Lecture 12 Analysis of Two-Way tables Ch 9

What are two-way tables?

- In statistics we call categorical variables present in an experimental design: FACTORS
- Each possible value of the categorical variable (factor) is called a level of the factor.
- With this language a two-way table is a representation of an experiment that studies the relationship between two factors.

Group by age education Years of sc				factor:	age Isands of persons)
	Education		25 to 34	Age gro 35 to 54	oup
Second factor: education	Did not complete high school Completed high school College, 1 to 3 years College, 4 or more years	J	4,459 11,562 10,693 11,071	9,174 26,455 22,647 23,160	14,226 20,060 11,125 10,597

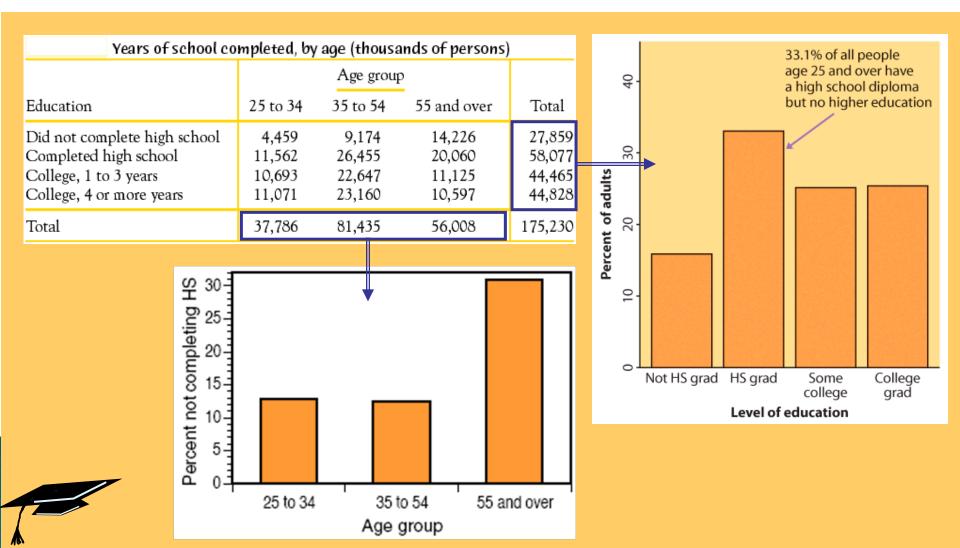
Marginal distributions

We can look at each categorical variable separately in a two-way table by studying the row totals and the column totals. They represent the marginal distributions, expressed in counts or percentages (They are written as if in a margin.)

Years of school completed, by age (thousands of persons)					
		Age group	p		
Education	25 to 34	35 to 54	55 and over	Total	
Did not complete high school Completed high school College, 1 to 3 years College, 4 or more years	4,459 11,562 10,693 11,071	9,174 26,455 22,647 23,160	14,226 20,060 11,125 10,597	27,859 58,077 44,465 44,828	
Total	37,786	81,435	56,008	175,230	

2000 U.S. census

The marginal distributions can then be displayed on separate bar graphs, typically expressed as percents instead of raw counts. Each graph represents only one of the two variables, completely ignoring the second one.

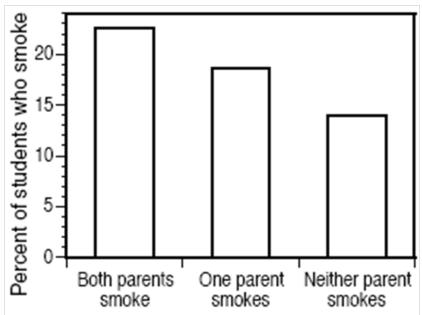


Parental smoking

Does parental smoking influence the smoking habits of their high school children?

Summary two way tables		Student	Student	
<u>Summary two-way table:</u>		smokes	does not smoke	Total
High school students	Both parents smoke	332.49	1447.51	1780
were asked whether they	One parent smokes	418.22	1820.78	2239
smoke and whether their	Neither parent smokes	253.29	1102.71	1356
parents smoke.	Total	1004	4371	5375





The percents are then displayed in a bar graph.

