:

Lemma 1.17. [The Borel-Cantelli lemmas] Let (Ω, F ,P) be a Prob-
ability Space. Let A1, A2, . . . , An, . . . a sequence of events.
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First Lemma: If
∑

i≥1 P(Ai) < ∞ then:

P

(
∞⋂

n=1

⋃

i≥n

Ai

)

= P (Ai’s are true infinitely often) = 0

Second Lemma: If
∑

i≥1 P(Ai) = ∞, and in addition the events
A1, A2, . . . , An, . . . are independent then:

P

(
∞⋂

n=1

⋃

i≥n

Ai

)

= P (Ai’s are true infinitely often) = 1

Let us clarify the notion of “infinitely often” and “eventually” a
bit more. We say that an outcome ω happens infinitely often for the
sequence A1, A2, . . . , An, . . . if ω is in the set

⋂∞
n=1

⋃

i≥n Ai. This means
that for any n (no matter how big) there exist an m ≥ n and ω ∈ Am.

We say that an outcome ω happens eventually for the sequence
A1, A2, . . . , An, . . . if ω is in the set

⋃∞
n=1

⋂

i≥n Ai. This means that
there exist an n such that for any m ≥ n, ω ∈ Am, so for an n on ω is
in all such sets.

Why so complicate definitions? The basic intuition is obvious: say
you roll a die infinitely many times, then it is obvious what it means
for the outcome 1 to appear infinitely often. Also say the average of
the rolls will eventually be arbitrarily close to 3.5. It is not so clear
cut in general. The framework above provides a generalization to these
notions.

Exercise 4. Show using the Cantelli lemma that when you roll
a die the outcome {1} will appear infinitely often. Also show that
eventually the average of all rolls up to roll n will be within ε of 3.5
where ε > 0 is any arbitrary real number.

1.4. Measurable Functions. Random Variables

All of these definitions with sets are consistent, however if we wish
to calculate and compute numerical values related to abstract spaces
we need to standardize the spaces. The first step is to give the following
definitions:

Definition 1.18 (Measurable function (m.f.)). Let (Ω, F ) and
(S, Σ) be two measurable spaces. A function f is called measurable
(function or m.f.) if and only if (notation iff) for every set A ∈ Σ we
have f−1(A) ∈ F .
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1.4.1. Reduction to R. Random variables.

Definition 1.19 (Random variable (r.v.)). Any measurable func-
tion with codomain (R, B(R)) is called a random variable.

Traditionally, the random variables are denoted with capital letters
from the end of the alphabet X, Y, Z, . . . and their values are denoted
with corresponding small letters x, y, z, . . . .

Definition 1.20 (The distribution of a random variable). Assume
that on the measurable space (Ω, F ) we define a probability measure
so that it becomes a probability space (Ω, F ,P). If a random variable
X : Ω → R is defined then we call its distribution, the set function µ
defined on the Borel sets of R: B(R), with values in [0, 1]:

µ(B) = P ({ω : X(ω) ∈ B}) = P
(
X−1(B)

)
= P ◦ X−1(B)

Remark 1.21. First note that the measure µ is defined on sets in R

and takes values in the interval [0, 1]. Therefore, the random variable
X allowed us to apparently eliminate the abstract space Ω. However,
this is not the case since we still have to calculate probabilities using
P in the definition of µ above.

There is one more simplification we can make. If we use the result
of the exercise 2, we see that all borel sets are generated by the same
type of sets. Using the same idea as before it is enough to describe how
to calculate µ for the generators. We could of course specify any type
of generating sets we wish (open sets, closed sets, etc) but it turns out
the simplest way is to use sets of the form (−∞, x], since we only need
to specify one end of the interval (the other is always −∞).

Definition 1.22. [The distribution function of a random variable]
The distribution function of a random variable X is F : R → [0, 1]
with:

F (x) = µ(−∞, x] = P ({ω : X(ω) ∈ (−∞, x]}) = P ({ω : X(ω) ≤ x})

But wait a minute, this is exactly the definition of the cumulative
distribution function (cdf) you see in any lower level probability classes.
It is exactly the same thing except that in an effort to dumb down (in
whomever opinion it was to teach the class that way) the meaning is
lost and we cannot proceed with more complicated things. From the
definition above we can deduce all the elementary properties of the
cdf that you have learned (right-continuity, increasing, taking values
between 0 and 1). In fact let me ask you to prove this.
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Exercise 5. Show that the function F in Definition 1.22 is in-
creasing, right continuous and taking values in the interval [0, 1], using
proposition 1.13.

Definition 1.23 (PDF, PMF). In general the distribution func-
tion F is not necessarily derivable. If it is, we call its derivative f(x)
the probability density function (pdf) and notice that we have in this
situation:

F (x) =

∫ x

−∞

f(z)dz

Traditionally, a variable X with this property is called a continuous
random variable.

Furthermore if F is piecewise constant (i.e., constant almost every-
where, or in other words there exist a countable sequence {a1, a2, . . . }
such that the function F is constant for every point except these ai’s)
and we denote pi = F (ai)−F (ai−), then the collection of pi’s is the tra-
ditional probability mass function (pmf) that characterizes a discrete
random variable. (F (x−) is a notation for the left limit of function F
at x or in a more traditional notation limz→x,z<x F (z)).

Also notice that traditional undergraduate textbooks segregate be-
tween discrete and continuous random variables. In fact there are many
more and the definitions we used here cover all of them, likewise the
treatment of random variables should be the same, which is now pos-
sible.

Important. So what is the point of all this? What did we just ac-
complish here? The answer is moving from the abstract space (Ω, F , P )
to something perfectly equivalent but defined on (R, B(R)). Because
of this fact we only need to define probability measures on R and show
that things coming from our original abstract space are equivalent with
these distributions on R. We just constructed the first model for our
problem.

Next we will define the simplest and one of the most important
random variables.

Definition 1.24 (Indicator Function). We define the indicator
function of an event A as the function 1A : Ω → {0, 1},

1A(ω) =

{

1 , if ω ∈ A

0 , if ω /∈ A

Remember this definition, it is one of the most important ones in
probability. We can build on it in the following way:
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Furthermore, this variable is also called the Bernoulli random vari-
able. Notice that the variable only takes values 0 and 1 and the prob-
ability that the variable is 1 we can calculate easily using the previous
definitions as being:

P ◦ 1−1
A ({1}) = P{ω : 1A(ω) = 1} = P(A).

Therefore the variable is distributed as a Bernoulli random variable
with parameter p = P(A).

Definition 1.25 (Elementary (Simple) Function). An elementary
function g is any linear combination of the indicator functions just
introduced. More specifically, there exist sets A1, A2, . . . all in F and
constants a1, a2, . . . in R such that:

g(ω) =
∞∑

i=1

ai1Ai
(ω).

