
CHAPTER 3

The Poisson process

I believe the treatment of the Poisson process is absolutely essen-
tial in modern stochastic processes treatment due to the vast array of
applications of this process. We will start with basic definitions first.

3.1. Definitions.

Definition 3.1 (Counting Process). Nt is a counting process if
and only if

(1) Nt ∈ {0, 1, 2 . . .}, ∀t
(2) Nt is non decreasing as a function of t

Here Nt is non-decreasing means that all the sample path Nt(w)
are non-decreasing as a function of t for every w ∈ Ω, w fixed.

Definition 3.2 (Poisson Process). N(t) is a Poisson(λ) process if
it is a counting process and in addition

(1) N(0) = 0.
(2) N(t) has stationary independent increments.
(3) P (N(h) = 1) = λh + o(h).
(4) P (N(h) ≥ 2) = o(h).

Facts:

1: f ∼ o(g) if and only if limx→0
f(x)
g(x)

= 0

2: f ∼ O(g) is and only if there exist c1, c2 constants, such that

c1 ≤
f(x)
g(x)

≤ c2, ∀x in a neighborhood of 0.

Theorem 3.3. If N(t) is a Poisson(λ) process then1

P (N(t) = n) =
(λt)n

n!
e−λt

Proof. A standard proof (presented in the notes handed in class)
derive and solves the Kolmogorov’s forward differential equations of the
Poisson(λ) process, a discrete state space Markov Chain. This method

1Note that P (N(t) = n) = P (N(s + t) − N(s)) by the stationarity of the
increments.
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38 3. THE POISSON PROCESS

will be seen later and it is worth your time to read and understand
that proof as well.

Here we will approach the proof a bit different. The idea is to
approximate a Poisson(λ) process with a Bernoulli process and then
pass to the limit.

Fix t > 0, cut [0, t] into 2k equally spaced intervals.

Let Ñk = the number of these 2k intervals with at least one event
in them. Note that we have the condition

Ñk ≤ Nt

{
= only when each interval contain at most 1 event

≤ always

In addition, let

Ek = {Nt > Ñk} =
2k−1⋃

i=0





N

(
i + 1

2k
t

)
− N

(
i

2k
t

)
≥ 2

︸ ︷︷ ︸
at least 1 interval with 2 events





Take probability on both sides

P (Ek) ≤
2k−1∑

i=0

P

(
N

(
i + 1

2k
t

)
− N

(
i

2k
t

)
≥ 2

)

=

2k−1∑

i=0

P

(
N

(
1

2k
t

)
≥ 2

)
(by stationarity)

= 2ko

(
t

2k

)
=

o(t/2k)

t/2k
t

k→∞
−−−→ 0,

for every t fixed. So P(Ek)
k→∞
−−−→ 0

Now Ñk ∼ Binomial(2k, λ t
2k + 2o( t

2k )) Note that λ t
2k + 2o( t

2k ) is
the probability that at least one event occurs in an interval, i.e., p =
P(N( t

2k ) = 1) + P(N( t
2k ) ≥ 2)

Exercise 20. If Wk ∼ Binomial(k, pk) and kpk → λ when k → ∞,
then

Wk
D
−→ Poisson(λ)

,i.e.

P (Wk = n) →
λn

n!
e−λ

In our case

2k

(
λ

t

2k
+ 2o(

t

2k
)

)
= λt + 2

o(t/2k)

t/2k
t

k→∞
−→ λt
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Therefore the Exercise 20 implies

(3.1) Ñk
D
−→ Poisson(λt)

OR

P (Ñk = n) →
(λt)n

n!
e−λt

Furthermore, N(t) = Ñk + N(t) − Ñk︸ ︷︷ ︸ and we know P (Ñk 6= N(t)) =

P (Ek) → 0 as k → ∞. Therefore, we must have:

(3.2) Ñk
D
−→ N(t)

From (3.1) and (3.2) the limits of Ñk must be the same thing.
Done. �

3.2. Inter-arrival and waiting time

Let:

X1 = time of the first event

X2 = time between 1st and 2nd event

:

Xn = time between (n-1)-th and n-th event

Let Si = time of the i-th event and notice that:

Si =

i∑

j=1

Xj

Sn = inf{t : N(t) ≥ n} = inf{t : N(t) = n}

Proposition 3.4. X1, X2 . . . are iid random variable, exponentially
distributed with mean 1

λ
.