Relationships between categorical variables

The marginal distributions summarize each categorical variable independently. But the two-way table actually describes the relationship between both categorical variables.

The cells of a two-way table represent the intersection of a given level of one categorical factor with a given level of the other categorical factor.

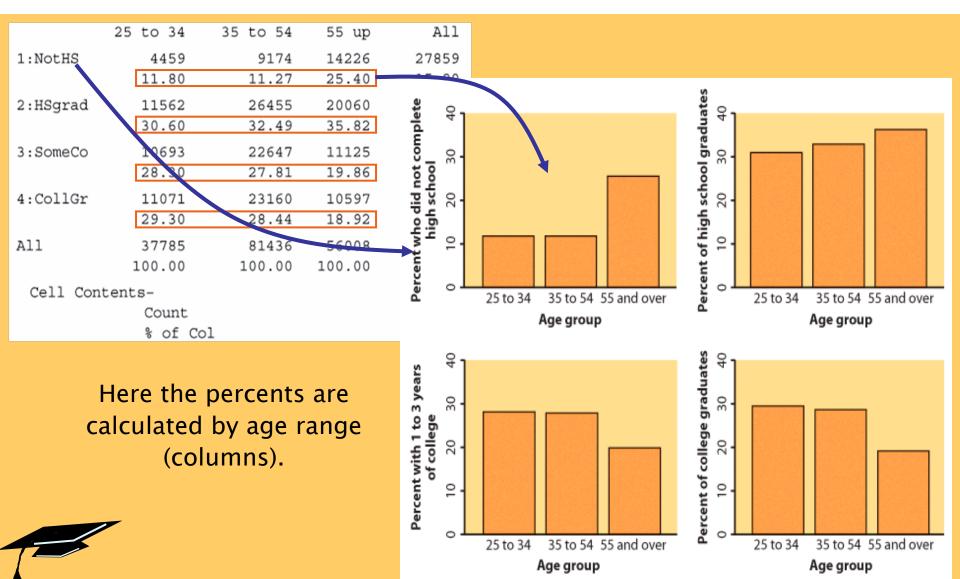
Because counts can be misleading (for instance, one level of one factor might be much less represented than the other levels), we prefer to calculate percents or proportions for the corresponding cells. These make up the conditional distributions.

