
CHAPTER 4

Renewal Processes

In the past I have concentrated on these processes because of the
strength of the theorems one can prove. I will state here the majority
of the results but we are going to cover a lot less than what this chapter
contains.

Example 4.1 (Typical example where renewal process appears).
A light bulb in a room keeps burning out. Assume that a mechanism
instantaneously replaces the bulb with another one as soon as it burns.
Describe the Number of light bulbs replaced by time t.

Let X1, X2 . . . iid with c.d.f. F , Xi positive, (non identical zero),
with E[X1] = µ ∈ (0,∞]. These variables will describe the lifetimes of
the light bulbs. Define:

Sn = time to replace the n-th bulb

Sn =

n∑

i=1

Xi ∼ F ∗ F . . . F
︸ ︷︷ ︸

n times

= Fn

Note that Fn means F convoluted1 itself n times.
We define the renewal process, N(t) as:

N(t) = sup{n : Sn ≤ t}
= number of renewals up to time t

Note that a Poisson(λ) process is a renewal process. In that spe-
cial case the Xi’s are exponentially distributed. For a general renewal
process, Xi’s could have any distribution.
We have the property: {N(t) ≥ n} ⇔ {Sn ≤ t}. This is the same
result we had for the Poisson(λ) process. Therefore, we can write:

P (N(t) = n) = P (N(t) ≥ n)− P (N(t) ≥ n + 1)

= P (Sn ≤ t)− P (Sn+1 ≤ t) = Fn(t)− Fn+1(t)

1Recall X, Y ∼ F, G and with pdf f, g then: X + Y ∼ F ∗G(z) = G ∗ F (z) =
∫
∞

−∞
f(x)g(z − x)dx
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54 4. RENEWAL PROCESSES

The renewal function The renewal function is the main topic of
our study.

m(t) = E[N(t)] = The expected number of renewals by time t

m(t) = E[N(t)] = E

[ ∞∑

i=1

I{Si≤t}

]

=
∞∑

i=1

E
[
I{Si≤t}

]

=

∞∑

i=1

P (Si ≤ t)

=

∞∑

i=1

Fi(t)

Thus we just showed that:

(4.1) m(t) =

∞∑

i=1

Fi(t)

Proposition 4.2. m(t) <∞, for all 0 < t <∞ fixed

Proof. Assume P (Xk ≥ 1) = p > 0. We will make this assump-
tion. Since P (Xk = 0) < 1 then it must exist a positive value α such
that P (Xk ≥ α) = p > 0. If the proof works with α = 1 we can later
substitute α and the proof will not change significantly.

Let j − 1 ≤ t ≤ j
Claim: N(t) the number of renewals by time t ≤ sum of j independent
“total” number of trials Geometric(p) random variable. Let us prove
the claim. For each bulb k,

If Xk < 1 = throw away the bulb (it counts as a renewal)

If Xk ≥ 1 = use the bulb for 1 unit of time then throw it away

If N∗(t) is the number of bulbs replaced by time t using the protocol
described above, we obviously have N∗(t) ≥ N(t). This proves the
claim since N∗(t) has the desired probability distribution.
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Figure 1. Relationship between SN(t), t, and SN(t)+1

Therefore, using the claim:

m(t) = E[N(t)] ≤ E[N∗(t)]

= E[Y1 + Y2 . . . Yj]

=
1

p
+

1

p
. . .

1

p
︸ ︷︷ ︸

j times

=
j

p
<

t + 1

p
<∞ (because j − 1 < t < j)

We also have:



56 4. RENEWAL PROCESSES

E[N(t)2] ≤ E[N∗(t)2]

≤ E[(Y1 + Y2 . . . Yj)
2]

= Var(Y1 + Y2 . . . Yj)
︸ ︷︷ ︸

negative binomial

+ (E[Y1 + Y2 . . . Yj])
2

︸ ︷︷ ︸

known

=
j(j − p)

p2
+

(
t + 1

p

)2

< c(t + 1)2 <∞ as well.(4.2)

�

4.1. Limit Theorems for the renewal process

We will consider limiting results (as t → ∞) for the processes de-
fined thus far.

Proposition 4.3 (Strong Law of Large Numbers for renewal pro-
cesses). Using the notation defined earlier,

N(t)

t
→ 1

µ
a.s. as t→∞

Proof of SLLN:.
N(t)

t
→ 1

µ
a.s.

Recall that Sn =
∑n

i=1 Xi. Then the regular SLLN for random variables
gives that Sn ⇒ Sn

n
→ µ a.s.

By the definition of N(t) we have SN(t) ≤ t < SN(t)+1

Divide both sides by N(t)

SN(t)

N(t)
︸ ︷︷ ︸

→µ by SLLN

≤ t

N(t)
<

SN(t)+1

N(t)
=

SN(t)+1

N(t) + 1
︸ ︷︷ ︸

→µ by SLLN

· N(t) + 1

N(t)
︸ ︷︷ ︸

→1 a.s.

which implies t
N(t)
→ µ a.s. OR N(t)

t
→ 1

µ
a.s.

�

Now we want to obtain a convergence result for m(t). Notice that
m(t) = E[N(t)] and we already have a convergence result for N(t) (this
SLLN). Can we get a result about m(t) immediately. Not necessarily
as the following example shows.

Example 4.4 (a.s. convergence does not necessarily imply L1-

convergence). Assume that Xn
a.s.−−→ 0. Is is always true that E[Xn] →

0?
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Answer: Not necessary, for example let U ∼ Uniform[0, 1], and

define Xn = n1{U< 1

n
}. Then we have Xn

a.s.−−→ 0, but

E[Xn] = n · P
(

µ <
1

n

)

= n · 1
n

= 1→ 1 6= 0

�

However for our particular case the implication is true. For the
result to be true we need to apply either the dominated convergence
theorem or the monotone convergence theorem.

Theorem 4.5 (Elementary renewal theorem). With the earlier no-
tations we have:

m(t)

t
→ 1

µ
as t→∞

with the convention 1
∞ = 0

Unimaginative proof. Recall that we showed in (4.2) that E[N(t)2] ≤
c(t + 1)2. Thus we have:

E

[(
N(t)

t

)2
]

≤ c(t + 1)2

t2
≤ 2c which is independent of t

Therefore, N(t)
t

is uniformly integrable (since it is in L2). Thus we get
the desired result immediately �

4.1.1. Wald’s Theorem. Discrete stopping time. We could
just leave the Elementary renewal theorem the way it is, after all we
have proven it. However, instead we will prove it again using different
concepts which we will use latter on.

The first such new concept is the next theorem which is very very
general and very, very useful.