We will not prove this proposition instead we will prove the follow-
ing claim:

Claim–Evidence: The distribution of Sn is Gamma(n, λ) or the
p.d.f. of Sn is given by:

fSn
(t) =

λe−λt(λt)n−1

(n − 1)!
t ≥ 0

We note that the exponential distribution is a special case of Gamma
distribution. In fact, Exponential(λ) = Gamma(1, λ). This is a useful
fact to know since the Gamma distribution has some nice property, one
of them being that if the two variables added are independent then:

Gamma(α1, β) + Gamma(α2, β)
D
= Gamma(α1 + α2, β)
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For this reason if the Proposition 3.4 is true then we must have the
distribution of the arrival times Sn as:

S1 = X1 ∼ Gamma(1, λ)

S2 = X1 + X2 ∼ Gamma(2, λ)

...

Sn = X1 + . . . + Xn ∼ Gamma(n, λ),

Therefore, proving the claim adds evidence in favor of the Proposi-
tion 3.4. In fact we will prove the Proposition using the claim.

Proof of the claim-evidence. We know that: {Sn ≤ t} =
{N(t) ≥ n} (convince yourself of the truth of this affirmation). Thus
the c.d.f

FSn
(t) = P{Sn ≤ t} = P{N(t) ≥ n} =

∞∑

j=n

(λt)j

j!
e−λt

Take the derivative with respect to t: ∂
∂t

fSn
(t) =

∞∑

j=n

[(
λj(λt)j−1

j!

)
e−λt +

(λt)j

j!
(−λ)e−λt

]

= λe−λt

∞∑

j=n

[
(λt)j−1

(j − 1)!
−

(λt)j

j!

]

=
λe−λt(λt)n−1

(n − 1)!
and DONE

OR using another way:

fSn
(t)dt = P(t ≤ Sn ≤ t + dt)

= P


N(t) = n − 1︸ ︷︷ ︸

independent

and at least one event in [t, t + dt]︸ ︷︷ ︸
independent




= P (N(t) = n − 1)P (N(dt) ≥ 1)

=
(λt)nte−λt

(n − 1)!
[λdt + o(dt) + o(dt)]
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Dividing the last expression by dt and taking dt → 0,

fSn
=

(λt)nte−λt

(n − 1)!

(
λ + 2

o(dt)

dt

)

dt→0
−→

(λt)nte−λt

(n − 1)!

�

The plan is to finish the proof of Proposition 3.4 by calculating the
joint density of Xi’s. To do so we need the joint density of the Si’s. To
this end we will introduce the concept of order statistic.

3.2.1. Order Statistic. Let Y1 . . . Yn be n random variables. We
say that Y(1) . . . Y(n) are the order statistics corresponding to Y1 . . . Yn

if Y(k) is the k-th smallest value among Y1 . . . Yn

Lemma 3.5. If Yi’s are continuous random variables with p.d.f. f
then the joint density of the order statistics Y(1) . . . Y(n) is given by

f(Y1 . . . Yn) = n!

n∏

i=1

f(Y(i))

Proof. exercise. See page 66 of the handed notes. �

Theorem 3.6. The joint density of (S1 . . . Sn) = (X1, X1+X2 . . .
∑n

i=1 Xi)
is

fS1...Sn
(t1 . . . tn) = λne−λtnI{0≤t1<t2...<tn}

Proof. Let 0 ≤ t1 < t2 . . . < tn, and δ > 0 small enough2 such
that 0 ≤ t1 < t1 + δ < t2 < t2 + δ . . . < tn. Let

Ij = (tj , tj + δ)

Goal: Find P(S1 ∈ I1, S2 ∈ I2 . . . Sn ∈ In), then take δ → 0 to
obtain the joint density. Note that terms can be express as follows




S1 ∈ I1 no event in (0, t1) and 1 event in I1

S2 ∈ I2 no event in (t1 + δ, t2) and 1 event in I2

:

Sn ∈ In no event in (tn−1 + δ, tn) and at least 1 event in In

2In other words, chose δ such that we create non-overlapping intervals.
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Then

P(S1 ∈ I1, S2 ∈ I2 . . . Sn ∈ In)

