
Lecture 10

Multiple Linear Regression
Ch 11



Objectives

Multiple linear regression model
Confidence intervals and significance tests 
for βj

ANOVA F-test for multiple regression
Squared Multiple Correlation 
Selection of variables



For “p” number of explanatory variables, we can express the population mean 
response (μy) as a linear equation:

μy = β0 + β1x1 … + βpxp

The statistical model for n sample data (i = 1, 2, … n) is then:

Data =               fit      +    residual

yi =   (β0 + β1x1i … + βpxpi) +       (εi)

Where the εi are independent and normally distributed N(0, σ).

Multiple linear regression assumes equal variance σ2 of y. The parameters of 
the model are β0, β1 … βp.

Multiple linear regression model



We select a random sample of n individuals. We collect p + 1 variables 

(x1 … , xp, y). The least-squares regression method  minimizes the sum of 
squared deviations ei = yi – ŷi where ŷ is expressed as a linear functional of the 
p explanatory variables:

ŷi =  b0 + b1x1i … + bkxpi

■ As with simple linear regression, the constant b0 is the y intercept. 

■ The regression coefficients b1 to bp reflect the unique association of each 
independent variable with the y variable. They are analogous to the slope in simple 
regression. bi represents the increase in the mean response associated with a unit 
increase in the variable xi provided all the other variables are held fixed.

ŷ μy

b0 are unbiased estimates of population parameters β0

bp βp





For a multiple linear relationship the ANOVA tests the hypotheses 

H0: β1 = β2 = … = βp = 0 versus Ha: H0 not true

by computing the F statistic: F = MSM / MSE

When H0 is true, F follows 

the F(1, n − p − 1) distribution. 

The p-value is P(> F). 

A significant p-value doesn’t mean that all p explanatory variables have a 
significant influence on y — only that at least one does.

ANOVA F-test for multiple regression



ANOVA table for multiple regression

Source Sum of squares SS df Mean square MS F P-value

Model p SSG/DFG MSG/MSE Tail area above F

Error n − p − 1 SSE/DFE

Total n − 1
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SST = SSM + SSE
DFT = DFM + DFE

The standard deviation of the sampling distribution, s, for n sample 
data points is calculated from the residuals ei = yi – ŷi

s is an unbiased estimate of the regression standard deviation σ.
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Squared multiple correlation R2

Just as with simple linear regression, R2, the squared multiple 

correlation, is the proportion of the variation in the response variable 

y that is explained by the model.

In the particular case of multiple linear regression, the model is the 

linear regression with all p explanatory variables taken together.
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We have data on 78 seventh grade high school students in a rural 

Midwestern school. The researcher was interested in the relationship 

between “self-concept” (as measured by a test designed by himself) and 

the performance of the student. The data for each student include:

• GPA (not specified the period) (y, response variable)

•OBS – an observation number (if an observation number misses it means 

that the corresponding student dropped the study)

•IQ – score at a standard IQ test (IQ, explanatory variable)

•Gender – self explanatory

•Concept – score at the self designed test (CONCEPT, explanatory 

variable)

Please see the accompanying R code.



Prediction
•So far it seems that the model contains only significant terms. 
•However the R squared is pretty low, we will investigate ways of making it 
better, by looking at alternative models.
•For now let us see how we predict the mean GPA value and the GPA for 
three new students that have test scores IQ=100, Concept=60 (average), 
IQ=120, Concept=40 (unusually bright but …) and IQ=80, Concept=76 
(unusually high concept score but …). BACK to R.



Diagnosing faults in the model
•So how do we know that the model we constructed so far describes the 
data best?
•Model building involves Model fitting (what we done so far), Model checking 
(what we do here) and Model revising (to come)
•If any of the checks done here reveal any deficiencies we need to modify 
the model
•The regression assumptions needed to be checked are:

1. The relationship is truly linear
2. The errors are 

• Independent
• Normal
• Have constant variance

• The main tools to check these facts are various plots of residuals. 
(residual at xi = yi –yfitted )



Checking for linearity of the model:

•Plot residuals vs. fitted values
•Plot residuals vs. each explanatory variable
•Partial regression plots 
The first two are self explanatory. The last needs a bit of explanation.

Partial regression plot - demystified

A common problem in statistics is the question of inclusion of a 
particular explanatory variable say xk

We would like to include it if the inclusion improves the fit. 
This fails if either the variable is unrelated to y or if given the 

inclusion of the other k-1 variables already present in the 
model, the predictive power of xk may be negligible. 