Theorem 4.6 (Wald’s Theorem/Identity/Equation). Let X1, X2 . . .,
W1, W2 . . . be 2 sequence of random variables with Xk independent of
Wk for any fixed k. If one of the following conditions is true

(1) All Xk’s and Wk’s are ≥ 0

(2)
∑∞

k=1 E[WkXk] <∞
Then

E

[ ∞∑

k=1

WkXk

]

=
∞∑

k=1

E[Wk]E[Xk]
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Proof of Wald’s Theorem: If the first hypothesis is true
we have:

E

[ ∞∑

k=1

XkWk

]

=
︸︷︷︸

positivity

∞∑

k=1

E[XkWk]

=
︸︷︷︸

independence

∞∑

k=1

E[Xk]E[Wk]

If the second hypothesis is true:
∑∞

k=1 E[XkWk] <∞.
Let

W+
k = WkI{Wk≥0}

W−
k = −WkI{Wk<0}

X+
k = XkI{Xk≥0}

X−
k = −XkI{Xk<0}

Note that

Wk = W+
k −W−

k

Xk = X+
k −X−

k

We then have the following:
∞∑

k=1

WkXk =
∞∑

k=1

W+
k X+

k −
∞∑

k=1

W+
k X−

k −
∞∑

k=1

W−
k X+

k +
∞∑

k=1

W−
k X−

k

All X+
k , X−

k , W+
k and W−

k are positive, then from part 1, we have

E[
∑

W+
k X+

k ] =
∑

E[W+
k ]E[X+

k ]

E[
∑

W+
k X−

k ] =
∑

E[W+
k ]E[X−

k ]

E[
∑

W−
k X+

k ] =
∑

E[W−
k ]E[X+

k ]

E[
∑

W−
k X−

k ] =
∑

E[W−
k ]E[X−

k ]

Recombining the terms in the expression above will finish the proof. �

Example 4.7. Let X1, X2 . . . iid with E[Xi] = µ. Define Xk to be
the gain at some game if you actually make the k-th bet. Let

Wk =

{

1 if you win

0 if you loose

then
∑∞

k=1 XkWk is the total gain from all bets.
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Assume that Xk > 0, also assume that Wk is determined by previ-
ous bets and by X1 . . .Xk−1

2 and maybe some U ∼ uniform random variable
Let N =

∑∞
i=1 Wk to be the number of bets you win. Then Wald’s the-

orem says that if E[N ] <∞ we have

E

[ ∞∑

k=1

WkXk

]

=

∞∑

k=1

E[Wk] E[Xk]
︸ ︷︷ ︸

=µ

= µ

∞∑

k=1

E[Wk] = µE[N ]

Note: Think about this and explain to yourself why this result is
obvious.

The second important concept is the notion of a stopping time
defined next.

Definition 4.8 (Discrete Stopping time). Let X1, X2 . . . a sequence
of independent random variable. N ∈ {0, 1, 2 . . .} is called a stop-
ping time for this {Xn}n sequence if {N = n} is independent of
Xn+1, Xn+2 . . .. Note that this is true if {N = n} is determined only by
X1, X2, . . . , Xn (or {N = n} is measurable with respect to the sigma
algebra generated by X1, X2, . . . , Xn)

Corollary 4.9 (A simpler version of Wald’s theorem which we
will use for the renewal processes). . For X1, X2 . . . iid with µ = E[Xi]
finite and N a stopping time with E[N ] <∞, then

E[

N∑

k=1

Xk] = E[Xi]E[N ] = µE[N ]

Proof. We wish to apply the general Wald. For this purpose no-
tice that we can write:

∑N
k=1 Xk =

∑∞
k=1 Xk1{N≥k}. In order to apply

regular Wald we need to show that 1{N≥k} is independent of Xk.

Remark 4.10. N is a stopping time ⇔ {N ≤ n} is independent of
{Xn+1, Xn+2 . . .}.

Proof of this Remark: is an exercise. As a hint note that
{N ≤ n} = ∪n

k=1{N = k}. �

Then {N ≤ n} is independent of Xn+1, Xn+2 . . . by the remark
OR {N > n} is independent of Xn+1, Xn+2 . . .
OR {N > n− 1} is independent of Xn, Xn+1 . . .

2In other words, it can depend on previous wins but not on the current
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which implies that {N ≥ n} is independent of Xn, Xn+1 . . . ⇒ we can
use Wald.

E

[
N∑

k=1

Xk

]

= E

[ ∞∑

k=1

Xk1{N≥k}

]

=
∞∑

k=1

E[Xk]
︸ ︷︷ ︸

=µ

E[1{N≥k}]

= µ
∞∑

k=1

E[1{N≥k}]

= µ
∞∑

k=1

P (N ≥ k)

= µ





P (N = 1) +P (N = 2) +P (N = 3) + . . .
+P (N = 2) +P (N = 3) + . . .

+P (N = 3) + . . .)





= µ[1 · P (N = 1) + 2 · P (N = 2) + 3 · P (N = 3) + . . .]

= µE[N ]

�

4.1.2. Back to the renewal processes. Now the idea is to use
the Wald’s theorem we just prove. To this end we need to find a stop-
ping time for the inter-arrival times. So, the next question comes nat-
urally: “Is N(t) = sup{n : Sn ≤ t} a stopping time for X1 . . .Xn . . .”

Short answer: No, since there could be an event happen between
the n-th event and t.

Mathematical answer:

{N(t) = n} = {Sn ≤ t < Sn+1}
= {X1 + X2 . . . + Xn ≤ t < X1 + X2 . . .Xn + Xn+1

︸ ︷︷ ︸

not independent of Xn+1

}

Note that the event is determined by Xn+1, hence {N(t) = n} can’t
be a stopping time.

New question: “Is N(t) + 1 a stopping time?”
Answer: Yes, note that

{N(t) + 1 = n} = {N(t) = n− 1} = {Sn−1 ≤ t < Sn}
= {X1 . . . + Xn−1 ≤ t < X1 . . .Xn−1 + Xn}

Since everything inside the last {·} does not contain terms of type n+1
or larger, {N(t) + 1} is a stopping time.
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At this point we are in the position to give the alternate proof to
the elementary renewal theorem. We will restate the theorem first.

Theorem 4.11 (Elementary Renewal Theorem). Let m(t) = E[N(t)].

m(t)

t

a.s.−−→ 1

µ
(= 0 if µ =∞)

Alternate Proof to the Elementary Renewal Theorem.

Since N(t) + 1 is a stopping time, from Wald we have

(4.3) E[SN(t)+1] = E[N(t) + 1]E[X] = µ(m(t) + 1)

Claim 1. lim inf
t→∞

m(t)
t
≥ 1

µ

Claim 1 proof: By definition, SN(t)+1 > t ⇒ E[SN(t)+1] > t.
Then using (4.3) we obtain:

µ(m(t) + 1) > t

m(t)

t
>

1

µ
− 1

t

Take lim inf on both sides

lim inf
t→∞

m(t)

t
≥ lim inf

t→∞

(
1

µ
− 1

t

)

=
1

µ

�

Claim 2. lim sup m(t)
t
≤ 1

µ

Claim 2 proof: Fix M > 0 constant. Let

X̄k =

{

Xk if Xk ≤M

M if Xk > M

Let µM = E[X̄k], N̄(t) to be the number of renewals up to t with
lifetimes X̄k.