= e−λt

︸︷︷︸
0∈(0,t1)

(
λδ

1!
e−λ(t2−t1−δ)

)

︸ ︷︷ ︸
1∈I1

e−λt

︸︷︷︸
0∈(t1+δ,t2)

(
λδ

1!
e−λ(t2−t1−δ)

)

︸ ︷︷ ︸
1∈I2

. . . e−λ(tn−tn−1−δ)
(
1 − e−λδ

)
︸ ︷︷ ︸

at least 1 in In

= (λδ)n−1e−λδ(n−1)(1 − e−λδ)e−λtneλ(n−1)δ

= (λδ)n−1e−λtn(1 − e−λδ)

Divide3 by δn

P(S1 ∈ I1, S2 ∈ I2 . . . Sn ∈ In)

δ
= e−λtnλn−1 1 − e−λδ

δ︸ ︷︷ ︸
→λ

→ λne−λtn

�

3.2.2. Finishing the proof.

Proof of Proposition 3.4. Note that X1 = S1, X2 = S2 −
S1, . . . , Xn = Sn − Sn−1. Therefore we can obtain their distribution
from:

fX1...Xn
(x1, . . . , xn) = fS1...Sn

(
x1, x1 + x2, . . . ,

n∑

i=1

xi

)
|J |1{0≤x1≤x1+x2...≤

∑
n

i=1 xi}

The determinant of the Jacobian J of the transformation is∣∣∣∣∣∣∣∣

1 1 1 . . . 1
0 1 1 . . . 1

: : 1
0 0 0 . . . 1

∣∣∣∣∣∣∣∣
= 1

Hence

fX1...Xn
(x1 . . . xn) = fS1,...,Sn

(
x1, x1 + x2, . . . ,

n∑

i=1

xi

)
1{0≤x1≤x1+x2...≤

∑
n

i=1 xi}

= λne−λ(x1+x2...xn)
n∏

i=1

1{xi≥0}

=

n∏

i=1

λe−λxi1{xi≥0}

which is the product of n independent exponential distributions. �

3Note that 1−e
−a

a

a→0
−−−→= 1
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Corollary 3.7. Given Sn = tn the other n − 1 arrival times
S1, S2 . . . Sn−1 have the same distribution as the order statics corre-
sponding to (n − 1) independent uniform random variables on the in-
terval (0, tn).

Proof.

fS1...Sn−1|Sn
(t1 . . . tn−1|tn) =

fS1...Sn
(t1 . . . tn)

fSn
(tn)

=
λne−λtn1{0≤t1<t2...<tn<t}

λe−λtn(λtn)n−1

(n−1!)

=
(n − 1)!

tn−1
n

1{0≤t1<t2...<tn<t}

�

Corollary 3.8. Given N(t) = n the n arrival times S1, S2 . . . Sn

have the same distribution as the order statics corresponding to n in-
dependent uniform random variables on the interval (0, t), i.e.

fS1...Sn|N(t)(t1 . . . tn|n) =
n!

tn
1{0≤t1<t2...<tn<t}

Proof. Exercise. �

Proposition 3.9. Assume that each event of a Poisson(λ) process
can be classified as either Type I or Type II event. Furthermore, suppose
that if an event occurs at time s then it is classified as being Type I
with probability p(s) and Type II with probability 1 − p(s).

If Ni(t) is the number of events of Type i, i ∈ {I,II} by time t,
then N1(t) and N2(t) are independent Poisson random variables with
means(rates) λtp and λt(1 − p) respectively, where

p =
1

t

∫ t

0

p(s)ds

Proof. Omitted. �

Corollary 3.10. In general if N(t) is poisson(λ) process and
events can be categorized into some category type A independently
of the original process, then if NA(t) is the number of events of type A

by time t, then NA(t) is Poisson with rate λ ·
∫ t

0
pA(s)ds, where pA(s)

is the probability that one event occurring at time s is of type A.

Note that the original Poisson(λ) process has the mean E[N(t)] =
λt.
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For the process counting the events of type A, the rate (mean) can

be written4 as E[NA(t)] = λt︸︷︷︸ ·
1

t

∫ t

0

pA(s)ds

︸ ︷︷ ︸
.