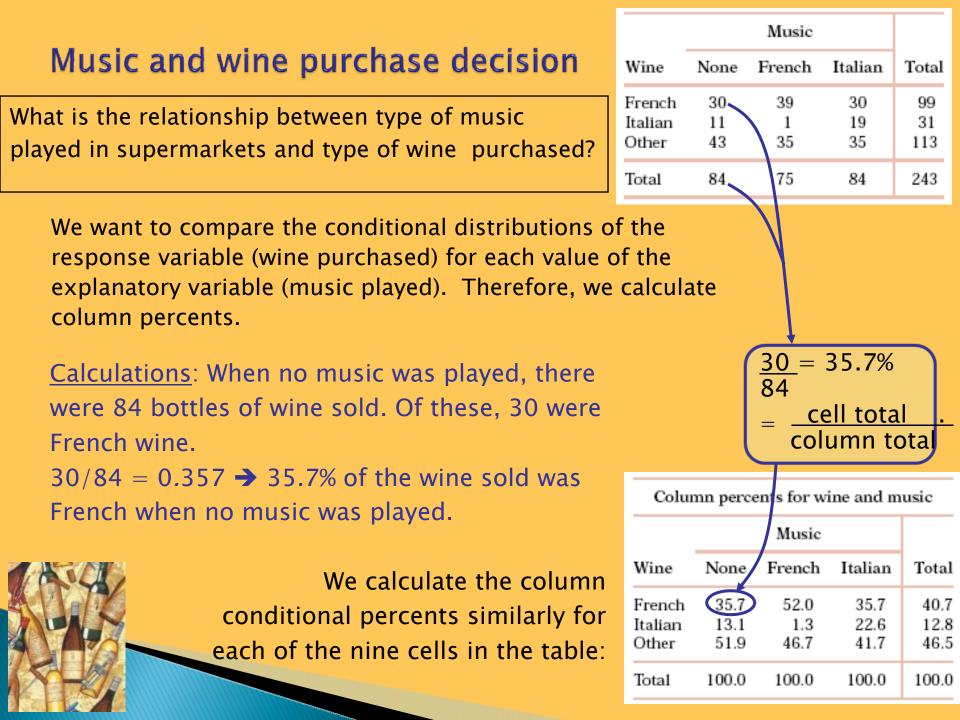
Conditional distributions

The counts or percents within the table represent the **conditional distributions**. Comparing the conditional distributions allows you to describe the "relationship" between both categorical variables.

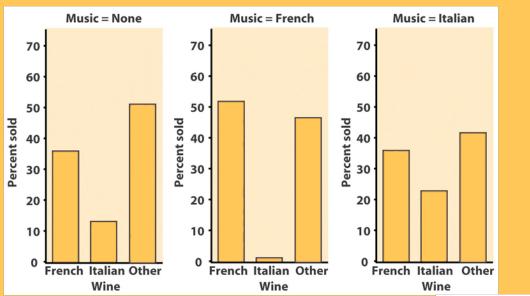
Voors of school o	Years of school completed, by age (thousands of persons) 25 to 34 35 to 54 55 up All								
Tears of school c	ompleted, by a	Age group)	2	5 to 34	35 to 54	55 up	All
Education	25 to 34	35 to 54	55 and over	Total	1:NotHS	4459	9174	14226	27859
Did not complete high school	4,459	9,174	14,226	27,859		11.80	11.27	25.40	15.90
Completed high school College, 1 to 3 years	11,562 10,693	26,455 22,647	20,060 11,125	58,077 44,465	2:HSgrad	11562	26455	20060	58077
College, 4 or more years	11,071	23,160	10,597	44,828		30.60	32.49	35.82	33.14
Total	37,786	81,435	56,008	175,230	3:SomeCo	10693	22647	11125	44465
		Here	e the			28.30	27.81	19.86	25.38
	percents are		4:CollGr	11071	23160	10597	44828		
			29.30	28.44	18.92	25.58			
	calculated by		All	37785	81436	56008	175229		
	Ċ	age r	ange			100.00	100.00	100.00	100.00
	(29.3	30% =		11 Conter	ts-			
			<u>11(</u>)71		Count			
	37785		1 1	% of C	ol				
	=	-	<u>ll tota</u> mn toi						

The conditional distributions can be <u>graphically compared</u> using side by side bar graphs of one variable for each value of the other variable.





For every two-way table, there are two sets of possible conditional distributions.

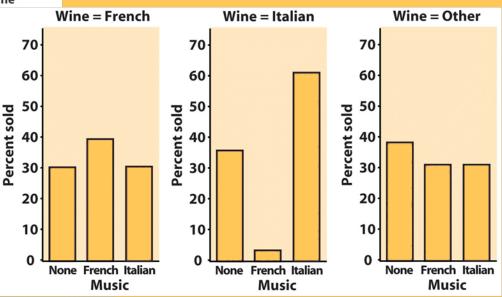


Music Wine None French Italian Total 39 French 30 30 9911 1 19 Italian 31 43 35 35 113 Other 75 243 Total 84 84

Does background music in supermarkets influence customer purchasing decisions?

Wine purchased for each kind of music played (column percents)

Music played for each kind of wine purchased (row percents)



Simpson's paradox

An association or comparison that holds for all of several groups can reverse direction when the data are combined (aggregated) to form a single group. This reversal is called Simpson's paradox.