Note that the sets Ai do not have to be disjoint but an easy exercise
shows that g could be written in terms of disjoint sets.

Exercise 6. Show that any simple function g can be written as
∑

i bi1Bi
with Bi disjoint sets (i.e. Bi ∩ Bj = ∅, if i 6= j).

1.4.2. Null element of F . Almost sure (a.s.) statements.
An event N ∈ F is called a null event if P (N) = 0.

Definition 1.26. A statement S about points ω ∈ Ω is said to be
true almost surely (a.s.), almost everywhere (a.e.) or with probability
1 (w.p.1) if the set N defined as:

N := {ω ∈ Ω| S(ω) is true} ,

is in F and P(N) = 1, (or N c is a null set).

We will use the notions a.s., a.e., and w.p.1. interchangeably to
denote the same thing – the definition above. For example we will
say X ≥ 0 a.s. and mean: P{ω|X(ω) ≥ 0} = 1 or equivalently
P{ω|X(ω) < 0} = 0. The notion of almost sure is a fundamental
one in probability. Unlike in deterministic cases where something has
to always be true no matter what, in probability we care about “the
majority of the truth”. In other words probability recognizes that
some events may have extreme outcomes, but if they are extremely
improbable then we do not care about them. Fundamentally, it is
mathematics applied to reality.
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1.4.3. Joint distribution, Random vectors. We talked about
σ-algebras in the beginning and they kind of faded away after that.
We will come back to them. It turns out, if there is any hope of
rigorous introduction into probability and stochastic processes, they
are unavoidable. Later, when we will talk about stochastic processes
we will find out the crucial role they play in quantifying the information
available up to a certain time. For now let us play a bit with them.

Definition 1.27 (σ-algebra generated by a random variable). For a
r.v. X we call the σ-algebra generated by X, denoted σ(X) or sometime
FX , the smallest σ-field G such that X is measurable on (Ω, G ). It
is the σ-algebra generated by the pre-images of Borel sets through X.
Because of this we can easily show (remember that the Borel sets are
generated by intervals of the type (−∞, α]):

σ(X) = σ({ω|X(ω) ≤ α}, as α varies in R).

Similarly, given X1, X2, . . . , Xn random variables, we call the sigma
algebra generated by them the smallest sigma algebra such that all are
measurable with respect to it. It turns out we can show easily that
it is the sigma algebra generated by the union of the individual sigma
algebras or put more specifically σ(Xi, i ≤ n) is the smallest sigma
algebra containing all σ(Xi), for i = 1, 2, . . . , n.

In the previous subsection we defined a random variable as a mea-
surable function with codomain (R, B(R)). A more specific case is
when the random variable has also the domain equal to (R, B(R)). In
this case we talk about Borel functions.

Definition 1.28 (Borel measurable function). A function g : R →
R is called Borel (measurable) function if g is a measurable function
from (R, B(R)) into (R, B(R)).

Exercise 7. Show that any continuous function g : R → R is Borel
measurable.

Hint: Look to what happens to the preimage of sets through a
continuous function.

Exercise 8. Show that any piecewise constant function is Borel
measurable. (see description of piecewise constant functions in Defini-
tion 1.22

In Section 1.2 we defined Borel sigma algebras corresponding to any
space Ω. We presented the special case when Ω = R. It really is no
big deal to consider Ω = Rn, for some integer n, and the Borel sigma
algebra generated by it. This allows us to define a random vector on
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(Rn, B(Rn),P) as (X1, X2, . . . , Xn) where each Xi is a random variable.
The probability P is defined on B(Rn).

We can talk about its distribution (the ”joint distribution” of the
variables (X1, X2, . . . , Xn)) as the function:

F (x1, x2, . . . , xn) = P ◦ (X1, X2, . . . , Xn)
−1 ((−∞, x1] × · · · × (−∞, xn])

= P(X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn)

We can introduce the notions of independence and joint indepen-
dence using the definition in subsection 1.3.1, the probability measure
= P◦ (X1, X2, . . . , Xn)−1 and any Borel sets. Writing more specifically
it is transformed to:

Definition 1.29. The variables (X1, X2, . . . , Xn, . . . ) are indepen-
dent if for every subset J = {j1, j2, . . . , jk} of {1, 2, 3, . . .} we have:

P (Xj1 ≤ xj1 , Xj2 ≤ xj2 , . . . , Xjk
≤ xjk

) =
∏

j∈J

P(Xj ≤ xj)

1.5. Expectations of random variables.

We note that the distribution function F (x) exists for any random
variable. We can construct the integral with respect to F using the
integration theory (details are omitted in this class) starting from in-
dicators for which we have:

E [1A] =

∫

Ω

1A(ω)dP (ω) = P(A)

In general we can construct the expectation of an integrable (E|X| <
∞) random variable X as:

E [X] =

∫

Ω

X(ω)dP (ω) =

∫ ∞

−∞

xdP ◦ X−1(x) =

∫ ∞

−∞

xdF (x),

where we have used the transport formula (change of variable)
which you can find in any graduate probability textbook. Further-
more, for any function h : R → R we of course can further define:

E [h(X)] =

∫

Ω

h(X(ω))dP (ω) =

∫ ∞

−∞

h(x)dF (x).

In the case when F is derivable with derivative f(x) we can of
course write: dF (x) = f(x)dx, therefore the formula reduces to the
more familiar one from elementary probability classes. If F is piecewise
constant then its derivative is zero a.e. and the integral reduces to a
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sum bringing back the formula for the expectation of a discrete random
variable.

Exercise 9. Write the probability space (Ω, F ,P) for a random
experiment which records the result of n independent rolls of a balanced
six-sided die (including the order). Compute the expectation of the
random variable D(ω) which counts the number of different sides of
the die recorded during these n rolls.

The variance of a random variable X is the expectation of the
function h(x) = (x − µ)2 where µ is a notation for EX. The covari-
ance of random variables X and Y is the expectation of the function
h(x, y) = (x − µX)(y − µY ) where again µ is a notation for the expec-
tations of the respective random variables. The correlation is the ratio
of covariance to the product of the square root of variations. More
specifically:

V(X) = E[(x − µ)2] = EX2 − (EX)2

Cov(X, Y ) = E [(X − µX)(Y − µY )] = EXY − EXEY

Corr(X, Y ) =
Cov(X, Y )
√

V(X)V(Y )

The variable X and Y are called uncorrelated if the covariance
(or equivalently the correlation) between them is zero. Note that
this is not the same as the variables X and Y being independent.
Independence implies that the variables are uncorrelated, however the
converse is not true.

Exercise 10. Give an example of two variables X and Y which
are uncorrelated but not independent.