Note that N̄(t) ≥ N(t) (due to shorter life times3)

m̄(t) = E[N̄(t)] ≥ m(t)

Now look at the Figure 2 on page 62 which represents the behavior
of the new process at t. Note that since we bounded the interarrival
times by M we have:

S̄N̄(t)+1 > t

S̄N̄(t)+1 ≤ t + M

3Life span is limited by the upper bound M .
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<M

t t+MSS

N(t)+1

N(t) N(t)+1

X

Figure 2. Representation of the new process.

If we use (4.3) for N̄(t) we get: E[S̄N̄(t)+1] = µM(m̄(t) + 1). There-
fore:

µM(m̄(t) + 1) ≤ t + M

m̄(t) + 1

t
≤ 1

µM

+
M

tµM

m̄(t)

t
≤ 1

µM

+
M

tµM

− 1

t

Apply lim sup in both sides to get:

lim sup
t→∞

m̄(t)

t
≤ 1

µM

which implies

lim sup
t→∞

m(t)

t
≤ lim sup

t→∞

m̄(t)

t
≤ 1

µM

.

But this holds for any M > 0. Therefore take M →∞ and using that

limM→∞
1

µM
= 1

µ
, we conclude: lim sup

t→∞

m(t)
t

= 1
µ
. �

Now combining the two claims will finish the proof. �

Finally we will give a convergence in distribution result similar with
the regular Central Limit Theorem.

Theorem 4.12 (Renewal Central Limit Theorem). Let X1, X2 . . .
i.i.d., positive, µ = E[Xk], σ2 = Var(Xk) <∞

Sn =

n∑

i=1

Xi, N(t) = sup{n : Sn ≤ t}

Then

P




N(t)− t

µ

σ
√

t
µ3

< y




t→∞−−−→ Φ(y)
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where Φ(y) is the c.d.f. of N(0, 1)

In other words, when t is large N(t) ∼ N( t
µ
, σ2t

µ3 )

Proof. Fix y.

P




N(t)− t

µ

σ
√

t
µ3

< y



 = P







N(t) <
t

µ
+ yσ

√
t

µ3

︸ ︷︷ ︸

=rt







= P (N(t) < rt)

= P (Srt
> t)

where it is obvious the definition of rt. Note here that what we wrote
only works if rt is an integer. If rt is not an integer, take r̃t = [rt] + 1.
Then

P (N(t) < rt) = P (N(t) < r̃t) = P (Sr̃t
> t)

We can use the classic central limit theorem to complete the proof.

P (Sr̃t
> t) = P

(
Sr̃t
− r̃tµ

σ
√

r̃t

>
t− r̃tµ

σ
√

r̃t

)

= lim
t→∞

Φ

(
t− r̃tµ

σ
√

r̃t

)

The proof of the theorem will end if we show that t−r̃tµ

σ
√

r̃t

→ −y

We have that:

r̃t = rt + {1− {rt}}
︸ ︷︷ ︸

=∆t∈[0,1)

where we used the notation {x} for the fractional part of x. This
implies:

t− r̃tµ

σ
√

r̃t

=
t− rtµ−∆tµ

σ
√

rt + ∆t

Recall that rt = t
µ

+ yσ
√

t
µ3 . Therefore, we continue:

=
t−∆tµ−

(

t + yσ
√

t
µ

)

σ

√

∆t + t
µ

+ σy
√

t
µ3

t→∞−−−→ −yσ

σ
= −y

�
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4.2. Discrete Renewal Theory. Blackwell theorem.

We will start this section with a motivating example.

Example 4.13 (Block Replacement Policy). Consider a light-bulb
with lifetime X, a random variable. Due to economic reasons, it might
be cheaper on a per bulb basis to replace all the bulbs instead of just
the one that breaks. A block replace policy does just that by fixing a
time period K and replacing bulb’s as they failed at times 1, 2 . . .K−1
and at K replacing everything regardless the condition of the bulb. Let

c1 = replacement cost per bulb (block replacement)

c2 = replacement cost per bulb (failure replacement)

where obviously c1 < c2. Let N(n) to be the number of replacements
up to time n for 1 bulb, let m(n) = E[N(n)]

For one bulb the expected cost is c2m(k− 1) + c1. Then, the mean
cost per unit of time is:

mean cost

unit time
=

c2m(k − 1) + c1

K

Since the replacements take place only at the beginning of the day
we are only interested in discrete variables to describe the lifetime of
a lightbulb. Suppose that X has the distribution P (X = k) = pk,
k = 1, 2 . . .. Fix n ≤ K. Look at X1 the lifetime of the first lightbulb.
Obviously, if X1 > n there was no replacement by time n. If X1 = k ≤
n then we will have m(n− k) expected replacements in the later time
period. Therefore, we can write conditioning on the lifetime of the first
bulb:

m(n) =
∞∑

k=n+1

pk · 0 +
n∑

k=1

pk[1 + m(n− k)]

=

n∑

k=1

pk[1 + m(n− k)]

= FX(n) +
n−1∑

k=1

pkm(n− k),
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where FX(·) is the c.d.f. of X. Then we obtain recursively:

m(0) = 0

m(1) = FX(1) + p1m(0) = p1

m(2) = FX(2) + p1m(1) + p2m(0) = p1 + p2 + p2
1

... etc.

Example 4.14 (continues the example above). Let us look to a
numerical example of the problem above. Suppose that X can only
take values {1, 2, 3, 4} with p1 = 0.1, p2 = 0.4, p3 = 0.3, p4 = 0.2,
furthermore the costs are c1 = 2, c2 = 3. Find the optimal replacement
policy.

Using the formulas above we can calculate:

m(1) = 0.1, m(2) = 0.51, m(3) = 0.891, m(4) = 1.3231

Using these numbers we will try to minimize the expect cost,

cost =
c1 + c2m(K − 1)

K
←We will try different K’s to get the minimum

We will obtain a table of cost as a function of K as:

Table 1. default

K cost
1 2.00
2 1.15
3 1.17
4 1.16
5 1.19

Hence the optimal replacement policy is at K = 2. We can also
continue the calculation of m’s:

m(5) =1.6617, m(6) = 2.0647, m(7) = 2.4463, m(8) = 2.8336,

m(9) =3.2136, m(10) = 3.6016, . . .

Now we can calculate un the probability that a replacement occurs
in period n as:

un = m(n)−m(n− 1).

Calculating un’s for the values given we can see that pretty quickly
we have

un ≈
1

µ
= 0.3846.