Example: Hospital death rates		Died Survived Total % surv.	Hospital A 63 2037 2100 97.0%		16 784	On the surface, Hospital B would seem to have a better record.	
But once patient	Patients	in good o	ondition		Patients	in poor co	ndition
		Hospital A	Hospital E	3		Hospital A	Hospital B
condition is taken	Died	E	5 8	3	Died	57	8
into account, we	Survived	594	592	2	Survived	1443	192
see that hospital A	Total	600	600)	Total	1500	200
has in fact a better	% surv.	99.0%	98.7%	2	% surv.	96.2%	96.0%

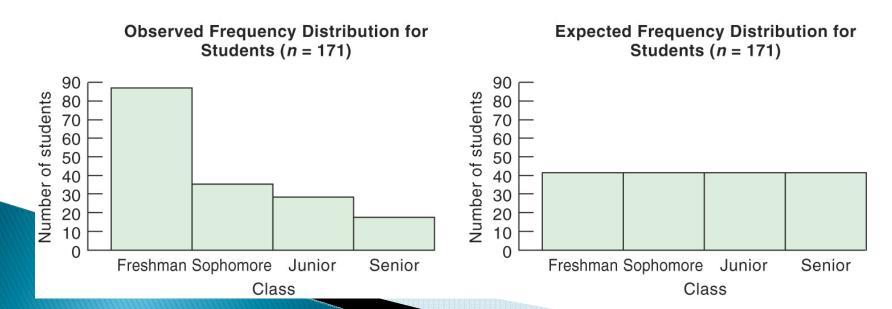
record for both patient conditions (good and poor).

Here patient condition was the lurking variable.

Inference for Two-Way tables.

The main test is to check whether or not the two factors are independent or if there is a relationship between them.

- •Put it differently we check if the differences in sample proportions that are observed are likely to have occurred by just chance because of the random sampling.
- To assess this we use a chi-square (χ^2) test to check the null hypothesis of no relationship between the two categorical variables of a two-way table.



Expected counts in two-way tables

Two-way tables sort the data according to two categorical variables. We want to test the hypothesis that there is no relationship between these two categorical variables (H_0).

To test this hypothesis, we compare **actual counts** from the sample data with **expected counts** given the null hypothesis of no relationship.

The expected count in any cell of a two-way table when H_0 is true (under independence hypothesis) is:

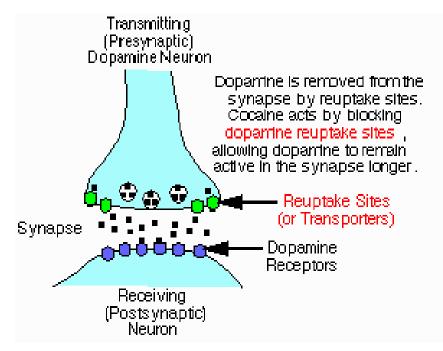
expected count = $\frac{\text{row total} \times \text{column total}}{n}$

Cocaine addiction

Cocaine produces short-term feelings of physical and mental well being. To maintain the effect, the drug may have to be taken more frequently and at higher doses. After stopping use, users will feel tired, sleepy and **depressed**.

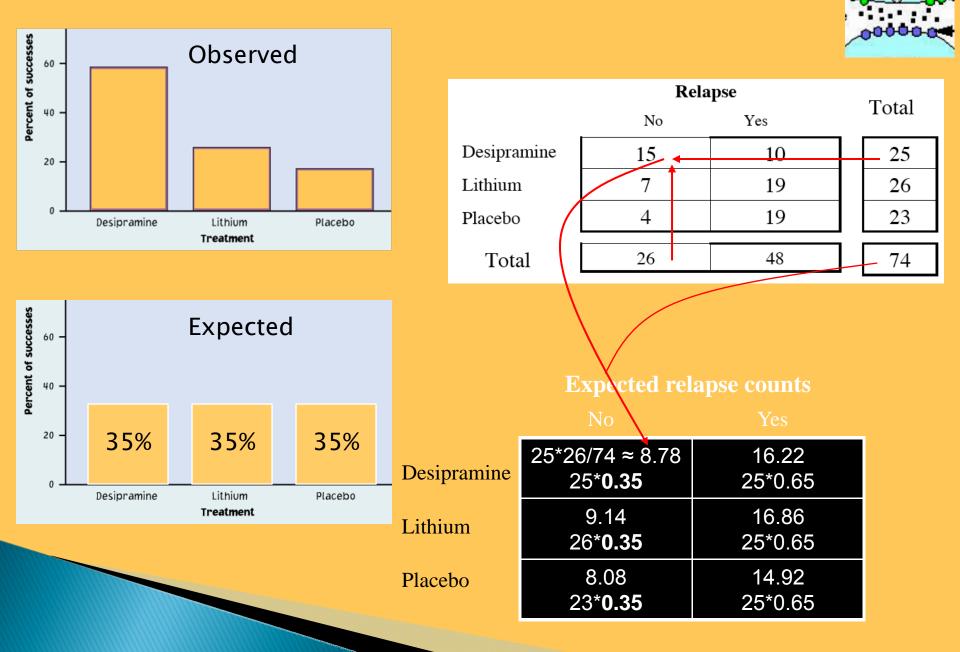
The pleasurable high followed by unpleasant after-effects encourage repeated compulsive use, which can easily lead to dependency.