So how do one determine this? Partially through the use of t-tests.
Also through the use of these partial regression plots. For these we 
need:
•The residuals from the regression of y on x1, x2, …, xk-1
•The residuals from the regression of xk on x1, x2, …, xk-1



We plot the first set of residuals vs the second. The resulting plot is called 
the partial regression plot for xk. We draw one plot for each variable xk
with k from 1 to p (p is the total number of variables).

Features of the plot:

•If the partial regression plot shows a large amount of scatter the variable 
is not needed in the regression.
•If the plot is straight, then the variable should be included 
untransformed.
•If the plot is curved the variable should be transformed.

The Partial residual plot is useful in determining if a variable is needed but 
they do not necessarily tell what is the transformation required.

For this we will learn about General Additive Models or GAM (this is very 
recent research).



GAM plots

This is comparatively new research. GAM idea is to use models of the type: 

1 1( ) ... ( )p py x xϕ ϕ ε= + + +
where the functions phi are properly chosen functions. A discussion on how 
to chose them is way beyond the purpose of this class. However the resulting 
plots can give good indications of what is a better regression. 

Simply the idea is to obtain these plots for each explanatory variable. If the 
gam plot for a certain variable is straight we leave that variable alone. If the 
shape of the plot is non-linear, the shape of the plot suggest the form of 
transformation. In short if the plot is concave we should use a power less thn 
one in the transformation. If the plot is convex we should use a power grater 
than one. If the plot seems quadratic or cubic we can add powers in the 
respective variable.

This does not always work. See the R example.



Checking Normality
Normality is usually checked with a qqplot of the residuals

Checking Independence
There are 2 methods of detecting lack of independence in the errors:
•Plot of residuals vs. lagged residuals (not studied)
•Durbin-Watson test

Checking equality of variance

The idea here is to check what happens with variance of the errors 
across the values of the observations. We will talk about 2 plots:
•Divide the y observations into groups, and calculate the variability of 
the residuals for each group. Then plot the means in each group vs. 
the variability. The points should be close to a line parallel to the x axis
•Square residuals and plot them vs. the response. This will show better 
departures from normality



Detecting outliers – influential outliers

To detect outliers we can use: 
•Plot of residuals vs. fitted values 
•Normal plot of residuals 
•Finally a Leverage/Residual plot 

See accompanying R code. 



Summary of diagnostics (discussed):

1. Check for a curved relationship (non-linearity)
• Plot all possible scatterplots
• Residuals vs fitted and residuals vs. explanatory
• Partial regression plots and gam plots

2. Check for normality
• Normal plots (qqnorm)

3. Check for independence
• Durbin-Watson test

4. Check for inequality of variance
• “Funnel” effect in residual plots 
• Plot residuals in groups (use funel function)

5. Check for outliers
• Normal plot and residual plot.
• Use case numbers to identify the observations
• Leverage Residuals plots 



Fixing Models
Non-linearity.
This is in general the most serious problem. If the diagnostic measures 
presented earlier indicate that the fit is not good we can try improving it 
using various methods. 

We already talked about transforming x variables or adding extra terms in 
the model as powers or functions of the explanatory x variables

An alternative is to use the Box-Cox family of transformations i.e. to 
transform the response variable y using:

1py
p
− This transformation 

may also take care of 
the non-normality of the 
residuals.



Non-normality

This is usually the least important and is fixed tipically using the BOX-COX 
transformation of the y variable. 

Non-equality of variance

This is hard to fix. The most common method is to use weighted 
regression with the weights calculated using a similar method with the 
one we used when drawing the plots that checked for this. 

We will not talk about this unless you will encounter this problem in your 
project.

Non-independent observations

One needs to adapt different methods. A time series course deals 
with this problem.

Outliers which are influential observations

•Convince yourself that they are indeed outliers.
•Delete and refit



Summary of corrective actions:

1. Dealing with a curved regression surface:
• Transform response and/or explanatory variables
• Use the plots discussed to help select a power
• Fit a polynomial surface

2. Dealing with non-normality
• Use the Box-Cox transformation

3. Non-independence problem
• Take a time series course*

4. Dealing with outliers/influential observations
• Delete and refit if needed 
• Use robust regression*

5. Dealing with unequal variance
• Transform response
• Use weighted least square regression*

* These topics are not presented in this class
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