This fact will be explained by the next theorem.
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Let us assume that we have a renewal process with non negative
integer valued lifetimes, X with P (X = k) = pk, k = 0, 1, 2 . . .

Definition 4.15. X an integer random variable is called a lattice
if there ∃d ≥ 0 such that pk > 0, ∀k not a multiple of d. The largest
d with the property that

∑∞
n=1 pnd = 1 is called the period of X. In

effect:

d = g.c.d.{k : pk > 0}4
If g.c.d.{k : pk > 0} = 1 then X is called a non lattice random variable.
Also if X, a lattice random variable has c.d.f F , then F is called a
lattice.

Example 4.16. Consider the two simple example below

• p2 = p4 = p6 = 1
3

lattice distribution.
• p3 = p7 = 1

2
non-lattice distribution.

In the previous example we have seen how to establish the equation

m(n) = FX(n) +

n−1∑

k=1

pkm(n− k).

(Note that if lifetimes are allowed to be zero the equation is a little
different.)

However, this equation constitutes a particular example of a renewal
equation (discrete case). In general a discrete renewal equation looks
like:

(4.4) vn = bn +

n∑

k=0

pkvn−k,

where vi’s are unknowns and pi’s are probabilities. Note that this form
of equation has a unique solution, e.g. v0 = b0

1−p0
, v1 = b1+p1v0

1−p0
, etc.

Let un be the expected number of renewals that take place in period
n. We have said in the example that un = m(n) −m(n − 1). This is
only true if lifetimes are nonzero and therefore at most one renewal
occurs in any 1 time period. This is easy to show:

un = P{One renewal occurred at n}
= E[1{One renewal occurred at n}]

= E[N(n)−N(n− 1)] = m(n)−m(n− 1)

We have seen in the previous example that this un got closer and
closer to 1/µ. The next theorem formalizes this fact and generalizes it.

4The greatest common denominator of the set of integers.
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Theorem 4.17 (Blackwell renewal theorem). Using the notations
defined thus far we have:

(1) un → 1
µ

as n→∞.

(2) If X0 ≥ 0 is a ”delay” variable, and X1, X2, . . . ≥ 0 are i.i.d.
lifetimes independent of X0 with EX1 = µ and non-lattice dis-
tribution then:

m(t + a)−m(t)→ a

µ
, as t→∞.

Note that m(t + a)−m(t) is the expected number of renewals
in the interval [t, t + a].

(3) If Xi’s are lattice random variables with period d, and X0 = 0
then:

E[Number of renewals at nd]→ d

n
, n→∞

Remark 4.18. About the theorem.

(1) Even though the section was started with an example of a
discrete renewal process, the part (2) of the Blackwell theo-
rem applies to any non-lattice distribution. This includes any
continuous distribution.

(2) All the parts of the theorem are true if µ =∞ (1/∞ = 0).
(3) If Xi > 0, part (3) is ⇔ P{Renewal at nd} → d/µ

Proof. Not proven. �

Write for an infinitesimal increment dy:

m(dy) =



 dm(y)
︸ ︷︷ ︸

Notation used sometimes



 = m(y + dy)−m(y)

= E[Number of renewals in the interval (y, y + dy]]

This is the renewal measure. The Blackwell renewal theorem says that:

m(dy) ≃ 1

µ
dy.

Lemma 4.19. We have:

(4.5) m(dy) =

∞∑

n=0

P (Sn ∈ (y, y + dy])
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Proof. The proof is straightforward (here we use a delay, therefore
the sum starts from n = 0):

m(dy) = E[N(y + dy)−N(y)] = E[N(y + dy)]− E[N(y)] =

=

∞∑

n=0

P (N(y + dy) ≥ n)−
∞∑

n=0

P (N(y) ≥ n)

=

∞∑

n=0

P (Sn ≤ y + dy)−
∞∑

n=0

P (Sn ≤ y)

=

∞∑

n=0

P (Sn ∈ (y, y + dy])

�

Many applications of the renewal theorem are concerned with the
behavior of the process near a large time t. We need a final key of the
puzzle before we proceed with the study of such applications and this
key is provided in the next section.

4.3. The Key Renewal Theorem

This is the main result used in applications of the renewal processes.
We will start with a definition.

Definition 4.20 (Directly Riemann Integrable function). A func-
tion h : [0,∞) → R is called a Directly Riemann Integrable (DRI)
function if the upper and lower mesh δ Darboux sums are finite and
have the same limit as δ → 0.

Reminder of lower (and upper) Darboux sum LDS (and UDS):
Let π = (t0 = 0 < t1 < t2 < . . .) be a partition of [0,∞), with

maxi(ti − ti−1) ≤ δ. Define:

LDS(h, π, δ) =
∞∑

n=1

inf
t∈[tn−1,tn]

h(t)(tn − tn−1)

UDS(h, π, δ) =

∞∑

n=1

sup
t∈[tn−1,tn]

h(t)(tn − tn−1)

Example 4.21 (Example of Riemann integrable function which is
not DRI). Let:

h(s) =
∞∑

k=1

1{k≤s<k+ 1

k2
}
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Make a plot of this function to see what is happening. We have that:
∫ ∞

0

h(s)ds = 1 +
1

4
+

1

9
+ · · · =

∞∑

k=1

1

k2
<∞,

so this function is Riemann integrable. However it is not DRI. Take
the partition π = (t0 = 0, t1 = δ, t2 = 2δ, . . . , tn = nδ, . . .). Then:

UDS(h, π, δ) =
∞∑

n=1

sup
t∈[(n−1)δ,nδ]

h(t)(nδ − (n− 1)δ)

= δ
∞∑

n=1

sup
t∈[(n−1)δ,nδ]

h(t)

For any δ no matter how small but positive the last term is an infinite
sum of 1’s which is infinite.

Proposition 4.22. The following are sufficient conditions for a
function to be DRI:

(1) h(t) ≥ 0, ∀t > 0
(2) h is nonincreasing
(3)

∫∞
0

h(t)dt <∞
Proof. Not given. �

Now we are in the postion to be able to state the main theorem of
this section.

Theorem 4.23 (The Key Renewal Theorem). For non-lattice X1, X2, . . .
(any X0 “delay” is fine) and if h is a DRI function we have:

lim
t→∞

∫ t

0

h(t− y)m(dy) =
1

µ

∫ ∞

0

h(t)dt

Proof. Skipped. �

This is a very powerful theorem. We shall see its application in the
next section.

4.4. Applications of the Renewal Theorems

Refer back to Figure 1 on page 55. We can see there the current age
at time t and the remaining lifetime at t. Applications are concerned
with these quantities when t is large. So the question is: can we get
distributions for these quantities? For example:

(a) P(Age at time t of the current item > x) = P(A(t) > x)
(b) P(Remaining lifetime of the item in use at t > x) = P(Y (t) >

x)
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(c) P(Total age of the item in use at t > x) = P(XN(t)+1 > x),

where we have use the obvious notations A(t) to denote the age of
the item in use at t and Y (t) to denote the residual life for the item in
use at t.