3.3. General Poisson Processes

Definition 3.11. Let X be a set, G be a σ-field on X . A counting
process on (X , G ) is a stochastic process {N(A)}A∈G with the following
properties:

(i)N(A) ∈ {0, 1, 2 . . .}

(ii)N(
∞⋃

i=1

Ai, ω) =
∞∑

i=1

N(Ai, ω), ∀w ∈ Ω and A1, A2 . . . disjoint sets in G

Definition 3.12 (General Poisson Process). Let (X , G , µ) be a
measure space, A Poisson process on (X , G ) with intensity µ is a
counting process {N(A)}A∈G with

(1) N(A) is a poisson random variable with mean µ(A)
(2) Independent increments, i.e., if A1, A2 . . . An are disjoint G sets

in X , then N(A1), N(A2), . . . N(An) are independent random
variables.

Theorem 3.13. Let {N(A)}A∈G be a counting process on (X , G ).
Let µ(A) = E[N(A)] for A ∈ G . If:

(1) N(·) has independent increments (as before),
(2) ∀ǫ > 0, there exists δ > 0 such that ∀ A with E[N(A)] < δ,

P(N(A) ≥ 2)

µ(A)
< ǫ

(3) If x ∈ X with µ({x}) > 0 then N({x}) ∼ Poisson(µ({x}))

Then {N(A)}A∈G is a Poisson variable with mean µ(A)

Consequence: If {N(A)}A∈G satisfies the above then

P (N(A) = k) =
µ(A)k

k!
e−µ(A)

Example 3.14 (Non-homogenous Poisson Process). This is a sim-
ple generalization of the regular Poisson process. The rate is a func-
tion of time λ(t) instead of λt. In terms of the previous definition
X = [0,∞), G = B([0,∞)) and µ(A) =

∫
A

λ(t)dt. Notice that this
process does not have stationary increments anymore.

4Note that the expectation is the product between the rate of the original
Poisson(λ) process and the probability that the event is of type A.
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Example 3.15 (Compound Poisson Process). For each hit i for a
Poisson(µ1) process N on (X , G ) attach the random variables Yi iid
with c.d.f. F , which give rise to the probability measure µ2

5. Then the
process:

Z(A) =

N(A)∑

i=1

Yi

is a process called the compound poisson process on [0,∞) × R with
intensity µ = µ1 × µ2

This is the most general definition of the compound process. In the
particular case when N is a regular Poisson process we obtain:

Z(t) =

N(t)∑

i=1

Yi,

called the (simple) compound Poisson process.

Proposition 3.16. If λ is the rate for the Poisson process N(t)
and the variables Yi have mean µ and variance ν2 then:

E[Z(t)] = λµt, V [Z(t)] = λ(ν2 + µ2)t

As an example of occurrence of such a process imagine claims ar-
riving at a health insurance agency, with the time of events modeled
by the Poisson process, and with the amount of the claim given by the
variables Yi.

Example 3.17. Consider a system with possible states {1, 2 . . .}.
Individuals enters the “system” according to a Poisson(λ) process. At
any time after the entry, any individual is in some state i ∈ N

∗ (N∗ =
N \ {0}).

Let αi(s) = P{An individual is in state i at time s after entry}.
Let Ni(t) be the number of individual in state i at time t. Find

E[Ni(t)].

Solution: We can represent the state of each point of this process
as the pair:


 entry time︸ ︷︷ ︸

poisson process

, state at time t︸ ︷︷ ︸
the r.v., Yi


 ∈ [0, t] × N

∗.

5One can obtain the measure from c.d.f. remembering that the Borel sets are
generated by intervals and using the relation µ((a, b]) = F (b) − F (a)
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An event is of type i if at time t it is in state i. The process N that
counts the number of particles on this set X = [0, t] × N

∗ is a general
Poisson process.

Using this definition Ni(t) = N([0, t] × {i}). Recalling the theo-
rem 3.13, we have that Ni(t) is a Poisson random variable with mean
µ([0, t] × {i}). Therefore, the mean is:

µ([0, t]×{i}) = λ

∫ t

0

p(event at time s is of type i)ds = λ

∫ t

0

αi(t−s)ds.

