
Lecture 11

Multivariate Regression 
A Case Study 



Other topics: Multicollinearity
Assuming that all the regression assumptions hold how 
good are our estimators? 
The answer is pretty good if the multicollinearity effect is 
not present. 

So what is multicollinearity?
When two or more of the explanatory variables are linearly 
related this effect comes into play.  Think about a plane 
supported by a line.
Mathematically it can be shown that the variance of the 
coefficient estimators when there are 2 explanatory variables 
in the model is proportional to (1-r2)-1/2 where r is the 
correlation between the explanatory variables



Finding the variables that cause 
multicollinearity

This analysis is limited to only the explanatory variables. 
Nonessential multicollinearity is removed by standardizing 
the data. That is instead of each observation xi we use 

In R this is achieved with (x-mean(x)) / sd(x) where x is the 
vector to be transformed.
Now look at the correlation matrix between the 
explanatory variables. If there is a linear relationship 
between just two of the explanatory variables this will be 
reflected in the matrix; the offending pair will have a 
correlation close to 1or -1.
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This is fine but in general the relationship is more complex. 
The first step is to calculate the Variance Inflation Factors (VIF) 
by looking at the diagonal elements of (XTX)-1 or in R: 
diag(solve(cor(X))) (look at code). (X here is the matrix 
containing all the explanatory variables as vectors).
If the VIF are large (say greater than 10) it means that some of 
the variables can be dropped.
To obtain the approximate relationship between the columns 
of X we need to look at the eigenvalues and eigenvectors of 
cor(X) matrix.
A small eigenvalue indicates a linear relationship between 
columns of X. The exact relationship can be regained by 
looking at the eigenvectors.  



Variable selection
Suppose we have a pool of k potential explanatory variables 
and suppose that the “correct” model involves only p of these. 
How do we select the best p?
Under-fitting: This means we select too few variables to be 
included in the model. Consequences include:

The estimates are biased
The estimate of the variance is biased upwards
Prediction intervals do not have the correct width

Over-fitting: Here we include relevant variables but 
unessential ones as well. The estimates of the coefficients are 
not biased in this case but the prediction errors tend to be 
much larger (i.e. intervals are too wide). Also it leads to 
multicollinearity. 



Parsimony principle (sometimes stated as Ockham razor 
after the 14th century English philosopher William 
Ockham) 

“entia non sunt multiplicanda praeter necessitatem,“
or entities should not be multiplied beyond necessity this 

principle states that all things being equal the simplest 
solution tends to be the right one.

In statistics this translates into: when choosing between 
models all with approximately the same explanatory 
power always choose the model with the fewest 
parameters.



Selecting the correct set of variables.
There are two main categories of methods for selection 
of variables:
1) All possible regressions.

As the name says for each possible submodel we define some 
measure of “goodness” which is then used to select the best 
submodel. 
The problem is that if there are k possible variables the 
number of candidate submodels is 2k a very large number.

2) Stepwise regression.  
Here we move from one model to another adding or deleting 
variables to better the “goodness” measure, gradually arriving 
to a good model.



Goodness criteria
As you imagine there are many goodness of fit criteria. 

1. Adjusted R2 (in R denoted Adjusted R-squared).
Increasing the number of observations always increases R-squared.  
For this reason Adjusted R-squared compensates by penalizing for 
many variables in the model.
It is defined as: 

2. Mallow’s Cp
This is a measure of how well a model predicts.
Small values of this measure near p+1 where p is the number of 
variables currently included in the model indicates a good model.

3. AIC (Akaike Information criterion)
This is an estimate of the difference between the actual model and 
no model at all.  It is based on the entropy concept. 
Small values of this measure indicate a good model  
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4. BIC (Bayesian Information Criterion)
This is similar with AIC but penalizes more that AIC for models 
containing many variables
Again, small values indicate good models.

5. Size of the estimated error
This one is simple. One looks at Mean Squared Error and 
minimizes it.

6. Cross-Validation
This is more involved. In general it implies dividing the data into parts 
(say 10) using 9 of them to construct the model and seeing how well 
the model predicts the last part. The method is repeated over all 
possible combinations of the 9 parts and for each model the error is 
averaged. Best model is the one with the smallest prediction error.



Stepwise Regression
In this method we start with an initial model and then improve it by 
adding or deleting variables sequentially. There are 3 basic 
techniques:
1. Forward selection. This method starts with a model containing no 

explanatory then adds the one variable that produces the model with 
the best “goodness” criteria. Once this is done it adds another 
variable to produce once again the better criteria and so on. If at any 
step adding a variable will not improve the model from the 
perspective of the “goodness” criterion, the selection stops and the 
model is output.

2. Backward selection.  This is very similar with forward selection, only 
we start with the full model (containing all predictors) and we keep 
deleting them until the goodness criteria cannot be improved.

3. Stepwise regression. Here we start with a null model.  At every step 
we perform one forward addition (if needed) and one backward 
deletion (if needed). If none of these actions are needed the model 
construction stops.

In R we use the function step() (please see accompanying code)



Summary.
If multicollinearity is present in the model it needs to be 
eliminated.

One uses VIF and eigenvalues/eigenvectors to identify and 
eliminate the responsible variables.

If many explanatory variables are possible we need to 
select the best subset. This is done using various criteria 
the most popular being the AIC in today’s high volume 
data, much information world.
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