X

t+xt

S

y y+dy

n

n+1

Figure 3. Deduction of the formula.

We will look at the process Y (t) for exemplification (see Figure 3
on page 70). Recall that X0 is the delay and we will use the convention
S0 = X0. Note that this renewal is counted in the renewal process
N(t). We have:

P(Y (t) > x) = P(SN(t)+1 − t > x) = P(N(t) = 0, X0 > t + x)

+
∞∑

n=1

∫ t

0

P(N(t) = n, Sn−1 ∈ (y, y + dy], Xn > t + x− y)

= P(X0 > t + x) +
∞∑

n=1

∫ t

0

P(Sn−1 ∈ (y, y + dy], Xn > t + x− y)

= (1− F0(t + x)) +
∞∑

n=0

∫ t

0

P(Sn ∈ (y, y + dy])P(Xn+1 > t + x− y)

Using the notation:

F (x) = 1− F (x)

we continue:

P(Y (t) > x) = F 0(t + x) +

∫ t

0

F (t + x− y)
∞∑

n=0

P(Sn ∈ (y, y + dy])

= F 0(t + x) +

∫ t

0

F (t + x− y)m(dy)

= F 0(t + x) +

∫ t

0

h(t− y)m(dy),

where we have used the Lemma 4.19 and we used the notation
h(s) = F (s + x). Using now the fact that F 0(t + x)

t→∞−−−→ 0 (argue this
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yourselves) a direct application of the Key Renewal Theorem (KRT)
4.23 will yield:

P(Y (t) > x)
t→∞−−−→ 1

µ

∫ ∞

0

F (s + x)ds =
1

µ

∫ ∞

x

F (y)dy

This result is significant enough to make it a proposition.

Proposition 4.24. Let A(t) be the age at t of the item and let Y (t)
be the residual life of the item alive at t. Then if F is the c.d.f. of the
lifetimes with mean lifetime µ, then the distributions of A(t) and Y (t)
for t large have densities proportional with:

f(y) =
F (y)

µ

Proof. For Y (t) the result is clear since from above we have:

P(Y (t) ≤ x)
t→∞−−−→=

∫ x

−∞

F (y)

µ
dy

For A(t) note that we have:

{A(t) > x} ⇔ {Y (t− x) > x} (No renewal in [t− x, t]),

therefore

lim
t→∞

P{A(t) > x} = lim
t→∞

P{Y (t− x) > x} =
1

µ

∫ ∞

x

F (y)dy

�

Remark 4.25. If the distribution of the delay has this special form:
P(X0 > x) = 1

µ

∫∞
x

F (y)dy then m(t) = t
µ

and the process is stationary

(meaning that it looks the same regardless when you start observing
it).

4.5. Special cases of Renewal Processes. Alternating
Renewal process. Renewal Reward process.

4.5.1. The Alternating Renewal process. Let {(Zn, Yn)}∞n=1

be i.i.d. pairs of random variables5. Note that the pairs for i 6= j are
independent but Zn and Yn can be dependent.

Let Xn = Zn + Yn. Let Sn =
∑n

i=1 Xi which will give the renewal
process.

The story: The Zi’s represent the lightbulb lifetimes or the time
that the system is ON, and the Yi’s represent the replacement times or
the time that the system is OFF.

5Here (Z1, Y1) (delay) is allowed to have a different distribution than the rest
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Denote the c.d.f of Yi’s with G, the c.d.f of Zi’s with H and the
c.d.f of Xi’s with F .

Theorem 4.26. If E[Xn] <∞ and F is non-lattice we have:

P(The system is ON at time t)
t→∞−−−→ E(Zn)

E(Xn)
=

E(Zn)

E(Zn) + E(Yn)

Proof.

P(ON at time t) = P(Z1 > t) +

∞∑

n=0

∫ t

0

P(Sn ∈ (y, y + dy], Zn+1 > t− y)

= H1(t) +

∞∑

n=0

∫ t

0

P(Sn ∈ (y, y + dy])P(Zn+1 > t− y)

= H1(t) +

∫ t

0

H(t− y)

∞∑

n=0

P(Sn ∈ (y, y + dy])

= H1(t) +

∫ t

0

H(t− y)m(dy)

t→∞−−−→
KRT

H1(∞) +
1

µ

∫ ∞

0

H(t)dt

However, E[Z] =
∫∞

0
P(Z > z)dz =

∫∞
0

H(z)dz and E[X] = µ so
we are done. �

Example 4.27. We have already seen that the distribution of A(t)
has density F (y)/µ. We will obtain this distribution again using the
previous theorem about alternating renewal processes. Please read the
next derivations since they provide examples of using this most useful
theorem.

Once again we will deduce P(A(t) > x). Fix x > 0. Say that the
system is ON during the first x units of each lifetime and OFF the rest
of that time. Mathematically, using the notation of the alternating
renewal processes:

Zk := Xk ∧ x = min(Xk, x)

Yk = Xk − Zk

Then the theorem says:

P(System is ON at time t) = P(A(t) < x)→ E(Zn)

µ

But we can calculate the limit since:
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E(Zn) =

∫ ∞

0

P(Zn > y)dy =

∫ x

0

P(Zn > y)dy +

∫ ∞

x

P(Zn > y)dy

=

∫ x

0

P(Xn > y)dy =

∫ x

0

F (y)dy,

which will give the density and finish the solution.

Example 4.28 (Limiting distribution of the current lifetime XN(t)+1).
We want to calculate P(XN(t)+1 > x). Fix x. Construct an alternating
renewal process using:

Zn = Xn1{Xn>x}, Yn = Xn1{Xn≤x}

Then:

P(System is ON at time t) = P(XN(t)+1 > x)→ E(Zn)

µ

Again we can calculate:

E(Zn) =

∫ ∞

0

P(Zn > y)dy =

∫ x

0

P(Zn > y)dy +

∫ ∞

x

P(Zn > y)dy

=

∫ x

0

P(Xn > x)dy +

∫ ∞

x

P(Xn > y)dy

= xP(Xn > x) +

∫ ∞

0

F (y)dy

=

∫ ∞

0

ydF (y) (Integrating by parts)

which will give the limiting distribution:

P(XN(t)+1 > x)→
∫∞
0

ydF (y)

µ

Recall that if we denote Y (t) the excess lifetime, we have already
found its limiting distribution:

P (Y (t) > x)→ 1

µ

∫ ∞

x

F̄ (t)dy

We would like to find its expectation, or the limiting expected excess
life, E[Y (t)]. A first guess would be obviously the expectation of the
previous distribution:

E[Y (t)] =

∫ ∞

0

P (Y (t) > x)dx→ 1

µ

∫ ∞

0

∫ ∞

x

F̄ (y)dydx
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The guess turns out to be correct but we need to prove this.