Proposition 1.30 (Elementary properties of the expectation). The
expectation has the following properties:

(i) E [1A] = P(A) for any A ∈ F

(ii) If g(ω) =
∑n

i=1 ai1Ai
(ω) is an elementary function then

E [g] =
∑n

i=1 aiP(Ai).
(iii) If X and Y are integrable r.v.’s then for any constants α
and β the r.v. αX + βY is integrable and E[αX + βY ] =
αEX + βEY .

(iv) If X(ω) = c with probability 1 then EX = c.
(v) If X ≥ Y a.s. then EX ≥ EY . Furthermore, if X ≥ Y a.s.
and EX = EY then X = Y a.s.
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We use the notation L1(Ω) or sometimes just L1 to denote the space
of integrable random variables. In general:

Lp(Ω) = {X random variable s.t. E |X|p < ∞} , ∀p ≥ 1

We can make Lp = Lp(Ω) = Lp(Ω, F ,P) a normed (metric) space
by introducing the p-norm of an element (random variable) in Lp as:

‖X‖p = p
√

E [Xp]

1.6. Conditional Probability. Conditional Expectation.

Please read pages 5 to 9 for the definitions of conditional probabil-
ity and expectation conditioned by the sigma algebra generated by a
random variable.

Why do we need conditional expectation?
Conditional expectation is a fundamental concept in the theory of

stochastic processes. The simple idea is the following: suppose we have
no information about a certain variable then our best guess of it most
of the time would be some sort of regular expectation. However, in real
life it often happens that we have some partial information about the
random variable (or in time we come to know more about it). Then
what we should do is every time there is new information the sample
space Ω or the σ-algebra F is changing so they need to be recalculated.
That will in turn change the probability P which will change the expec-
tation of the variable. The conditional expectation provides a way to
recalculate the expectation of the random variable given any new “con-
sistent” information without going through the trouble of recalculating
(Ω, F ,P) every time.

It is also easy to reason that since we calculate with respect to
more precise information it will be depending on this more precise
information, thus it is going to be a random variable itself, “adapted”
to this information.

Going back, to summarize the book notation, if X and Y are two
random variables the authors define in the pages mentioned the expec-
tation of X conditioned by the sigma-algebra generated by Y , σ(Y )
and they use the notation:

E[X|Y ] = E[X|σ(Y )].

Note that the conditional expectation, unlike the regular expecta-
tion is a random variable measurable with respect to the sigma algebra
under which is conditioned, (in the above case with respect to σ(Y )). In
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general I will give you the following more general definition / theorem.
We will skip the proof.

Theorem 1.31. Let (Ω, F ,P) be a probability space, and let K ⊆
F a sub-σ-algebra. Let X be a random variable on (Ω, F ,P) such that
either X is positive or X ∈ L1(Ω). Then there exist a random variable
Y , measurable with respect to K with the property:

∫

A

Y dP =

∫

A

XdP , ∀A ∈ K

This Y is defined to be the conditional expectation of X with respect
to K or using the notation E[X|K ].

Note that by construction Y is a K -measurable random variable.

Proposition 1.32 (Properties of the Conditional Expectation).
Let (Ω, F ,P) a probability space, and let K , K1, K2 sub-σ-algebras.
Let X and Y be random variables of the probability space. Then we
have:

(1) If K = {∅, Ω} then E[X|K ] = EX = const.
(2) E[αX + βY |K ] = αE[X|K ] + βE[Y |K ] for α, β real con-
stants.

(3) If X ≤ Y a.s. then E[X|K ] ≤ E[Y |K ]
(4) E [E[X|K ]] = EX
(5) If K1 ⊆ K2 then

E [E[X|K1]|K2] = E [E[X|K2]|K1] = E[X|K1]

(6) If X is independent of K then

E[X|K ] = E[X]

(7) If Y is measurable with respect to K then

E[XY |K ] = Y E[X|K ]

Exercise 11. Using the Theorem-Definition 1.31 prove the seven
properties of the conditional expectation in Proposition 1.32.

1.7. Generating Functions. Moment generating functions
(Laplace Transform). Characteristic Function (Fourier

transform)

Please read at a minimum the information in your textbook (pages
10-14) and supplement it with information from any probability text-
book (including those referenced in the syllabus).
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1.8. Identities. Inequalities. General Theorems

Proposition 1.33 (Jensen’s Inequality). Suppose f(·) is a convex
function, that means:

f(αx + (1 − α)y) ≤ αf(x) + (1 − α)f(y) , ∀x, y ∈ R, ∀α ∈ [0, 1].

Then for any integrable variable X such that f(X) ∈ L1 we have:

f (EX) ≤ E [f(X)]

Proof. skipped. The classical approach indicators → simple func-
tions → positive measurable → measurable is a standard way to prove
Jensen. �

Proposition 1.34 (Markov Inequality). Suppose that g(·) is a non-
decreasing, positive measurable function. Then for any random variable
X and any ε > 0 we have:

P (|X(ω)| > ε) ≤ E [g (|X|)]
g(ε)

.

Proof. Let A = {ω : |X(ω)| > ε}. We want to get to probability
of A. We have using the fact that g is nonnegative:

E [g (|X|)] = E [g (|X|)1A] + E [g (|X|)1Ac ] ≥ E [g (|X|)1A] .

On the set A the argument of g is greater than ε. Using this fact
and that g is nondecreasing we have on A, g (|X|) > g(ε). Thus we
can continue:

E [g (|X|)1A] ≥ E [g (ε)1A] = g(ε)P(A).

Dividing with g(ε) yields the desired result. �

Example 1.35 (Special cases of Markov Inequality). These are the
most common cases of the use of Markov’s inequality.

(i) Take X > 0 a.s. and g(x) = x. Then we get:

P (|X(ω)| > ε) ≤ EX

ε

(ii) Take g(x) = x2 and X = Y − EY , we then obtain:

P (|Y − EY | > ε) ≤ E|Y − EY |2
ε2

=
Var(Y )

ε2
.

A even more particular case of this is the Chebyshev’s Inequal-
ity (taking ε = k

√

Var(Y ) = kσ).



18 1. PROBABILITY REVIEW.

(iii) Take g(x) = eθx for some θ > 0. We get then

P (X(ω) > ε) ≤ e−θεE
[
eθX
]
.

This inequality states that the tail of the distribution de-
cays exponentially in ε if X has finite exponential moments.
With simple manipulations one can obtain Chernoff’s inequal-
ity using it.

Lemma 1.36 (Cauchy-Bunyakovski-Schwarz inequality). If X, Y ∈
L2(Ω), then XY ∈ L1(Ω) and:

|E[XY ]| ≤ E|XY | ≤ ‖X‖2‖Y ‖2

More general we have:

Lemma 1.37 (Hölder inequality). If 1/p+1/q = 1, X ∈ Lp(Ω) and
Y ∈ Lq(Ω) then XY ∈ L1(Ω) and:

E|XY | ≤ ‖X‖p‖Y ‖q = (E|X|p) 1

p (E|Y |q) 1

q

1.9. Convergence of random variables.

Asymptotic behavior is a key issue in probability theory and in
the study of the stochastic processes. Why do we even need to look
at the asymptotic behavior? Most of the times we cannot work with
the perfect variants of the variable under study. Most of the time we
will construct an approximation of the random variables (the so called
model) thus it is absolutely crucial to study the conditions under which
the approximation converges to the real thing. In this section we will
explore the varied notions of convergence characteristic to probability
theory.