Desipramine is an antidepressant affecting the brain chemicals that may become unbalanced and cause depression. It was thus tested for recovery from cocaine addiction.



Treatment with desipramine was compared to a standard treatment (lithium, with strong anti-manic effects) and a placebo.

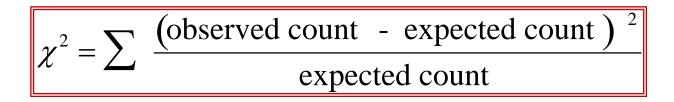
Cocaine addiction



The chi-square test

The chi-square statistic (χ^2) is a measure of how much the observed cell counts in a two-way table diverge from the expected cell counts.

The formula for the χ^2 statistic is: (summed over all $r \cdot c$ cells in the table)

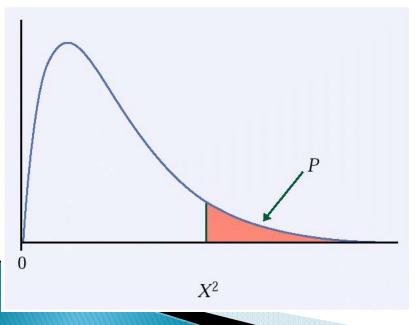


Large values for χ^2 represent strong deviations from the expected distribution under the H_0 and providing evidence against H_0 .

However, since χ^2 is a sum, how large a χ^2 is required for statistical significance will depend on the number of comparisons made.

For the chi-square test, H_0 states that there is no association between the row and column variables in a two-way table. The alternative is that these variables are related.

If H_0 is true, the chi-square test has approximately a χ^2 distribution with (r - 1)(c - 1) degrees of freedom.



The P-value for the chi-square test is the area to the right of χ^2 under the χ^2 distribution with df (r-1)(c-1):

 $P(\chi^2 \geq \chi^2).$

When is it safe to use a χ^2 test?

We can safely use the chi-square test when:

- The samples are simple ransom samples (SRS).
- All individual expected counts are 1 or more
- No more than 20% of expected counts are less than 5

→ For a 2x2 table, this implies that all four expected counts should be 5 or more.

Chi-square test vs. *z*-test for two proportions

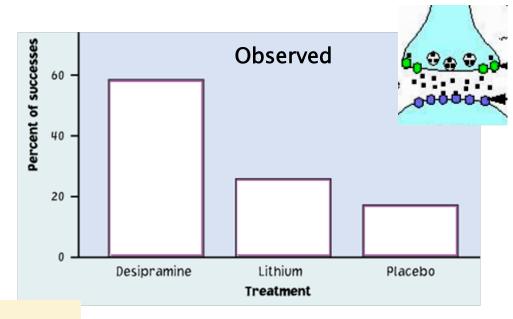
When comparing only two proportions such as in a 2x2 table where the columns represent counts of "success" and "failure," we can test

$$H_0: p_1 = p_2 \text{ vs. } H_a p_1 \neq p_2$$

equally with a two-sided *z* test or with a chi-square test with 1 degree of freedom and get the same p-value. In fact, the two test statistics are related: $X^2 = (z)^2$.