Proposition 4.29. If X is non-lattice with E[X2] <∞, then

lim
t→∞

E[Y (t)] =
E[X2]

2µ

Note that one can show E[X2]
2µ

and 1
µ

∫∞
0

∫∞
x

F̄ (y)dydx are the same

quantities using a change the order of integration then integrating by
parts.

Y(t)

t

S

y y+dy

n

n+1X

Figure 4. Relationship between Xn+1 and Y (t)

Proof. We can go ahead and calculate:

E[Y (t)] =
∞∑

n=0

E[Y (t)1{N(t)=n}]

= E[Y (t)1{N(t)=0}] +
∞∑

n=1

E[Y (t)1{N(t)=n}]

= E[(X1 − t)1{X1>t}] +
∞∑

n=1

∫ t

0

E




 Y (t)

︸︷︷︸

=Xn+1−(t−y)

1{Sn∈(y,y+dy],N(t)=n}






= E[(X1 − t)1{X1>t}] +

∞∑

n=1

∫ t

0

E
[
(Xn+1 − (t− y))1{Sn∈(y,y+dy]}1{Xn+1>t−y}

]

= E[(X1 − t)1{X1>t}] +

∫ t

0

E
[
X − (t− y)1{X>t−y}

]
∞∑

n=1

E
[
1{Sn∈(y,y+dy]}

]

︸ ︷︷ ︸

=m(dy)

= E[(X1 − t)1{X1>t}] +

∫ t

0

E
[
X − (t− y)1{X>t−y}

]
m(dy)

The first term in the above sum converges to 0 as t → ∞ since E[X1]
is finite. We can write h(t− y) = X − (t− y)1{X>t−y} and use the Key
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Renewal Theorem for the second term. If we do that we obtain the
limit as:

E[Y (t)]
t→∞−−−→=

1

µ

∫ ∞

0

h(s)ds =
1

µ

∫ ∞

0

E[(X − s)1{X>s}]ds

=
1

µ

∫ ∞

0

[∫ ∞

s

(x− s)dF (x)

]

ds

Fubini =
1

µ

∫ ∞

0

∫ x

0

(x− s)dsdF (x)

=
1

µ

∫ ∞

0

−(x− s)2

2

∣
∣
∣
∣

x

0

dF (x)

=
1

µ

∫ ∞

0

x2

2
dF (x) =

E[X2]

2µ

�

Corollary 4.30. If E[X2] < ∞ and F non-lattice then (for the
un-delayed renewal process)

m(t)− t

µ

t→∞−−−→ E[X2]

2µ2
− 1

Proof. Note that we have shown that E[SN(t)+1] = µ · (m(t) + 1)
However:

E[t + Y (t)] = t + E[Y (t)]→ t +
E[X2]

2µ

Since SN(t)+1 = t + Y (t) we obtain:

m(t) + 1→ t

µ
+

E[X2]

2µ2
⇒ m(t)− t

µ
→ E[X2]

2µ2
− 1

�

Example 4.31. Let X1, X2 . . . iid U [0, 1]. Then µ = 1
2
, E[X2] = 1

3

Then the corollary says for t = 100

m(100) ∼ 100

m
+

E[X2]

2µ2
− 1

=
100

1
2

+
1
3

2 · (1
2
)2
− 1 ← better approximation

= 199
1

3
(probably very accurate)
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4.5.2. Renewal Reward Process. Consider iid pairs: (X1, R1), (X2, R2) . . .
Story: At time Sn =

∑n
i=1 Xi you get a reward Rn. Assume that

Xi ≥ 0, E[Xi] = µ <∞, E[Ri] <∞.

Let Rt =
∑N(t)

i=1 Ri the total reward up to time t

Theorem 4.32. Two results:

(1)

R(t)

t

a.s.−−→ E[R]

µ
as t→∞

(2)

E[R(t)]

t
→ E[R]

µ
as t→∞

Proof. Part (1): We have:

R(t)

t
=

1

t

N(t)
∑

i=1

Ri =

∑N(t)
i=1 Ri

N(t)

N(t)

t

The first term in the product above converges to the E[R] using the
strong law of large numbers and the second term converges to 1/µ by
the renewal SLLN. Therefore, we get the result in part (1).

Part (2): We have:
Using Wald for N(t) + 1 which is a stopping time,

E[R(t)] = E[

N(t)
∑

i=1

Ri] = E[

N(t)+1
∑

i=1

Ri]− E[RN(t)+1]

= E[N(t) + 1]E[Rn]− E[RN(t)+1] = (m(t) + 1) E(R)− E[RN(t)+1]

This implies dividing with t and taking the limit as t→∞:

E[R(t)]

t
=

(m(t) + 1)

t
E(R)− E[RN(t)+1]

t

t→∞−−−→ E(R)

µ
− lim

t→∞

E[RN(t)+1]

t
,

where we used the elementary renewal theorem for the first term. To
complete the proof we have to show that limt→∞ E[RN(t)+1]/t = 0. We
have:
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E[RN(t)+1] = E[R11{X1>t}] +
∞∑

n=1

∫ t

0

E
[
Rn+11{Xn+1>t−y,Sn∈(y,y+dy],N(t)=n}

]

= E[R11{X1>t}] +

∫ t

0

∞∑

n=1

E
[
Rn+11{Xn+1>t−y}

]
E
[
1{Sn∈(y,y+dy]}

]

= E[R11{X1>t}] +

∫ t

0

E
[
R21{X2>t−y}

]
∞∑

n=1

E
[
1{Sn∈(y,y+dy]}

]

= E[R11{X1>t}] +

∫ t

0

h(t− y)m(dy),

where we denoted h(t− y) = E
[
R21{X2>t−y}

]
, to apply the KRT. The

first term converges to 0 as t→∞ (justify), and we obtain the limit:

lim
t→∞

E[RN(t)+1] =
1

µ

∫ ∞

0

h(t)dt =
1

µ

∫ ∞

0

E
[
R21{X2>t}

]
<

E(R)

µ
<∞

Thus, dividing with t and taking the limit we obtain 0, which fin-
ishes the proof. �

4.6. The Renewal Equation. Convolutions.

Often the quantity of interest in renewal theory Z(t) satisfies an
equation of the form:

Z(t) = z(t) +

∫ t

0

Z(t− y)F (dy)

where F (t) = c.d.f. of interarriaval time, and z(t) is the some known
function with the properties:

• z(t) = 0 if t < 0
• z bounded on finite interval

An equation of this type is called a renewal equation

Example 4.33. m(t) satisfies:

m(t) = F (t) +

∫ t

0

m(t− y)F (dy)

Example 4.34. P (Y (t) > x):

P (Y (t) > x) = F̄ (t + x) +

∫ t

0

P (Y (t− y) > x)F (dy)
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Example 4.35. E[Y (t)]:

E[Y (t)] = E[X1 − t]I{X1>t} +

∫ t

0

E[Y (t− y)]dF (y)

The next theorem will provide a way to solve the renewal equation.