1.9.1. Almost sure (a.s.) convergence. Convergence in
probability. The basic notion of convergence from analysis can be
translated here as a everywhere convergence. That is a sequence Xn

which converges to X everywhere on the Ω or Xn(ω) → X(ω) for all
ω ∈ Ω. For example take Xn(ω) = (1− 1/n)X(ω). This sequence con-
verges to X for every omega. In general this notion is not very useful.
Note that in order to have everywhere convergence we need everywhere
convergence. It is entirely possible that the sequence Xn will converge
for almost all ω ∈ Ω but not for some small subset N . The point is that
if this subset N has a very small probability of happening we really do
not care about it. The question is how small is the probability of N
and that is what differentiate the a.s. convergence from convergence in
probability.
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Definition 1.38 (a.s. convergence). We say that Xn converges

to X almost surely denoted Xn
a.s.−−→ X, if there exist N ∈ F with

P(N) = 0 such that Xn(ω) → X(ω) as n → ∞ for all ω ∈ N c, (where
N c is a notation for the complement of the set N).

Thus here the set of omega’s for which we do not have convergence
have to have probability zero. Similarly with the pointwise (every-
where) convergence, the a.s. convergence is invariant with respect to
continuous functionals.

Exercise 12. Show that if f : R → R is a continuous function and
Xn

a.s.−−→ X, then f(Xn)
a.s.−−→ f(X) as well.

A technical point here is that starting with a sequence of random
variables Xn, the limiting variable may not be a random variable itself
(B(R)-measurable). To avoid this technical problem if one assumes
that the probability space is complete (as defined next) one will always
obtain random variables as the limit of random sequences (if the limit
exist of course). Throughout this course we will always assume that
the probability space we work with is complete.

Definition 1.39 (Complete probability space). We say that the
probability space (Ω, F ,P) is complete if any subset of a probability
zero set in F is also in F . Mathematically: if N ∈ F with P(N) = 0,
then ∀M ⊂ N we have M ∈ F .

We can easily “complete” any probability space (Ω, F ,P) by adding
to its sigma-algebra all the sets of probability zero.

So that was one type of convergence (a.s.). We can make it less
restrictive by looking at the measure of N and requiring that this mea-
sure instead of being zero all the time to somehow converge to zero.
This is the next definition (convergence in probability).

Definition 1.40 (Convergence in probability). We say that Xn

converges in probability to X denoted Xn
p−→ X, if the sets Nε(n) =

{ω : |Xn(ω) − X(ω)| > ε} have the property P (Nε(n)) → 0 as n → ∞,
for any fixed ε > 0.

Theorem 1.41 (Relation between a.s. convergence and conver-
gence in probability). We have the following relations:

(1) If Xn
a.s.−−→ X then Xn

p−→ X

(2) If Xn
p−→ X then there exist a subsequence nk such that

Xnk

a.s.−−→ X as k → ∞
Proof. (a) Let N c = {ω : lim |Xn(ω) − X(ω)| = 0}. We know

form the definition of a.s. convergence that P (N) = 0.



20 1. PROBABILITY REVIEW.

Fix an ε > 0 and consider Nε(n) = {ω : |Xn(ω) − X(ω)| ≥ ε}. Let
now:

(1.8) Mk =

(
⋃

n≥k

Nε(n)

)c

=
⋂

n≥k

Nε(n)c

- Mk’s are increasing sets (Mk = Nε(k)c∩Mk+1 which implies Mk ⊆
Mk+1).

- If ω ∈ Mk this means that for all n ≥ k, ω ∈ Nε(n)c, or
|Xn(ω) − X(ω)| < ε. By definition this means that the sequence is
convergent at ω, therefore Mk ⊆ N c, ∀k, thus ∪Mk ⊆ N c.

I leave it as an easy exercise to take an ω ∈ N c and to show that
it must exist an k0 such that ω ∈ Mk0

, therefore we will easily obtain
N c ⊆ ∪Mk. This will imply that ∪Mk = N c and so P(∪Mk) = 1, by
hypothesis.

Since the sets Mk are increasing this implies that p(Mk) → 1 when
k → ∞. Looking at the definition of Mk in (1.8) this clearly implies
that

P

(
⋃

n≥k

Nε(n)

)

→ 0 , as k → ∞,

therefore P (Nε(k)) → 0, as k → ∞, which is the definition of the
convergence in probability.

(b) For this part we will use the Borel-Cantelli lemmas (Lemma
1.17 on page 7). We will take ε in the definition of convergence in
probability of the form εk > 0 and make it to go to zero when k → ∞.
By the definition of convergence in probability for every such εk we can
find an nk, such that P{ω : |Xn(ω) − X(ω)| > εk} < 2−k, for every
n ≥ nk. An easy process now will construct mk = min(mk−1, nk) so
that the subsequence is now increasing, while still having the above,
desired property. Call:

Nk = {ω : |Xmk
(ω) − X(ω)| > εk}.

Then from above P(Nk) < 2−k which implies that
∑

k P(Nk) <
∑

k 2−k <
∞. Then by the first Borel-Cantelli lemma, the probability that Nk

occurs infinitely often is zero. This means that with probability one N c
k

eventually. Or, the set of ω for which ∃k0 and |Xmk
(ω) − X(ω)| < εk}

for all k ≥ k0 has probability 1. Or the set N := {ω : Xmk
(ω) → X(ω)}

has probability P(N) = 1. But this is exactly what we needed to
prove. �

In general convergence in probability does not imply a.s. conver-
gence.
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Exercise 13 (Counterexample.
p−→ implies

a.s.−−→ ). You can con-
struct your own counterexample. For instance take Ω = (0, 1) with
the Borel sets on it and the Lebesque measure (which is a probability
measure for this Ω). Take now for every n ∈ N and 1 ≤ m ≤ 2n:

Xn,m(ω) = 1[m−1

2n , m
2n ](ω).

Form a single subscript sequence by taking: Y1 = X0,1, Y2 =
X1,1, Y3 = X1,2, Y4 = X2,1, Y5 = X2,2, Y6 = X2,3, Y7 = X2,4, etc. Draw
these variables on a piece of paper for a better understanding of what
is going on.

Prove that this sequence {Yk} has the property that Yk
p−→ 0 but

Yk 9 Y a.s. In fact it does not converge for any ω ∈ Ω.