Let us look at this further. We have, using r = t − s:

λ

∫ t

0

αi(t − s) = λ

∫ t

0

αi(r)dr

= λ

∫ t

0

P(invidual is in state i, r units after its entry)dr

= λ

∫ t

0

E

[
1
{individual is in state i, r units after its entry}

]
dr

Fubini → = λE




∫ t

0

1{...}dr

︸ ︷︷ ︸
time spent in state i during [0, t]




= λE [time spent in state i during the first t time units]

Question: What happens as t → ∞? �

Example 3.18 (text 2.22). Cars enter a highway (one way high-
way) according to a poisson(λ) process in time. Each car has velocity
v(i) iid with c.d.f.=F .
Q: Assuming that each car travels at constant velocity, find the distri-
bution of the number of cars on the highway between points a and b
(spatial points) at time t?

Solution: We have the entry time and velocity, i.e.,

(entry time, velocity) = (S(i), v(i)) ∈ [0,∞) × [0,∞)

A sample outcome is presented in Figure 1. The position of the car
i at time t is v(i)(t − S(i))
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TimeS(1) S(2) S(3) S(4) S(5)

v(1)

v(2)

v(3)

v(4)

v(5)

v=b/(t−s)

v=a/(t−s)

Speed

Figure 1. Cars enter at S(i) with velocity v(i)

We call the event i an event of Type AB if a car entering at si with
velocity vi is in [a, b] at time t. Then using Corollary 3.10:

N(t) = number of cars in [a, b] = number of events of type AB

N(t) ∼ Poisson with the rate = λ

∫ t

0

p(events enter at s is of type AB)ds

What is the probability that a car that arrives at s will be in the
interval [a, b] at time t?

P ({v : a < v · (t − s) < b}) = P

{
v :

a

t − s
< v <

b

t − s

}

=

[
F

(
b

t − s

)
− F

(
a

t − s

)]
1[0,t](s)

Therefore, N(t) is a Poisson random variable with mean

λ

∫ t

0

[
F

(
b

t − s

)
− F

(
a

t − s

)]
ds.

Question: What happens as t → ∞? �

3.4. Simulation Techniques. Constructing the Poisson

Process.

There are two ways to construct a 1-dim Poisson process

Simplest way : Let X1, X2 . . . iid, exponential(λ) with mean 1
λ
.

Use Xi as the time between events i − 1 and i. (Done!)
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Time of the 5th arrival

X(1) X(2)

X(3)

X(4)
X(5)

Time of first arrival

Figure 2. Illustration of the construction idea

Generate interval wise: For each time interval [0, 1), [1, 2) . . . [t−
1, t) . . .
(1) Simulate6 NI = N([k − 1, k)) = number of events in I =

[k − 1, k), this generates the number of events in each
interval.

(2) To get the actual times of the events, use the uniform
distribution to generate times in each interval. For ex-
ample if say you obtained N([0, 1)) = 2 just generate
2 Uniform(0, 1) random variables, they are your 2 event
times.

As anything in life, the simple way is simple but only works with
the 1-dim process. The interval-wise way on the other hand is more
complicated but it can be extended to the general Poisson process. The
way to do it is straight forward. Suppose we have (X , G ) a measurable
space, and µ a σ-finite measure (see Definition 1.11). Partition X into
{Bi}

∞
i=1 such that µ(Bi) < ∞. Then for each Bi get:

(1) N(Bi) = the number of events in Bi which is distributed as a
Poisson(µ(Bi)) random variable,

(2) X
(i)
1 , X

(i)
2 . . . iid7 with probability distribution

P (X
(i)
k ∈ A) = µ(A|Bi) =

µ(A ∩ Bi)

µ(Bi)

Then for every A ∈ G let

(3.3) N(A) =

∞∑

i=1

N(A ∩ Bi) =

∞∑

i=1

[
∞∑

k=1

1
{X

(i)
k

∈A and N(Bi)≥k}

]

Theorem 3.19. The construction above and (3.3) yields a Poisson
process with intensity µ on (X , G ).

Sketch of the proof. We omit the detailed proof, but we give
bellow the important ideas of the proof.