Theorem 4.36. If F (0−) = 0, F (0) < 1, z(t) is bounded on finite
intervals and z(t) = 0 for t < 0 then the renewal equation

Z(t) = z(t) +

∫ t

0

Z(t− s)dF (s)

has a unique solution, bounded on finite intervals given by

Z(t) = z(t) ∗m0(t) =

∫ t

0

z(t− y)m0(dy) =

∞∑

n=0

∫ t

0

z(t− y)dFn(y)

where

m0(t) =

∞∑

n=0

Fn(t) =

∞∑

n=0

P (Sn ≤ t)

Fn(t) = F ∗ F . . . ∗ F
︸ ︷︷ ︸

n times

, with S0 = 0

Properties of Convolution Let F , G c.d.f.’s with F (0−) =
G(0−) = 0, z as in the theorem. Then:

(1) F ∗G = G ∗ F
(2) z*(F*G)=(z*F)*G
(3) z*(F+G)=z*F+z*G

(4) If G has density g then F ∗ G has density g ∗ F =
∫ t

0
g(t −

y)F (dy)

Proof of the theorem on renewal equation. Part 1. Ex-
istence of the solution.
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z ∗m0(t) =

∞∑

n=0

z ∗ Fn(t)

= z ∗ F0(t) +

∞∑

n=1

z ∗ Fn(t)

= z(t) ∗ F0 +

[ ∞∑

n=0

z ∗ Fn(t)

]

∗ F (t)

= z(t) + (z ∗m0) ∗ F (t)

= z(t) +

∫ t

0

(z ∗m0)(t− s)dF (s)

Note that we used the fact F0(t) = P (S0 ≤ t) = 1{t≥0}
This shows that z ∗m0 is a solution for the renewal equation.
Part 2. Uniqueness:
Assume that there exist Z1(t) and Z2(t) 2 solutions of the renewal

equation. Let V (t) = (Z1−Z2)(t). By definition V (t) should also solve
the renewal equation, i.e.,

V (t) = (Z1 − Z2)(t)

= z(t) +

∫ t

0

Z1(t− s)dF (s)− z(t)−
∫ t

0

Z2(t− s)dF (s)

=

∫ t

0

V (t− s)dF (s) = V ∗ F (t)

Repeat the argument:

V (t) = V ∗ F (t) = V ∗ F2(t) = . . . = V ∗ Fk(t), ∀k

which implies:

V (t) =

∫ t

0

V (t− y)Fk(dy)

≤ sup
0≤s≤t

V (s)

∫ t

0

dFk(s)

= sup
0≤s≤t

V (s)Fk(t)
k→∞−−−→ 0

Because Fk(t) = P (X1 +X2 + . . .+Xk ≤ t)
k→∞−−−→ 0, ∀t fixed. (CLT

or SLLN) �



80 4. RENEWAL PROCESSES

Theorem 4.37. (true for both lattice and non-lattice case) If X1

has distribution

P (X1 > x) =

∫ ∞

0

1

µ
F (y)dy

def
= Fe(x)

This is called the equilibrium distribution; the process with the delay X1

having this distribution is called the equilibrium renewal process. Let

mD(t)
def
=

∞∑

n=1

P (Sn ≤ t) =
∞∑

n=0

Fe ∗ Fn(t),

and YD(t) be the residual lifetime at t for the delayed process. Then:

(1) mD(t) = t
µ

(2) P (YD(t) > x) = F e(x) for all t > 0
(3) {ND(t)}t has stationary increments.

Proof. Part 1.

mD(t) = Fe(t) +

(

Fe ∗
∞∑

n=1

Fn

)

(t)

= Fe(t) +

(

Fe ∗
∞∑

n=0

Fn

)

∗ F (t)

= Fe(t) + mD(t) ∗ F (t)

which implies that mD(t) solves a renewal equation with z(t) = Fe(t)
If we show that t

µ
also solves the renewal equation with the same

z(t), we are done.
Check yourself that h(t) = t

µ
1{t>0} also solves the same renewal

equation. By uniqueness of the solution we are done.
Part 2We have using the usual renewal argument:
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P (YD(t) > x) = P(X1 > t + x) +

∫ t

0

F (t− y + x)mD(dy)

(From (i) =⇒) = F e(t + x) +

∫ t

0

F (t− y + x)
dy

µ

=

∫ ∞

t+x

1

µ
F (y)dy +

∫ t

0

1

µ
F (t− y + x)dy

(c.v. v = t− y + x) =

∫ ∞

t+x

1

µ
F (y)dy −

∫ x

t+x

1

µ
F (v)dv

=

∫ ∞

x

1

µ
F (y)dy

= F e(x) =⇒ DONE.

Part 3. This part follows from part (2) using the fact that
ND(t + s)−ND(s) is the number of renewals in a time interval length
t of a delayed renewal process. �





CHAPTER 5

Special Chapter about some applications of the

notions learned thus far.

At this point we are going to stop and look to some interesting
examples of discrete processes.

5.1. Random Walk on integers in R
d

Let ~Xk = (X
(1)
k , X

(2)
k . . .X

(d)
k ) ∈ R

d a random vector. Each X
(i)
k is

independent of the others and it is ±1 each with probability 1
2
.

Then ~Sn =
n∑

k=1

~Xk is a d-dimensional random walk

Remark 5.1. The sum above is done componentwise, it is not the
regular summation of the vectors. I use the notation ~X to symbolize
the fact that X has more than one dimensions nothing more, there is
no origin, directional angle or size involved in the notation.

We will talk next about some common questions regularly asked
about this process.

Question: Once started from (0, 0, . . . , 0), would the process come

back to ~0? OR is Sn = (0, 0, . . . , 0) for some n?

Answer: For n odd, P (Sn = ~0) = 0. For n even say equal to 2k

P (~S2k = ~0) = P
(

S
(1)
2k = 0, S

(2)
2k = 0, . . . S

(d)
2k = 0

)

=
[

P
(

S
(i)
2k = 0

)]d

�

Claim:
[

P
(

S
(i)
2k = 0

)]d

=
(

constant√
k

)d

Why?

Note that we have a total of 2k steps and S
(i)
2k is now 1-dimensional.

To get back to 0 once you start from it you need k steps up (values

83
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−1

1

1

−1

Figure 1. Random walk in 2-dimensions. Possible val-
ues for the first jump each with probability 1/4

of 1) and k steps down (values of −1). But then the number of such
paths is:

2k total steps⇒
{

k forward steps

k back steps
→
(

2k

k

)

Probability of any such path is (1
2
)2k, which implies

P
(

S
(i)
2k = 0

)

=

(
2k

k

)(
1

2

)2k
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Now use Stirling’s formula for the combinatorial term, (i.e., n! ∼√
2πnnne−n):

P
(

S
(i)
2k = 0

)

=
(2k)!