1.9.2. Lp convergence. Recall that we defined earlier the Lp spaces
and the norm in Lp, for p ≥ 1.

‖X‖p = p
√

E [Xp]

Definition 1.42. We say that the sequence Xn converges in Lp (or

in the p-mean, denoted Xn
Lp(Ω)−−−→ X if Xn, X ∈ Lp and ‖Xn−X‖p → 0

as n → ∞ (or E(|Xn − X|p) → 0 with n).

The particular case when p = 2 is detailed in your textbook and is
called convergence in quadratic mean.

These Lp spaces form a complete normed vector space. This is
interesting from the real analysis perspective. For our purposes the
following is important:

Proposition 1.43. Let X a random variable. Then the sequence
of norms ‖X‖p is non-decreasing (increasing) in p. This means that if
a variable is in Lq for some q fixed then it also is in any Lr with r ≤ q.
Therefore we have (as spaces): L1(Ω) ⊇ L2(Ω) ⊇ L3(Ω) . . . .

Proof. Let p1 > p2. Then the function f(x) = |x|p1/p2 is convex
(check this) and we can apply Jensen’s inequality to the non-negative
r.v. Y = |X|p2. The application immediately yields the desired result.

�

Corollary 1.44. If Xn
Lp(Ω)−−−→ X and p ≥ q then Xn

Lq(Ω)−−−→ X

Proof. Exercise. �

Exercise 14. Show that if Xn
Lp(Ω)−−−→ X then E|Xn|p → E|X|p.

HINT: The ‖ · ‖p is a proper norm (recall the properties of a norm).
Next we will look into relations between the forms of convergence

defined thus far.
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Proposition 1.45. If Xn
Lp(Ω)−−−→ X then Xn

p−→ X.

Proof. This is an easy application of the Markov Inequality (Propo-
sition 1.34). Take g(x) = |x|p, and the random variable Xn − X. We
obtain:

P (|Xn − X|p > ε) ≤ ε−pE|Xn − X|p.
Therefore, if Xn

Lp(Ω)−−−→ X then we necessarily have Xn
p−→ X as well. �

Exercise 15. The converse of the previous result is not true in
general. Consider the probability ensemble of Exercise 13.

Let Xn(ω) = n1[0, 1

n
](ω)

Show that Xn
p−→ X but Xn 9 X in any Lp with p ≥ 1.

What about convergence in Lp compared with convergence a.s.? It
turns out that neither imply the other one. It is possible (easy) to come
up with counterexamples for a.s. implies p-mean convergence and for
p-mean convergence implies convergence a.s. However, what is true is
that if both limits exist they must be the same.

Proposition 1.46. If Xn
Lp(Ω)−−−→ X and Xn

a.s.−−→ Y then X = Y
a.s.

Proof. (Sketch) We have already proven that both types of con-
vergence imply convergence in probability. The proof then ends by
showing a.s. the uniqueness of a limit in probability. �

1.9.3. Weak Convergence or Convergence in Distribution.
All of the three modes of convergence discussed thus far are concerned
with the case when all the variables Xn as well as their limit X are
defined on the same probability space. In most applications the con-
vergence is necessary only from the point of view of the distributions
of Xn and X. I am going to stress this fact, though this is the weakest
form of convergence in the sense that it is implied by all the others we
are in fact discussing a totally different form of convergence.

Definition 1.47 (Convergence in Distribution – Convergence in
Law – Weak-Convergence). Consider a sequence of random variables
Xn defined on probability spaces (Ωn, Fn,Pn) (which might be all dif-
ferent) and a random variable X, defined on (Ω, F ,P). Let Fn(t) and
F (t) be the corresponding distribution functions. Xn is said to con-

verge to X in distribution (written Xn
D−→ X or Fn ⇒ F ) if for every

point t at which F is continuous we have:

lim Fn(t) = F (t).
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Remark 1.48. There are many notations which are used inter-

changeably in various books, we mention Xn
L−→ X,Xn ⇒ X, Xn

Distrib.−−−−→
X, Xn

d−→ Xetc.

Remark 1.49. Why do we require t to be a continuity point of F ?
The simple answer is that in the discontinuity points weird things may
happed even though we might have convergence everywhere else. I will
give you a simple example that may illustrate this fact.

Let Xn be a 1/nBernoulli(1/n) random variable. That is Xn takes
value 1/n with probability 1/n and value 0 with probability 1 − 1/n.
Then:

Fn(t) =

{

0 , if t < 1
n

1 , if t ≥ 1
n
.

Looking at this it makes sense to say that the limit is X = 0 with
probability 1 which has distribution function:

F (t) =

{

0 , if t < 0

1 , if t ≥ 0.

Yet, at the discontinuity point of F we have F (0) = 1 6= lim Fn(0) = 0.
This is why we exclude these points from the definition.

There is one quantity where we do not care about these isolated
points and that is the integral. That is why we have an alternate
definition for convergence in distribution given by the next theorem.
Note that it applies to random vectors Xn, X which are defined on Rd.

Theorem 1.50. Let Xn defined on probability spaces (Ωn, Fn,Pn)

and X, defined on (Ω, F ,P). Then Xn
D−→ X if and only if for any

bounded, continuous function on the range of X we have:

E[φ(Xn)] → E[φ(X)], as n → ∞,

or equivalently:
∫

φ(t)dFn(t) →
∫

φ(t)dF (t)

The following proposition states that (if possible to express) the
convergence in probability will imply convergence in distribution. That
is perhaps the reason for the name weak convergence.

Proposition 1.51. Suppose that the sequence of random variables
Xn and the random variable X are defined on the same probability space

(Ω, F ,P). If Xn
p−→ X then Xn

D−→ X.
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Because of the fact that we are talking about apples and oranges
when comparing weak convergence with anything else in general the
converse of the previous theorem is false. However, there is one case
where the converse is true, and that is when the limit X is a.s. a
constant (notice that constants live in any probability space).

Proposition 1.52. Let Xn
D−→ X and X is a non-random constant

(a.s.). Then Xn
p−→ X.

Furthermore, here is an interesting result:

Theorem 1.53 (Skorohod’s representation theorem). Suppose Xn
D−→

X. There exists a probability space (Ω′, F ′,P′) and a sequence of ran-
dom variables Y, Yn on this new probability space, such that Xn has
the same distribution as Yn, X has the same distribution as Y , and
Yn → Y a.s. In other words, there is a representation of Xn and X on
a single probability space, where the convergence occurs almost surely.

Exercise 16. Write a statement explaining why the Skorohod’s
theorem does not contradict our earlier statement that convergence in
distribution does not imply convergence a.s.

Finally, we will finish this section with the two main limit theo-
rems from elementary probability: the law(s) of large numbers and the
central limit theorem.