Cocaine addiction

Minitab statistical software output for the cocaine study



Chi-Square Test

-		are printed		observed	counts
5	Success	Relapse	Total		
D	14	10	24		
	8.00	16.00			
L	6	18	24		
	8.00	16.00			
Р	4	20	24		
	8.00	16.00			
Total	24	48	72		
Chi-Sq	= 4.50	0 + 2.250	+		
	0.50	0 + 0.250	+		
	2.00	0 + 1.000	= 1	0.500	
DF =	2,P-Valu	e = 0.005			

The p-value is 0.005 or half a percent. This is very significant.

We reject the null hypothesis of no association and conclude that there is a significant relationship between treatment *(desipramine, lithium, placebo)* and outcome *(relapse or not)*.

Successful firms

Franchise businesses are sometimes given an exclusive territory by contract. This means that the new outlet will not have to compete with other outlets of the same chain within its own territory. How does the presence of an exclusive-territory clause in the contract relate to the survival of the business?

A random sample of 170 new franchises recorded two categorical variables for each firm: (1) whether the firm was successful or not (based on economic criteria) and (2) whether or not the firm had an exclusive-territory contract.

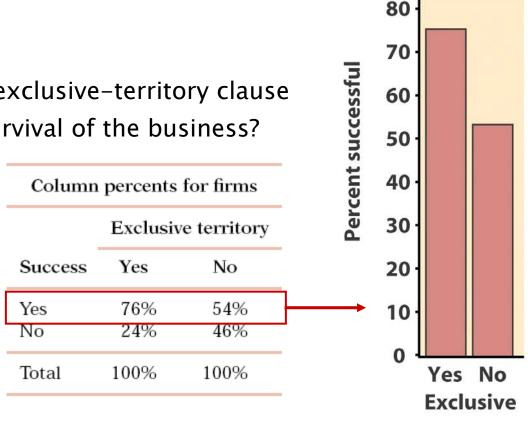
Observed numbers of firms					
	Exclusi				
Success	Yes	No	Total		
Yes No	108 34	15 13	123 47		
Total	142	28	170		

This is a 2x2 table (two levels for success, yes/no; two levels for exclusive territory, yes/no). \Rightarrow df = (2 - 1)(2 - 1) = 1

Successful firms

How does the presence of an exclusive-territory clause in the contract relate to the survival of the business?

To compare firms that have an exclusive territory with those that do not, we start by examining column percents (conditional distribution):



The difference between the percent of successes among the two types of firms is quite large. The chi-square test can tell us whether or not these differences can be plausibly attributed to chance (random sampling). Specifically, we will test

 H_0 : No relationship between exclusive clause and success Highere is some relationship between the two variables

0	C 1	~
Success	tııl.	tirms

Here is the chi-square output from Minitab:

Rows:	Success	Columns	: Excl		
	1_Yes	2_No	All		
1_Yes	s 108 102.74	15 20.26			
2_No	34 39.26	13 7.74	47 47.00		
All	142 142.00	28 28.00			
Chi-S	quare = 5.9	11, DF =	1, P -	-Value =	0.015
Cell	l Contents	 Count Exp Fre	đ		

The p-value is significant at α 5% (p 1.5%) thus we reject H_0 : we have found a significant relationship between an exclusive territory and the

success of a franchised firm.

Successful firms

	Yes	No	Total	
	108	15	123	Compu
V	87.8%	12.2%	100.00%	using
Yes	76.06%	53.57%	72.35%	using
	63.53%	8.824%	72.35%	
	34	13	47	
No	72.34%	27.66%	100.00%	
INO	23.94%	46.43%	27.65%	
	20%	7.647%	27.65%	Cell format:
	142	28	170	
Total	83.53%	16.47%	100.00%	
Total	100.00%	100.00%	100.00%	
	83.53%	16.47%	100.00%	

Computer output using Crunch It!

format: Count Row percent Column percent Total percent

Test for independence of Success and Exclusive Territory:

Statistic	DF	Value	P-value
Chi-square	1	5.9111857	0.015

R code:

•In R you create a matrix with elements the counts.

•Then to perform the chi-square test use simply:

chisq.test()

• More details can be found on pages 136-137 of the R textbook.