(k!)2

(
1

2

)2k

=

√
2π2k(2k)2ke−2k

(
√

2πkkke−k)2

(
1

2

)2k

=
2
√

πk22k(k2ke−2k)

2πk(k2ke−2k)

(
1

2

)2k

=
1√
πk

=
constant√

k

which proves the claim.

Theorem 5.2 (Polya). If d = 1, 2 then you come back to ~0 infinitely

often. If d ≥ 3 eventually you never come back to ~0.

Proof. Let pd = P{You never come back to ~0 at all in R
d}. Then:

∞∑

n=1

1{~Sn=~0} = {number of times you return to ~0}

then
∑∞

n=1 1{~Sn=~0} is a Geometric(pd) (number of failures) random vari-

able. This is clear if you consider coming back to ~0 a failure and not
coming back a success. Therefore we can write:

E

[ ∞∑

n=1

1{~Sn=~0}

]

=
1

pd

− 1

Using Fubini and the previous claim:

E

[ ∞∑

n=1

1{~Sn=~0}

]

=

∞∑

n=1

(

E[1{~Sn=~0}]
)

=

∞∑

n=1

P
(

~Sn = ~0
)

=

∞∑

n=2k
k=1

cd

k
d

2

= cd

∞∑

k=1

1

k
d

2

Therefore:

1− pd

pd

=

{

<∞ if d ≤ 2

∞ if d > 2
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which implies

pd > 0⇔ d ≥ 3

pd = 0⇔ d = 1, 2

As a conclusion when d = 1, 2 the number of visits to 0 is∞. When
d >= 3 the number of visits is finite a.s. which means that eventually
you will drift to infinity. Moral: Do not get drunk while driving a
spaceship. �

Remark 5.3. Considering a renewal event the event that the ran-
dom walk returns to the origin ~0 we can easily see that the random
walk produces a renewal process.

5.2. Age dependent Branching processes

Story: Let F to be the lifetime distribution, with F (0) = 0,
Pj to be the probability that at death we get exactly j offsprings,
j = 0, 1, 2 . . ..
Each offspring then acts independently of others and produce their own
offspring according to Pj, and so on and so forth.

Let X(t) denote the number of organisms alive at time t. {X}t>0

is called an age dependent branching process with X(0) = 1.

Quantity of interest : M(t) = E[X(t)]

m =
∞∑

j=0

jPj = number of offsprings (assumed to be > 1)

Special case: If lifetimes are identically equal to 1, then

M(k) = mk

In this particular situation X(k) is called a Galton-Watson
process (which is also a Markov Chain, as we will see later).
This process was invented in 1873 by the people whose name it
bears as result of a study initiated at the request of the crown
to see if the aristocratic surnames were dying out in England
of that time.

Remark : usually
X(k)

mk
→ Z

with Z a random variable finite a.s..

Theorem 5.4. If X(0) = 1 and F is non-lattice then

e−αtM(t)
t→∞−−−→ m− 1

m2α
∫∞
0

xe−αxdF (x)
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where α > 0 is the solution of the equation:
∫∞
0

e−αtdF (t) = 1
m

Remark 5.5. The theorem simply says that M(t) ∼ constant ·e−αt

Proof. Using ds = (s, s + ds] and the renewal argument:

M(t) = E[X(t)]

= E[X(t)1{1st life >t}] + E[X(t)1{1st life≤t}]

= E[11{T1>t}] +

∫ t

0

E[ N
︸︷︷︸

Nr. of offsprings

X(t− s)1{T1∈ds}]

= P (T1 > t) +

∫ t

0

mE[X(t− s)1{T1∈ds}] , note m = E[N ]

= F (t) +

∫ t

0

mM(t− s)dF (s)

This looks a lot like a renewal equation except for the m. To eliminate
it multiply both sides by e−αt

⇒M(t)e−αt = F (t)e−αt +

∫ t

0

e−αtmM(t− s)dF (s)

= F (t)e−αt +

∫ t

0

e−α(t−s)M(t − s) me−αsdF (s)
︸ ︷︷ ︸

=dG(s)

We denoted dG(s) = me−αsdF (s), OR G(t) =
∫ t

0
me−αsdF (s)

G is a c.d.f. because α is a solution of
∫∞
0

e−αtdF (t) = 1
m

. Its
definition implies that G(0−) = 0.

Thus, we obtain a renewal equation Z(t) = z(t)+
∫ t

0
Z(t−s)dG(s),

where:

Z(t) = e−αtM(t)

z(t) = e−αtF (t)

Recall that the unique solution is

Z(t) = z ∗m0(t) =

∫ t

0

z(t− s)m0(ds) (with m0 given by

∞∑

n=0

Gn(s))

KRT−−→ 1

µG

∫ ∞

0

z(t)dt,

provided that we can apply the Key Renewal Theorem. Looking back
we see that Z(t) → 1

µG

∫∞
0

e−αtF (t)dt. Now let us calculate the limit,

while at the same time showing that z(t) is DRI. Using that F (t) =
∫∞

t
dF (x) we have:
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∫ ∞

0

z(t)dt =

∫ ∞

0

(∫ ∞

t

dF (x)

)

e−αtdt

=

∫ ∞

0

(∫ x

0

eαtdt

)

dF (x) (Fubini)

=

∫ ∞

0

1

α
(1− e−αx)dF (x)

=
1

α








∫ ∞

0

dF (x)

︸ ︷︷ ︸

=1

−
∫ ∞

0

e−αxdF (x)

︸ ︷︷ ︸

= 1

m
(def. of α)








=
1

α

[

1− 1

m

]

<∞

Thus, z(t) is Riemann integrable, also it is decreasing and positive
therefore it is DRI. All that remains is to calculate µG.

µG =

∫ ∞

0

xdG(x) =

∫ ∞

0

xme−αxdF (x) = m

∫ ∞

0

xe−αxdF (x)

Hence,

Z(t) = e−αtM(t)→
1
α

(
1− 1

m

)

m
∫∞
0

αe−αxdF (x)

And a little algebra shows that this is exactly the formula we need to
prove. �

Remark 5.6. What if m < 1? If ∃α < 0 with
∫∞
0

e−αxdF (x) = 1
m

and e−αxF (x) is DRI, then the same result is true.
In either case m > 1, m < 1; µG = ∞ is possible and it will not

change the answers.

Exercise 22. Question For a Branching Process what is the prob-
ability that X(t) = 0 eventually? (population dies out).
Think about this.
Guesses.

For m < 1, it is kind of obvious that P (Population dies out) = 1.
If m = 1, then P (Population dies out) = 1 except when the number

of offsprings is exactly 1.
What if m > 1? P (Population dies out) > 0 iff P (0 offsprings) > 0