Theorem 1.54 (The Weak law of large numbers). Let Xn be a
sequence of r.v.’s defined on probability spaces (Ωn, Fn,Pn). Let us
use the notations Sn = X1 +X2 + · · ·+Xn for the sum and Xn = Sn/n
for the average of the first n terms.

Assume that Xn’s are independent identically distributed (iid) with

mean µ. Then Xn
p−→ µ.

Note that the previous theorem says that this is equivalent with
convergence in distribution, that is the reason for calling this result
the weak law. The next result is stronger (it implies the weak law
when the prob spaces are the same).

Theorem 1.55 (The Strong law of large numbers). Let Xn be a
sequence of r.v.’s defined on the same probability space (Ω, F ,P). We
will use the same notations from the Weak law.

Assume that Xn’s are independent identically distributed (iid) with
mean µ. Then Xn → µ a.s.
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The next theorem talks about how the convergence to µ occurs.

Theorem 1.56 (The Central Limit Theorem (CLT)). Let Xn be a
sequence of r.v.’s defined on probability spaces (Ωn, Fn,Pn). Assume
as before that Xn’s are iid and in addition that they have finite variance
σ2. We use the notations presented in the weak law and in addition we
define the standardized variables:

Zn =
Xn − µ

σ/
√

n
=

Sn − nµ

σ
√

n

Let Z be a N(0, 1) random variable. Then we have:

Zn
D−→ Z.

1.10. Uniform Integrability3

We have seen that convergence a.s. and convergence in Lp are
generally not compatible. However, we will give next an integrabil-
ity condition that together with convergence in probability will imply
convergence in p-mean.

Definition 1.57 (Uniform Integrability criterion). A collection of
random variables {Xα}α∈I is called uniform integrable (U.I.) if:

lim
M→∞

sup
α

E
[
|Xα|1{|Xα|>M}

]
= 0.

In other words the tails of the expectation converge to 0 uniformly for
all the family.

Theorem 1.58. If Xn
p−→ X and for a fixed p ≥ 1 the family

{|Xn|p}n∈N in U.I. then Xn
p−→ X

For the proof see [GS01, Theorem 7.10.3]
We will give a few more details about U.I.

Example 1.59. Examples of U.I. families:

• Any r.v. X ∈ L1 is U.I.
(E|X| < ∞ implies immediately E

[
|X|1{|X|>M}

]
−−−−→
M→∞

0)

• Let the family Xα bounded by an integrable random variable
i.e., |Xα| ≤ Y and Y ∈ L1 then Xα is U.I.
Indeed, we have E

[
|Xα|1{|Xα|>M}

]
≤ E

[
Y 1{|Y |>M}

]
, which

does not depend on α and converges to 0 with M as in the
previous example.

3Not normally taught in Ma611
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• Any finite collection of r.v.’s in L1 is U.I.
This is just an application of the previous point. If {X1, X2, . . . , Xn}
is the collection of integrable r.v.’s take for example Y =
|X1| + |X2| + · · ·+ |Xn|.

• The family {aαY } with Y ∈ L1 and aα ∈ [−1, 1], non-random
constants is U.I.

• Any bounded collection of integrable r.v.’s is U.I.

Next we give a very useful criterion for U.I.

Proposition 1.60. A family of r.v.’s {Xα}α∈I is uniform inte-
grable if Ef(|Xα|) ≤ C for some finite C and all α, where f ≥ 0 is any
function such that f(x)/x → ∞ as x → ∞.

Here is an example of a family which is not U.I.

Example 1.61. Let us consider the probability space of all infinite
sequences of coin tosses (we will see this space later on in reference to
Bernoulli process). Assume that the coin is fair.

Let Xn = infi>n{toss i is a H}, the first toss after n where we ob-
tain a head. Then for any M we can find n ≥ M therefore Xn > n ≥ M
thus E

[
|Xn|1{|Xn|>M}

]
= E[Xn] > n, implying that Xn is not U.I.

1.11. Exchanging the order of limits and expectations

This is an important question. In many cases we need to put the
limit under the integral sign, but are we doing it correctly?

There are 4 results that can help you with this question.
The first two results results basically require the sequence and the

limit to be integrable.

Theorem 1.62 (Dominated Convergence). If there exists a random
variable Y such that EY < ∞, Xn ≤ Y for all n and if we have

Xn
p−→ X, then EXn → EX as well.

In the particular case when Y is non-random we obtain:

Corollary 1.63 (Bounded Convergence). Suppose that Xn ≤ C,

∀n for some finite constant C. If Xn
p−→ X, then EXn → EX as well.

In the case of monotone (increasing) convergence of non-negative
r.v.’s we can exchange the limit and the expectation even if X is non-
integrable.

Theorem 1.64 (Monotone Convergence). If Xn ≥ 0 and Xn(ω) ↑
X(ω) a.s. then EXn ↑ EX. This is true even if X(ω) = ∞ for some
ω ∈ Ω
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Remark 1.65. You may think that as we have increasing conver-
gence we must also have decreasing convergence. We indeed have
but the result is not that useful. It requires the extra assumption
E[X1] < ∞. But, if we make this assumption the exchange of limit
and integral is true already from the dominated convergence theorem.
If we wish to drop the extra assumption the result is no longer true as
the next example demonstrates.

Example 1.66. Let Z be a random variable such that EZ = ∞.
Take X1 = Z, and in general Xn(ω) = n−1Z(ω). Then we have that
EXn = ∞, for any n but Xn ↓ 0 wherever Z is finite.

Practice your understanding solving the following exercise:

Exercise 17. Let Yn a sequence of non-negative random variables.
Use the Monotone Convergence Theorem to show that:

E

[
∞∑

n=1

Yn

]

=

∞∑

n=1

E[Yn].

Continue by showing that if X ≥ 0 a.s. and An are disjoint sets with
P(∪nAn) = 1 (partition of Ω), then:

E[X] =

∞∑

n=1

E(X1An
).

Furthermore, show that the result applies also when X ∈ L1.

The last result presented bellow is the most useful in practice; we
do not require the sequence or the limit to be integrable nor do we
require a special (monotone) form of convergence. We only require the
existence of a lower bound. However, the result is restrictive, it only
allows exchange of the lim inf with the expectation.

Lemma 1.67 (Fatou’s Lemma). Suppose that Xn is a sequence of
random variables such that there exist a Y ∈ L1 with Xn > Y for all
n. Then we have:

E

[

lim inf
n→∞

Xn

]

≤ lim inf
n→∞

E[Xn]

Here:

lim inf
n→∞

Xn = lim
n→∞

{

inf
k≥n

Xk

}

.





CHAPTER 2

Introduction to Stochastic Processes

What is a stochastic process?

Definition 2.1. Given a probability space (Ω, F ,P), a stochastic
process is any collection of random variables defined on this probability
space. More specifically the collection of random variables {X(t)}t∈I

or alternatively written {X(t) : t ∈ I}, where I is the index set. We
will alternately use Xt to denote X(t).