6Note that for each interval, N([k−1, k)) are iid Poisson(λ·1) random variables.
7random points positions in Bi
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The countable additivity is satisfied automatically, by the definition
of measure. The proof continues demonstrating the following facts:

(1) N(A) ∼ Poisson(µ(A)) for any A ∈ G

(2) N(A) and N(B) are independent if A ∩ B = ∅
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Figure 3. Illustration of set A and Bi

First show these properties inside each Bi. To show (2) inside Bi

we may proceed as follows. Let A ⊂ Bi and C = Bi\A (see Figure 3).
For integers a, c ∈ N we have:
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P(N(A) = a,N(C) = c) = P(N(A) = a, N(C) = c, N(Bi) = a + c)

= P(N(A) = a, N(C) = c|N(Bi) = a + c)P(N(Bi) = a + c)

= P (N(A) = a|N(Bi) = a + c) · P (N(Bi) = a + c)(3.4)

= P (N(A) = a|N(Bi) = a + c) ·
[µ(Bi)]

a+c

(a + c)!
e−µ(Bi)(3.5)

=

(
a + c

a

)
[µ(A|Bi)]

a[µ(C|Bi)]
c ·

[µ(Bi)]
a+c

(a + c)!
e−µ(Bi)(3.6)

=

(
a + c

a

)
[µ(A ∩ Bi)]

a[µ(c ∩ Bi)]
c

(a + c)!
e−µ(Bi)(3.7)

=
[µ(A ∩ Bi)]

a[µ(c ∩ Bi)]
c

a!c!
e−µ(A∩Bi)−µ(C∩Bi)

=
[µ(A ∩ Bi)]

a

a!
e−µ(A∩Bi)

︸ ︷︷ ︸
poisson in A

·
[µ(C ∩ Bi)]

c

c!
e−µ(C∩Bi)

︸ ︷︷ ︸
poisson in C

=
[µ(A)]a

a!
e−µ(A) ·

[µ(C)]c

c!
e−µ(C)

= P (N(A) = a) · P (N(C) = c)

In (3.4), we removed the redundant information.
In (3.5), we used the Poisson distribution to write the probability for
P (N(Bi) = a + c)
In (3.6) we used the binomial distribution with n = a + c and p =
µ(A|Bi)

In (3.7) by the definition of conditional probability [µ(A|Bi)]
a = [µ(A∩Bi]a

[µ(Bi]a

Therefore, N(A) and N(C) are independent. �

Example 3.20 (Astronomy). Consider stars distributed in space
according to a 3D Poisson process with intensity, λµ, where µ is the
Lebesgue measure8 on R

3, λ > 0. Let x, y be 3-dim vectors (position).

8The Lebesgue measure is the standard way of assigning a length, area or vol-
ume to subset of Euclidean space. It is used throughout real analysis, in particular
to define Lebesgue integration. Sets which can be assigned a volume are called
Lebesgue measurable; the volume or measure of the Lebesgue measurable set A is
denoted by λ(A). A Lebesgue measure of ∞ is possible, but even so, assuming
the axiom of choice, not all subset in R

n are Lebesgue measurable. The “strange”
behavior of non-measurable sets gives rise to such statements as the Banach-Tarski
paradox, a consequence of the axiom of choice.
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Assume that light intensity exerted at x by a star located at y is

f(x, y, α) =
α

‖x − y‖2
=

α

(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2
,

where α is a random parameter depending on the size of the star at y.
Assume that α’s associated with stars are iid with common mean

µα and common variance σ2
α. Also assume that the combined intensity

at x accumulates additively.
Let Z(x, A) be the total intensity at x due to stars in the region A.

Then:

Z(x, A) =

N(A)∑

i=1

αi

‖X − Yi‖2
=

N(A)∑

i=1

f(x, yi, αi),

where N(A) is the number of stars in the region A in space. Note that
Y and α are random variables.

We have:

(3.8) E[Z(x, A)] = E[N(A)]E[f(x, Y, α)].

We do not prove this result here but note that the expression is a direct
consequence of the Wald’s equation.

We have that E[N(A)] = λµ(A), where µ(A) is the volume of A.

E[f(x, Y, α)] = E

[
α

||x− Y ||2

]
= E[α]E

[
1

||x − Y ||2

]

Since α and Y are independent. As a consequence of the Poisson
Process in space, Y is going to be uniform in A or: E[||x − Y ||−2] =

1
µ(A)

∫
A

1
||x−y||2

dy, then applying the equation (3.8) we have:

E[Z(x, A)] = λµ(A)µα

1

µ(A)

∫

A

1

||x − y||2
dy

= λµα

∫

A

1

||x − y||2
dy
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