We will give here the famous R.A. Fisher quotation:

What is a stochastic process? Oh, it’s just one darn thing
after another.

We will next describe some characteristics important for all sto-
chastic processes.

2.1. General characteristics of Stochastic processes

2.1.1. The index parameter I. The parameter that indexes the
stochastic process determines the type of stochastic process we are
working with.

For example if I = {0, 1, 2 . . .} (or equivalent) we obtain the so-
called discrete-time stochastic processes. We will often write {Xn}n∈N

in this case.
If I = [0,∞] we obtain the continuous-time stochastic processes.
If I = Z × Z we may be describing a discrete random field. If

I = [0, 1] × [0, 1] we may be describing the structure of some random
material.

These are the most common cases encountered in practice but the
index set can be quite general.

2.1.2. The state space S. This is the space where the random
variables Xt which constitute our stochastic process take values. Again
we have several important examples. If S ⊆ Z we say that the process
is integer valued or a discrete state process. If S = R then we say that
Xt is a real-valued process. S = Rk then Xt is a k-vector process.

29
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2.1.3. The finite distribution of stochastic processes. As we
have seen a stochastic process is just a collection of random variables.
Thus we have to look into what quantities characterizes a random vari-
able. That is obviously its distribution. However, here we are working
with a lot of them. Depending on the index set I the stochastic process
may be finite or infinite. In either case we will be primarily concerned
with the joint distribution of a finite sample taken from the process.
This is due to practical consideration and the fact that in general we
cannot study jointly a continuum. The processes that have a con-
tinuum structure on the set I serves as subject for a later course in
Stochastic Differential equations. However, even in that case the finite
distribution of the process serves as a primary object of study.

More specifically, let {Xt}t∈I be a stochastic process. For any subset
{t1, t2, . . . , tn} of I we will write FXt1

,Xt2
,...,Xtn

for the joint distribution
function of the variables Xt1 , Xt2 , . . . , Xtn . The statistical properties of
the process Xt are completely described by the family of distribution
functions FXt1

,Xt2
,...,Xtn

indexed by the n and the ti’s. This is a famous
result due to Kolmogorov in the 1930’s, (the exact statement is omitted
– the consistency relations are very logical, you can look them up on
page 9 of [KT75]).

I will restate this result again: If we can describe these joint dis-
tributions we will completely characterize the stochastic process. In
general this is a complicated task. However, there are some proper-
ties of the stochastic processes that makes this calculation task much
easier. We will mention them next.

2.1.4. Independent components of the process. This is the
most desirable property and the the most useless. Let us explain.
This property implies that for any sample {t1, t2, . . . , tn} of I we get
Xt1 , Xt2 , . . . , Xtn independent. Notice that the joint distribution FXt1

,Xt2
,...,Xtn

is just the product of marginals in this case thus very easy to calculate.
However, no reasonable real life processes posses this property. In ef-
fect, every new component being random implies no structure of the
process so this is just a noise process. Generally speaking in practice
this is the component one wishes to eliminate to get to the real signal
process.

2.1.5. Stationary process. A stochastic process Xt is said to be
strictly stationary if the joint distribution functions of:

(Xt1 , Xt2 , . . . , Xtn) and (Xt1+h, Xt2+h, . . . , Xtn+h)

are the same for all h > 0 and any arbitrary selection {t1, t2, . . . , tn}
in I. In particular the distribution of Xt is the same for all t. Notice
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that this property simplifies the calculation of the joint distribution
function. The condition implies that in essence the process is in equi-
librium and that the particular times at which we choose to examine
the process are of no relevance.

A stochastic process Xt is said to be wide sense stationary or co-
variance stationary if Xt has finite second moments for any t and if
the covariance function Cov(Xt, Xt+h) depends only on h for all t ∈ I.
This is a generalization of the notion of stationarity. A strictly station-
ary process with finite second moments is covariance stationary. There
are examples of processes which are covariance stationary but are not
strictly stationary. The notion arose from real life processes that are
covariance stationary but not stationary.

Many phenomena can be described by stationary processes. We
will discuss them later in this course. However, some of the most
common processes encountered in practice – the Poisson process and
the Brownian motion – are not stationary. Instead they have stationary
(and independent) increments.

2.1.6. Stationary and Independent Increments. A stochas-
tic process Xt is said to have independent increments if the random
variables

Xt2 − Xt1 , Xt3 − Xt2 , . . . , Xtn − Xtn−1

are independent for any choice of the sequence {t1, t2, . . . , tn} in I with
t1 < t2 < · · · < tn. Notice that we are talking about an order on the
set I so an ordering relation must be defined prior to talking about
increments.

A stochastic process Xt is said to have stationary increments if the
distribution of the random variable Xt+h − Xt depends only on the
length h of the increment and not on the time t. Notice that this
is not the same as stationarity of the process itself. In fact except
for the constant process there exist no process with stationary and
independent increments which is also stationary.

Proposition 2.2. If a process {Xt, t ∈ [0,∞)} has stationary in-
dependent increments and Xt ∈ L1, ∀t then

{

E[Xt] = m0 + m1t

V ar[Xt − X0] = V ar[X1 − X0]t,

where m0 = E[X0], and m1 = E[X1] − m0.

Proof. We will indicate the proof only for the variances, the result
for means you can read in [KT75, page 28]. Also note the error in the
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statement in the book. Let f(t) = V ar[Xt −X0]. Then for any t, s we
have:

f(t + s) = V ar[Xt+s − X0] = V ar[Xt+s − Xs + Xs − X0]

= V ar[Xt+s − Xs] + V ar[Xs − X0] (indep. increments)

= V ar[Xt − X0] + V ar[Xs − X0] (stationary increments)

= f(t) + f(s)

Using the result in the textbook [KT75, page 28] we obtain the
solution f(t) = f(1)t and the result stated in the proposition. �

2.1.7. Other properties that characterize specific classes of
stochastic processes.

• Markov processes. In general terms this is a process with
the property that given Xs, the values of the process Xt with
t > s do not depend on any earlier Xr with r < s. Or, put
differently the behavior of the process at any future time when
its present state is known exactly is not modified by additional
knowledge concerning its past behavior. The study of Markov
processes constitutes a big part of this class. Note also that for
such a process the finite distribution of the process simplifies
greatly.

• Martingales. This is a process that has the property that
the expected value of the future given the information we have
today is going to be equal to the known value of the process
today. We will study Martingales later in this class.

• Point Processes. These are special processes that count rare
events. They are very useful in practice due to their frequent
occurrence. For example look at the process that gives at
any time t the number of busses passing on Washington street
and 6th starting from an initial time t = 0. This is a typical
rare event (“rare” here does not refer to the frequency of the
event, rather to the fact that there are gaps between event
occurrence). Or look at the process that counts the number of
defects in a given area of material. A particular case (and the
most important) is the Poisson process which we will study in
this class.

2.2. A Simple process – The Bernoulli process

We will start by studying a very simple process – tosses of a (not
necessarily fair) coin. More specifically let Y1, Y2, . . . be iid Bernoulli
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random variables with parameter p, i.e.,

Yi =

{

1 p

0 1 − p

To simplify the language say a head appears when Yi = 1 and a tail is
obtained at the i-th toss if Yi = 0. Let

Nk =

k∑

i=1

Yi,

the number of heads up to the k-th toss, which you know is distributed
as a Binomial(k, p) random variable. We will use the notation Nk ∼
Binomial(k, p) from now on to denote distribution of random variables.

A sample outcome may look like this:

Table 1. Sample Outcome

Yi 0 0 1 0 0 1 0 0 0 0 1 1 1
Ni 0 0 1 1 1 2 2 2 2 2 3 4 5

Let Sn be the time at which n-th head (success) occurred. Mathe-
matically:

Sn = inf{k : Nk = n}
Let Xn = Sn − Sn−1 be the number of tosses to get the n-th head
starting from the (n− 1)-th head. We present a sample image below:������ ������ ������ ������ ������	
�� 	
� 	
�� 	
�� 	
���

Figure 1. Failure and Waiting time

Proposition 2.3. We will give some simple results about these
processes.

1) ”Waiting times” X1, X2 . . . are iid ”trials” ∼Geometric(p)
r.v.’s.

2) The time at which the n-th head occurs is Negative Binomial,
Sn ∼ Negative Binomial(n, p).
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3) Given Nk = n the distribution of (S1, . . . , Sn) is the same
as the distribution of a random sample of n numbers chosen
without replacement from {1, 2, . . . , k}.

4) Given Sn = k the distribution of (S1, . . . , Sn−1) is the same
as the distribution of a random sample of n−1 numbers chosen
without replacement from {1, 2, . . . , k − 1}.

5) We have as sets:

{Sn > k} = {Nk < n}

6) Central Limit theorems:

Nk − E[Nk]
√

V ar[Nk]
=

Nk − kp
√

kp(1 − p)

D−→ N(0, 1)

7)

Sn − E[Sn]
√

V ar[Sn]
=

Sn − n/p
√

n(1 − p)/p

D−→ N(0, 1)

8) As p ↓ 0

X1

E[X1]
=

X1

1/p

D−→ Exponential(λ = 1)

9) As p ↓ 0

P{N[ t
p
] = j} → tj

j!
e−t

Exercise 18. Prove the previous properties. To make it a bit
easier in the parts 3 and 4, take n = 4 and k = 100 (The general proof
is identical).

I will give you some hints. For 1) there is nothing to prove for Xi’s
are Geometric(p) random variables. You need only to show that they
are independent. The solution for 3 I have already written so there it
is.

Proof for 3). A typical outcome of a Bernoulli process looks like:

ω : 00100101000101110000100

In the calculation of probability we have to have 1 ≤ s1 < s2 < s3 <
s4 ≤ 100. Using the definition of the conditional probability we can
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write:

P(S1 = s1 . . . S4 = s4|N4 = 100)

=
P(S1 = s1 . . . S4 = s4 and N100 = 4)

P(N100 = 4)

=

P





s1−1
︷ ︸︸ ︷

0000 . . . 1

s2−1
︷ ︸︸ ︷

0000 . . .1

s3−1
︷ ︸︸ ︷

0000 . . .1

s4−1
︷ ︸︸ ︷

0000 . . .1

100−s1−s2−s3−s4

︷ ︸︸ ︷

0000 . . .





(
100
4

)
p4(1 − p)96

=
(1 − p)s1−1p(1 − p)s2−1p(1 − p)s3−1p(1 − p)s4−1p(1 − p)100−s1−s2−s3−s4

(
100
4

)
p4(1 − p)96

=
(1 − p)96p4

(
100
4

)
p4(1 − p)96

=
1
(
100
4

) .

�

Proof for 8).

P

(
X1

1/p
> t

)

= P

(

X1 >
t

p

)

= P

(

X1 >

[
t

p

])

= (1 − p)[
t
p ] =

[

(1 − p)−
1

p

]−p[ t
p ] → e−t,

since

lim
p→0

−p

[
t

p

]

= lim
p→0

−p

(
t

p
+

[
t

p

]

− t

p

)

= −t + lim
p→0

p

(
t

p
−
[

t

p

])

︸ ︷︷ ︸

∈[0,1]

= −t

�

We will finish this chapter with a more involved application of the
Borel-Cantelli lemma 1.17 to the Bernoulli process.

Exercise 19 (Due to Amir Dembo). Consider an infinite Bernoulli
process with p = 0.5 i.e., an infinite sequence of random variables
{Yi, i ∈ Z} with P(Yi = 0) = P(Yi = 1) = 0.5 for all i ∈ Z. We would
like to study the length of the maximum sequence of 1’s. To this end
let us define some quantities.

Let lm = max{i ≥ 1 : Xm−i+1 = · · · = Xm = 1}, be the length
of the run of 1’s up to the m-th toss and including it. Obviously lm
will be 0 if the m-th toss is a tail. We are interested in the asymptotic
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behavior of the longest such run from 1 to n for large n. That is the
behavior of Ln where:

Ln = max
m∈{1,...,n}

lm

= max{i ≥ 1 : Xm−i+1 = · · · = Xm = 1, for some m ∈ {1, . . . , n}}
(a) Explain why P(lm = i) = 2−(i+1), for i = 0, 1, 2, . . . and
any m.

(b) Applying the first Borel-Cantelli lemma 1.17 for An = {ln >
(1 + ε) log2 n} show that for eachε > 0, with probability one,
ln ≤ (1+ ε) log2 n for all n large enough. Considering a count-
able sequence εk ↓ 0 conclude that:

lim sup
n→∞

Ln

log2 n
≤ 1, a.s.

(c) Fix ε > 0. Let An = {Ln < kn} for kn = (1 − ε) log2 n.
Explain why

An ⊆
mn⋂

i=1

Bc
i ,

where mn = [n/kn] (integer part) and Bi = {X(i−1)kn+1 =
. . . = Xikn

= 1 are independent events. Deduce that P(An) ≤
P(Bc

i )
mn ≤ exp(−nε/(2 log2 n)), for all n large enough.

(d) Applying the first Borel-Cantelli for the events An of part
(c), followed by ε ↓ 0, conclude that:

lim inf
n→∞

Ln

log2 n
≥ 1 a.s.

(e) Putting (b) and (d) together we conclude that

Ln

log2 n
→ 1 a.s.

Therefore the length of the maximum sequence of Heads is
approximately equal to log2 n when n, the number of tosses,
is large enough.
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